Mechanika Kwantowa dla doktorantów zestaw 18 na dzień 23.03.2017 godz. 8:15

1. Prove by substituting to the spherical Bessel equation that

$$
j_{l}(z)=\frac{1}{2} \frac{1}{i^{l}} \int_{-1}^{1} d t e^{i z t} P_{l}(z) .
$$

To this end use the identity

$$
P_{l}(z)=\frac{1}{2^{l} l!} \frac{d^{l}}{d z^{l}}\left(z^{2}-1\right)^{l}
$$

2. Hard ball potential - continuation.

We will show that the total cross-section for all l-sectors reads:

$$
\sigma_{\mathrm{tot}}=\frac{4 \pi}{k^{2}} \sum_{l}(2 l+1) \sin ^{2} \delta_{l}(k)
$$

where $\delta_{l}(k)$ denote phase shifts. For a hard ball potential from the previous set calculate the cross-section for the lowest partial wave $l=0$ and for low energy k. As you will see the cross-section is not geometrical i.e. $\sigma \neq \pi R^{2}$.

Sum up higher partial waves up to a maximal clasically allowed $l_{\max } \sim k a$. To this end use

$$
\sin ^{2} \delta_{l}(k)=\frac{\tan ^{2} \delta_{l}(k)}{1+\tan ^{2} \delta_{l}(k)}
$$

and the formula for $\tan \delta_{l}(k)$ in terms of spherical Bessel functions. Then use asymptotic form of Bessel functions. The resulting cross-section is still not geometrical $\left(\sigma_{\text {tot }}=2 \pi a^{2}\right)$. Try to interpret this result (Sakurai, Advanced Quantum Mechanics, Chapt.7.6).
3. Consider Yukawa potential:

$$
V(r)=V_{0} \frac{e^{-\mu r}}{\mu r}
$$

where $1 / \mu$ denotes interaction range. Calculate scattering amplitude in Born approximation $f^{(1)}(\theta)$, where θ is a scattering angle. Calculate differential cross-section $d \sigma / d \Omega$ and take limit $\mu \rightarrow 0$ (Coulomb potential).

