Mechanika Kwantowa dla doktorantów zestaw 22 na dzień 27.04.2017 godz. 8:15

1. The Lippmann-Schwinger formalism can be also applied to a one-dimensional trans-mission-reflection problem with a finite range potential, $V(x) \neq 0$ for $-a<x<a$ only.

- Suppose we have an incident wave coming from the left $\langle x \mid \phi\rangle=e^{i k x} / \sqrt{2 \pi}$. How must we handle the singular $1 /\left(E-H_{0}\right)$ operator if we want to have a transmitted wave for $x>a$ and a reflected one (+ the original wave) for $x<-a$? Is the the $E \rightarrow E+i \varepsilon$ prescription still correct? Obtain expression for the appriopriate Green's function and write integral equation for $\left\langle x \mid \psi^{(?)}\right\rangle$.
- Consider special case of an attractive $(\gamma>0)$ potential

$$
V=-\left(\frac{\gamma \hbar^{2}}{2 m}\right) \delta(x)
$$

Solve the integral equation to obtain the transmission and reflection amplitudes.

- The above potential has only one bound state (find it). Show that the transmission and reflection amplitudes have bound-state poles at the expected positions where k is regarded as complex.

2. Prove that

$$
|z\rangle=e^{-|z|^{2} / 2} \sum_{n=0} \frac{z^{n}}{\sqrt{n!}}|n\rangle
$$

is a normalized eigen-state of the annihilation operator \hat{a}. To this end calculate the product of two eigenstates $\left\langle z^{\prime} \mid z\right\rangle$ and find a norm subsituting $z^{\prime}=z$. Prove completness relation:

$$
\mathbf{1}=\frac{1}{\pi} \int d^{2} z|z\rangle\langle z| .
$$

3. For a Schrödinger's cat state

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left(e^{-i \pi / 4}|z\rangle+e^{i \pi / 4}|-z\rangle\right)
$$

calculate probability distribution in the configuration space

$$
P_{\psi}(\xi)=|\langle\xi \mid \psi\rangle|^{2} .
$$

Remember that

$$
\psi_{z}(\xi)=\langle\xi \mid \psi\rangle=C \exp \left(-\frac{1}{2}(\xi-\sqrt{2} z)^{2}\right)
$$

For the final answer choose $z=\rho$ or $z=i \rho$ where ρ is a real number.
4. Unit vector \vec{n}_{θ} in $x-z$ plane has the following form:

$$
\vec{n}_{\theta}=\cos \theta \vec{n}_{z}+\sin \theta \vec{n}_{x}
$$

where $\vec{n}_{x, z}$ are unit vectors along x an z axis respectively. Find egenstates of the spin operator

$$
S_{\theta}=\vec{n}_{\theta} \cdot \vec{S}
$$

where $\vec{S}=\left(\hat{S}_{x}, \hat{S}_{y}, \hat{S}_{z}\right)$ is spin $1 / 2$ operator.
The system is in the state with $S_{z}=+1 / 2$ (in units where $\hbar=1$). We perform the measurement of S_{θ} on this state. What are the possible results of this meaurement and what are the corresponding probabilites. Next we measure S_{z}. What is the probability to recover the initial value $S_{z}=+1 / 2$.

