Mechanika Kwantowa dla doktorantów zestaw 20 na dzień 6.04.2017 godz. 8:15

- 1. Find possible poles of f_0 for a problem from a previous set for finite spherical well.
- 2. Find energies of the bound states in spherical well from the first problem for l = 0. Depending on R and V_0 there is only a finite number of such states. Suppose that we tune V_0 in a continuous way. Then the energies of the bound states change (how?), and when V_0 increases new bound states appear for some discrete values of V_0^n (n = 1, 2, 3...). Calculate V_0^n end the energy of the corresponding bound state. Show that V_0^n correspond to the singularities of f_0 for scattering energy $E \to 0$. Try to interpret this result.
- 3. Prove addition theorem for spherical harmonics:

$$\sum_{m} Y_{l}^{m}(\vec{n}_{1})Y_{l}^{m*}(\vec{n}_{2}) = \frac{2l+1}{4\pi}P_{l}(\vec{n}_{1}\cdot\vec{n}_{2}).$$

4. Consider scattering on the repelling potential $(\gamma > 0)$

$$\frac{2m}{\hbar^2}V(r) = \gamma\delta(r-R)$$

Write Schrödinger equation and then for l = 0 solve it on the left and on the right of the potential and glue the solutions appropriately. Then calculate δ_0 . Consider the case when γ is very large. Next, show that for any γ but small kR function $\cot \delta_0$ exhibits resonant behaviour in scattering energy E (namely $\cot \delta_0 = -c(E - E_r)$), which tends to zero for $E = E_r$). Find position of these resonances and their widths.