Mechanika Kwantowa dla doktorantów
 zestaw 21 na dzień 20.04.2017 godz. 8:15

1. Finish the problem from the last set:

Consider scattering on the repelling potential $(\gamma>0)$

$$
\frac{2 m}{\hbar^{2}} V(r)=\gamma \delta(r-R)
$$

Write Schrödinger equation and then for $l=0$ solve it on the left and on the right of the potential and glue the solutions appropriately. Then calculate δ_{0}. Consider the case when γ is very large. Next, show that for any γ but small $k R$ function $\cot \delta_{0}$ exhibits resonant behaviour in scattering energy E (namely $\cot \delta_{0}=-c\left(E-E_{r}\right)$, which tends to zero for $E=E_{r}$). Find position of these resonances
Prove that $\cot \delta_{0}$ goes through zero from above for increasing k. Find widths of these respnances.
2. Consider $f^{(1)}(\theta)$ in Born approximation for the Yukawa potential (set 18, problem3):

$$
V(r)=V_{0} \frac{e^{-\mu r}}{\mu r} .
$$

Assuming that phase shifts are small $\left|\delta_{l}\right| \ll 1$, derive formula for δ_{l} expressed through Legendre'a functions $Q_{l}(\zeta)$ defined as:

$$
Q_{l}(\zeta)=\frac{1}{2} \int_{-1}^{1} d \zeta^{\prime} \frac{P_{l}\left(\zeta^{\prime}\right)}{\zeta-\zeta^{\prime}}
$$

Note that the Legendre equation has two linearly independent solutions P_{l} and Q_{l}, the latter one being logarithmically divergent. Prove, by substituting to the Legendre equation, that Q_{l} given by the above integral is the solution.
Derive asymptotic expansion for $|\zeta|>1$

$$
\begin{align*}
Q_{l}(\zeta) & =\frac{l!}{1 \cdot 3 \ldots(2 l+1)} \\
& \times\left\{\frac{1}{\zeta^{l+1}}+\frac{(l+1)(l+2)}{2 \cdot(2 l+3)} \frac{1}{\zeta^{l+3}}+\frac{(l+1)(l+2)(l+3)(l+4)}{2 \cdot 4 \cdot(2 l+3)(2 l+5)} \frac{1}{\zeta^{l+5}}+\ldots\right\} \tag{1}
\end{align*}
$$

Using expansion (1) show the following:
(a) δ_{l} is positive (negative) for $V_{0}<0\left(V_{0}>0\right)$;
(b) for de Broglie wave length larger than the potential range the phase shifts take the following form:

$$
\delta_{l}=\text { const } \times k^{2 l+1} .
$$

(c) find formula for const.
3. The Lippmann-Schwinger formalism can be also applied to a one-dimensional trans-mission-reflection problem with a finite range potential, $V(x) \neq 0$ for $-a<x<a$ only.

- Suppose we have an incident wave coming from the left $\langle x \mid \phi\rangle=e^{i k x} / \sqrt{2 \pi}$. How must we handle the singular $1 /\left(E-H_{0}\right)$ operator if we want to have a transmitted wave for $x>a$ and a reflected one (+ the original wave) for $x<-a$? Is the the $E \rightarrow E+i \varepsilon$ prescription still correct? Obtain expression for the appriopriate Green's function and write integral equation for $\left\langle x \mid \psi^{(?)}\right\rangle$.
- Consider special case of an attractive $(\gamma>0)$ potential

$$
V=-\left(\frac{\gamma \hbar^{2}}{2 m}\right) \delta(x)
$$

Solve the integral equation to obtain the transmission and reflection amplitudes.

- The above potential has only one bound state (find it). Show that the transmission and reflection amplitudes have bound-state poles at the expected positions where k is regarded as complex.

