Mechanika Kwantowa dla doktorantów zestaw 26 na dzień 1.06.2017 godz. 8:15

1. Chapter 8-4 from Feynman and Hibbs. Lagrange function of a periodic system of N "balls" connected with springs is given by:

$$
L=\frac{1}{2} \sum_{j=1}^{N} \dot{q}_{j}^{2}-\frac{\nu^{2}}{2}\left\{\sum_{j=1}^{N-1}\left(q_{j+1}-q_{j}\right)^{2}+\left(q_{1}-q_{N}\right)^{2}\right\} .
$$

Here $q_{i}(t)$ is one dimensional displacement of the $i-$ th ball. Rewrite L in terms of normal coordinates Q_{α}. Assume that N is odd.
2. Assume that the system from the previous problem has been quantized. Find the wave function Φ_{0} of the ground state. Calculate expectation values of the following operators

$$
Q_{\alpha}, \quad Q_{\alpha}^{\star}, \quad Q_{\alpha}^{2}, \quad Q_{\alpha}^{\star 2}, Q_{\alpha}^{\star} Q_{\alpha}
$$

in this state. Here $Q_{\alpha}, Q_{\alpha}^{\star}$ are complex normal coordinates
3. Find the continuum limit od the system from the previous problems (Ch. 8-5 in Feynman and Hibbs). Show that it reduces to the scalar field theory.
4. Generalized ζ function is defined as

$$
\begin{equation*}
\zeta(s, a)=\sum_{n=0}^{\infty} \frac{1}{(a+n)^{s}} . \tag{1}
\end{equation*}
$$

Prove that

$$
\begin{equation*}
\zeta(s, a)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} d x x^{s-1} \frac{e^{-a x}}{1-e^{-x}} \tag{2}
\end{equation*}
$$

which is convergent for $s>1$.
Prove another useful integral representation of ζ function

$$
\begin{equation*}
\zeta(s, a)=-\frac{\Gamma(1-s)}{2 \pi i} \int_{C_{H}} d z z^{s-1} \frac{e^{a z}}{1-e^{z}} \tag{3}
\end{equation*}
$$

where C_{H} starts at $-\infty$ above the cut (which we choose to be on the negative real axis), encircles the origin clockwise and goes back to $-\infty$ below the cut. This formula is useful to study the structure of singularities of ζ in complex s plane.

