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1. Chapter 8-4 from Feynman and Hibbs. Lagrange function of a periodic system of
N ”balls” connected with springs is given by:
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Here qi(t) is one dimensional displacement of the i−th ball. Rewrite L in terms of
normal coordinates Qα. Assume that N is odd.

2. Assume that the system from the previous problem has been quantized. Find the
wave function Φ0 of the ground state. Calculate expectation values of the following
operators
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in this state. Here Qα, Q?
α are complex normal coordinates

3. Find the continuum limit od the system from the previous problems (Ch. 8-5 in
Feynman and Hibbs). Show that it reduces to the scalar field theory.

4. Generalized ζ function is defined as
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∞∑
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Prove that
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which is convergent for s > 1.

Prove another useful integral representation of ζ function
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where CH starts at −∞ above the cut (which we choose to be on the negative
real axis), encircles the origin clockwise and goes back to −∞ below the cut. This
formula is useful to study the structure of singularities of ζ in complex s plane.


