Mechanika Kwantowa dla doktorantów zestaw 17 na dzień 16.03.2017 godz. 8:15

1. Consider radial Schrödinger equation for a potential $V(r) \to 0$ for $r \to \infty$ and for energy $E = \hbar^2 k^2/(2m) > 0$ assuming that the wave function factorizes into a radial and angular parts

$$\psi_{klm}(\vec{r}) = R_{kl}(r)Y_l^m(\vartheta,\varphi)$$

where Y_l^m denotes spherical harmonics. For large r where V(r) = 0 (or equivalently for a free particle), this is so called modified Bessel equation. First find solutions for l = 0 defining a new function $u(r) = r R_{k0}(r)$. Note that there are two possible solutions of this equation, one physical that is finite at the origin, and the other one that explodes for r = 0. They correspond to the spherical Bessel functions $j_l(kr)$ and $y_l(kr)$, respectively.

Next, in order to find solutions for $l \neq 0$ do the following:

- define $\chi_{kl}(r) = R_{kl}(r)/r^l$ and derive equation for $\chi_{kl}(r)$,
- differentiate the above equation over r,
- define a new function $f_{kl}(r) = r \chi'_{kl}(r)$,
- compare equation for f_{kl} with the initial equation for χ_{kl} and read off the recurrence formula relating χ_{kl+1} to χ_{kl} ,
- solve the requirence formula for $R_{kl}(r)$ in the case l = 1, 2,
- find asymptotic behaviour of $R_{kl}(r)$ for large r (that is find asymptotics for j_l but also for y_l),
- using the initial equation for $R_{kl}(r)$ find asymptotic behaviour for small r (also both j_l and for y_l).
- 2. Show that for an infinite "hard ball" potential:

$$V(r) = \begin{cases} 0 & \text{dla} & a < r \\ \\ \infty & \text{dla} & r < a \end{cases}$$

the radial wave function R_{kl}^{ball} differs from the one of a free equation R_{kl} by a phase shift $\delta_l(k)$

$$R_{kl}^{\text{ball}}(r) = R_{kl}(r + \delta_l(k)). \tag{1}$$

Calculate the phase shifts from the condition $R_{kl}(a) = 0$. Find low energy behaviour of $\delta_l(k)$.

HINT: The solution for l = 0 is straightforward. However for $l \neq 0$ more work is needed. Use (1) in the asymptotic region $r \to \infty$ where one can use explicit asymptotic form of $j_l(kr+\delta_l(k))$. Use trigonometric identity to separate dependence on $\delta_l(k)$ and on rk. Replace asymptotic forms by full Bessel functions $j_l(kr)$ and $y_l(kr)$ and apply condition $R_{kl}(a) = 0$. 3. Prove by substituting to the spherical Bessel equation that

$$j_l(z) = \frac{1}{2} \frac{1}{i^l} \int_{-1}^{1} dt \, e^{izt} P_l(z).$$

To this end use the identity

$$P_l(z) = \frac{1}{2^l l!} \frac{d^l}{dz^l} (z^2 - 1)^l.$$