Mechanika Kwantowa dla doktorantów
 zestaw 17 na dzień 16.03.2017 godz. 8:15

1. Consider radial Schrödinger equation for a potential $V(r) \rightarrow 0$ for $r \rightarrow \infty$ and for energy $E=\hbar^{2} k^{2} /(2 m)>0$ assuming that the wave function factorizes into a radial and angular parts

$$
\psi_{k l m}(\vec{r})=R_{k l}(r) Y_{l}^{m}(\vartheta, \varphi)
$$

where Y_{l}^{m} denotes spherical harmonics. For large r where $V(r)=0$ (or equivalently for a free particle), this is so caled modified Bessel equation. First find solutions for $l=0$ defining a new function $u(r)=r R_{k 0}(r)$. Note that there are two possible solutions of this equation, one physical that is finite at the origin, and the other one that explodes for $r=0$. They correspond to the spherical Bessel functions $j_{l}(k r)$ and $y_{l}(k r)$, respectively.
Next, in order to find solutions for $l \neq 0$ do the following:

- define $\chi_{k l}(r)=R_{k l}(r) / r^{l}$ and derive equation for $\chi_{k l}(r)$,
- differentiate the above equation over r,
- define a new function $f_{k l}(r)=r \chi_{k l}^{\prime}(r)$,
- compare equation for $f_{k l}$ with the initial equation for $\chi_{k l}$ and read off the recurrence formula relating $\chi_{k l+1}$ to $\chi_{k l}$,
- solve the requrrence formula for $R_{k l}(r)$ in the case $l=1,2$,
- find asymptotic behaviour of $R_{k l}(r)$ for large r (that is find asymptotics for j_{l} but also for y_{l}),
- using the initial equation for $R_{k l}(r)$ find asymptotic behaviour for small r (also both j_{l} and for y_{l}).

2. Show that for an infinite "hard ball"potential:

$$
V(r)=\left\{\begin{array}{lll}
0 & \text { dla } & a<r \\
\infty & \text { dla } & r<a
\end{array}\right.
$$

the radial wave function $R_{k l}^{\text {ball }}$ differs from the one of a free equation $R_{k l}$ by a phase $\operatorname{shift} \delta_{l}(k)$

$$
\begin{equation*}
R_{k l}^{\text {ball }}(r)=R_{k l}\left(r+\delta_{l}(k)\right) \tag{1}
\end{equation*}
$$

Calculate the phase shifts from the condition $R_{k l}(a)=0$. Find low energy behaviour of $\delta_{l}(k)$.
HINT: The solution for $l=0$ is straightforward. However for $l \neq 0$ more work is needed. Use (1) in the asymptotic region $r \rightarrow \infty$ where one can use explicit asymptotic form of $j_{l}\left(k r+\delta_{l}(k)\right)$. Use trigonometric identity to separate dependence on $\delta_{l}(k)$ and on $r k$. Replace asymptotic forms by full Bessel functions $j_{l}(k r)$ and $y_{l}(k r)$ and apply condition $R_{k l}(a)=0$.
3. Prove by substituting to the spherical Bessel equation that

$$
j_{l}(z)=\frac{1}{2} \frac{1}{i^{l}} \int_{-1}^{1} d t e^{i z t} P_{l}(z)
$$

To this end use the identity

$$
P_{l}(z)=\frac{1}{2^{l} l!} \frac{d^{l}}{d z^{l}}\left(z^{2}-1\right)^{l} .
$$

