Mechanika Kwantowa dla doktorantów zestaw 20 na dzień 6.04.2017 godz. 8:15

1. Find possible poles of f_{0} for a problem from a previous set for finite spherical well.
2. Find energies of the bound states in spherical well from the first problem for $l=0$. Depending on R and V_{0} there is only a finite number of such states. Suppose that we tune V_{0} in a continuous way. Then the energies of the bound states change (how?), and when V_{0} increases new bound states appear for some discrete values of $V_{0}^{n}(n=1,2,3 \ldots)$. Calculate V_{0}^{n} end the energy of the corresponding bound state. Show that V_{0}^{n} correspond to the singularities of f_{0} for scattering energy $E \rightarrow 0$. Try to interpret this result.
3. Prove addition theorem for spherical harmonics:

$$
\sum_{m} Y_{l}^{m}\left(\vec{n}_{1}\right) Y_{l}^{m *}\left(\vec{n}_{2}\right)=\frac{2 l+1}{4 \pi} P_{l}\left(\vec{n}_{1} \cdot \vec{n}_{2}\right)
$$

4. Consider scattering on the repelling potential $(\gamma>0)$

$$
\frac{2 m}{\hbar^{2}} V(r)=\gamma \delta(r-R)
$$

Write Schrödinger equation and then for $l=0$ solve it on the left and on the right of the potential and glue the solutions appropriately. Then calculate δ_{0}. Consider the case when γ is very large. Next, show that for any γ but small $k R$ function $\cot \delta_{0}$ exhibits resonant behaviour in scattering energy E (namely $\cot \delta_{0}=-c\left(E-E_{r}\right)$, which tends to zero for $E=E_{r}$). Find position of these resonances and their widths.

