Mechanika Kwantowa dla doktorantów zestaw 19 na dzień 30.03.2017 godz. 8:15

1. Using expansion for the wave function calculated from the Schrödinger equation for a given potential V(r)

$$\langle \vec{r} | \psi^{(+)} \rangle = \frac{1}{(2\pi)^{3/2}} \sum_{l} (2l+1)i^{l} A_{l}(kr) P_{l}(\cos\theta)$$
 (1)

(which means that $A_l(r)$ are known) construct quantity β_l for some large enough R

$$\beta_l = \left. \frac{r}{A_l} \frac{dA_l}{dr} \right|_{r=R}$$

and by matching it with asymptotic form of $\langle \vec{r} | \psi^{(+)} \rangle$ expressed in terms of phase shifts, show that

$$\tan \delta_l = \frac{kR \, j_l'(kR) - \beta_l \, j_l(kR)}{kR \, y_l'(kR) - \beta_l \, y_l(kR)}.\tag{2}$$

To this end use decomposition (prove it!):

$$A_l(kr) = \frac{1}{2}(e^{2i\delta_l} + 1)j_l(kr) + i\frac{1}{2}(e^{2i\delta_l} - 1)y_l(kr)$$

Derive general formula (in terms of spherical Bessel functions) for the phase shifts for the finite spherical well $(V_0 > 0)$:

$$V(r) = \begin{cases} 0 & \text{dla} \quad R < r \\ \\ -V_0 & \text{dla} \quad r < R \end{cases}$$

In particular calculate $\tan \delta_0$. Discuss two limits $k \to 0$ and $k \to \infty$. How δ_0 depends on V_0 ?

2. Derive formula analogous to (2), but for f_l rather than for δ_l as a function β_l . To this end observe that

$$e^{2i\delta_l} = 1 + 2ik f_l$$

(here you will encounter Hankel function $h_l^{(+)} = h_l^{(1)} = j_l + iy_l$).

Apply this formula to the square well from the previous problem and calculate f_0 . Find possible poles of f_0 .

3. Find energies of the bound states in spherical well from the first problem for l = 0. Depending on R and V_0 there is only a finite number of such states. Suppose that we tune V_0 in a continuous way. Then the energies of the bound states change (how?), and when V_0 increases new bound states appear for some discrete values of V_0^n (n = 1, 2, 3...). Calculate V_0^n end the energy of the corresponding bound state. Show that V_0^n correspond to the singularities of f_0 for scattering energy $E \to 0$. Try to interpret this result.