Mechanika Kwantowa dla doktorantów
 zestaw 19 na dzień 30.03.2017 godz. 8:15

1. Using expansion for the wave function calculated from the Schrödinger equation for a given potential $V(r)$

$$
\begin{equation*}
\left\langle\vec{r} \mid \psi^{(+)}\right\rangle=\frac{1}{(2 \pi)^{3 / 2}} \sum_{l}(2 l+1) i^{l} A_{l}(k r) P_{l}(\cos \theta) \tag{1}
\end{equation*}
$$

(which means that $A_{l}(r)$ are known) construct quantity β_{l} for some large enough R

$$
\beta_{l}=\left.\frac{r}{A_{l}} \frac{d A_{l}}{d r}\right|_{r=R}
$$

and by matching it with asymptotic form of $\left\langle\vec{r} \mid \psi^{(+)}\right\rangle$expressed in terms of phase shifts, show that

$$
\begin{equation*}
\tan \delta_{l}=\frac{k R j_{l}^{\prime}(k R)-\beta_{l} j_{l}(k R)}{k R y_{l}^{\prime}(k R)-\beta_{l} y_{l}(k R)} \tag{2}
\end{equation*}
$$

To this end use decomposition (prove it!):

$$
A_{l}(k r)=\frac{1}{2}\left(e^{2 i \delta_{l}}+1\right) j_{l}(k r)+i \frac{1}{2}\left(e^{2 i \delta_{l}}-1\right) y_{l}(k r)
$$

Derive general formula (in terms of spherical Bessel functions) for the phase shifts for the finite spherical well $\left(V_{0}>0\right)$:

$$
V(r)=\left\{\begin{array}{ccc}
0 & \text { dla } & R<r \\
-V_{0} & \text { dla } & r<R
\end{array}\right.
$$

In particular calculate $\tan \delta_{0}$. Discuss two limits $k \rightarrow 0$ and $k \rightarrow \infty$. How δ_{0} depends on V_{0} ?
2. Derive formula analogous to (2), but for f_{l} rather than for δ_{l} as a function β_{l}. To this end observe that

$$
e^{2 i \delta_{l}}=1+2 i k f_{l}
$$

(here you will encounter Hankel function $\left.h_{l}^{(+)}=h_{l}^{(1)}=j_{l}+i y_{l}\right)$.
Apply this formula to the square well from the previous problem and calculate f_{0}. Find possible poles of f_{0}.
3. Find energies of the bound states in spherical well from the first problem for $l=0$. Depending on R and V_{0} there is only a finite number of such states. Suppose that we tune V_{0} in a continuous way. Then the energies of the bound states change (how?), and when V_{0} increases new bound states appear for some discrete values of $V_{0}^{n}(n=1,2,3 \ldots)$. Calculate V_{0}^{n} end the energy of the corresponding bound state. Show that V_{0}^{n} correspond to the singularities of f_{0} for scattering energy $E \rightarrow 0$. Try to interpret this result.

