Mechanika Kwantowa dla doktorantów

zestaw $13-19.1 .2017$ at 8:15

1. Please read Chapter 7 in the book of Feynmam and Hibbs. Pay attention to the identity

$$
\left\langle\frac{\delta F}{\delta x(s)}\right\rangle_{S}=-\frac{i}{\hbar}\left\langle F \frac{\delta S}{\delta x(s)}\right\rangle_{S}
$$

that takes the following form in a discretized time

$$
\left\langle\frac{\delta F}{\delta x_{k}}\right\rangle_{S}=-\frac{i}{\hbar}\left\langle F \frac{\delta S}{\delta x_{k}}\right\rangle_{S}
$$

where

$$
\langle F\rangle_{S}=\int\left[\mathcal{D}(x(t)] F[x(t)] e^{\frac{i}{\hbar} S[x(t)]}\right.
$$

Using this identity show that for a particle in 3 dimensions one has:

$$
\begin{gathered}
<\left(x_{k+1}-x_{k}\right)^{2}>=<\left(y_{k+1}-y_{k}\right)^{2}>=<\left(z_{k+1}-z_{k}\right)^{2}>=\frac{i \epsilon \hbar}{m} \\
<\left(x_{k+1}-x_{k}\right)\left(y_{k+1}-y_{k}\right)>=<\left(z_{k+1}-z_{k}\right)\left(y_{k+1}-y_{k}\right)>=<\left(x_{k+1}-x_{k}\right)\left(z_{k+1}-z_{k}\right)>=0
\end{gathered}
$$

where we skipped subscript S in the brackets $\langle\ldots\rangle_{S}$.
2. Derive that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}\langle\chi| \frac{m}{\varepsilon}\left(x_{k+1}-x_{k}\right)|\psi\rangle=\int d x \chi^{*}(x) \frac{\hbar}{i} \frac{\partial}{\partial x} \psi(x), \tag{1}
\end{equation*}
$$

which defines momentum operator in a discretized time. Note that expression (1) spans over two adjacent time slices: t_{k+1} and t_{k}. So one can propagate wave functions ψ "forward" and χ "backwards"to t_{k} (or t_{k+1}). This means for example that

$$
\langle\chi| x_{k+1}-x_{k}|\psi\rangle=\int d x\left[\chi^{*}(x, t+\varepsilon) x \psi(x, t+\varepsilon)-\chi^{*}(x, t) x \psi(x, t)\right]
$$

Expanding wave functions in ε and using the Schrödinger equation one can derive (1).
3. Derive commutation relation for momentum and position operators calculating

$$
\langle\chi| m \frac{1}{\varepsilon}\left(\left(x_{k+1}-x_{k}\right) x_{k}-x_{k+1}\left(x_{k+1}-x_{k}\right)\right)|\psi\rangle
$$

where

$$
\langle\chi| F|\psi\rangle=\iint d x_{1} d x_{2} \chi^{*}\left(x_{2}\right)\left[\int_{x_{1}}^{x_{2}}\left[\mathcal{D}(x(t)] F[x(t)] e^{\frac{i}{\hbar} S[x(t)]}\right] \psi\left(x_{1}\right) .\right.
$$

Follow the same steps as in problem 2.

