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1. Finish problem 1 from the previus set by calculating integral (3).
Instanton determinant. In this problem we will calculate explicitly the ratio of
determinants

K ′ =
det′

(
− d2

dτ2
+ V ′′(x̄(τ))

)
det
(
− d2

dτ2
+ 1
) ,

where a double well potential V (x) reads: V (x) = κ(a2 − x2)2 with κ = 1/ (8a2).
Prime at the determinant means that the zero eigenvalue (zero mode) is not included,
by x̄(τ) we denote classical trajectory.

• The eigenequation for quantum fluctuations around the classical trajectory
(with τ 1 = 0, where τ 1 is the time when the classical trajectory passes through
zero): [

− d2

dτ 2
+ V ′′(x(τ))

]
yn(τ) = λnyn(τ) (1)

corresponds to the Schrödinger equation for a potential U(τ) = −3/(2cosh2(τ/2))
(where τ plays a role of a spacial variable) and energy En = λn−1, which is di-
scussed in the "Quantum Mechanics" of Landau and Lifischitz (probl. 5 page.
81 and probl. 4 page 88, Polish edition PWN 1979).
Transform equation (1) into a hypergeometric equation for function wn defined
below:

yn(τ) = eατwn(τ),

where
α = ±

√
−En, En = λn − 1.

Show that the solution reads:

yn(τ) = N
(

3 tanh2
(τ

2

)
− 6α tanh

(τ
2

)
+
(
4α2 − 1

))
eατ .

To this end introduce the following new variables:

z = tanh
(τ

2

)
,

u =
1

2
(1 + z).

In terms of variable u Eq.(1) corresponds to the hypergeometric equation

u(1− u)w′′(u) + {c− (a+ b+ 1)u}w′(u)− abw(u) = 0,

whose solutions are given in terms of a series

w(u) = F (a, b, c;u) = 1 +
ab

c

u

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)

u2

2!
+ . . .



• Find discrete spectrum of the bound states (E < 0) for (1). Conditions that
solutions vanish at τ = ±∞ give quantization of α.

• To find contribution from the continuous spectrum we show first that there is
no reflection for the particles scattering over the potential U(τ). To this end
find asymptotics for two types of the solutions: α = ik and α = −ik in the
limit τ → ±∞.

• If there is no reflection then the wave function yk(τ) that asymptotically be-
haves as eikτ for τ →∞, in the limit of τ → −∞ behaves as eikτ+iδk , where δk
is a phase shift. Show that

eiδk =
1 + ik

1− ik
1 + 2ik

1− 2ik
.

Identical argument applies to the wave function, that asymptotically behaves
as e−ikτ .

• Close the system in a box −T/2 < τ < T/2. Then the wave function inside
the box is a superposition of two linearly independent solutions

yn(τ) = Ayα=ik(τ) +Byα=−ik(τ)

which vanishes at the boundaries

yn(±T/2) = 0. (2)

If the box is large, it is enough to use asymptotic forms of yα=±ik(τ). Show
that condition (2) leads to

Tk − δk = πn.

Let’s denote solution to this equation by k̃n. Similarly, for the Euclidean har-
monic oscillator analogous solutions read kn = πn/T .

• The contribution to K ′ coming from the continuous spectrum, Kcont, reads:

Kcont =

∏
λ̃n∏
λn

=
∞∏
n=1

1 + k̃2n
1 + k2n

= exp

(∑
n

ln
1 + k̃2n
1 + k2n

)
≈ exp

(∑
n

2kn(k̃n − kn)

1 + k2n

)
.

• To calculate last sum under exponent go to the continuum limit T → ∞ and
convert the sum into the integral:

. . . = exp

 1

π

∞∫
0

dk
2δk k

1 + k2

 =
1

9
. (3)

Last equality can be obtained by integration by parts and the explicit form of
δk. Full result for K ′ is obtained by multiplying Kcont by a non-zero λ value
from the discrete part.
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2. Finding time dependence of the lowest eigenvalue λ1(T ) of operator Dτ in the box
−T/2 < τ < T/2.

Equation (1) for λ1 = 0 has two linearly independent solutions y1(τ) and ỹ1(τ) that
have the following asymptotic behavior:

Ae+iωτ
τ→−∞←− y1(τ)

τ→+∞−→ Ae−iωτ

−Ae−iωτ τ→−∞←− ỹ1(τ)
τ→+∞−→ Ae+iωτ

where ω = V ′′(±a). From these solutions we construct an antisymmetric quantity

B(τ , τ ′) = ỹ1(τ)y1(τ
′)− ỹ1(τ ′)y1(τ).

Note that derivative ∂τB(τ , τ ′)|τ ′=τ is equal to the Wronskian. In the box the
solution that satisfies boundary conditions

yλ=0(−T/2) = 0, ∂τyλ=0(−T/2) = 1

has a form
yλ=0(τ) =

1

2Aω

(
eTω/2y1(τ) + e−Tω/2ỹ1(τ)

)
Prove that differential equation[

− d2

dτ 2
+ V ′′(x(τ))

]
yT (τ) = λ1(T )yT (τ)

is equivalent to the integral equation

yT (τ) = yλ=0(τ)− λ1(T )

τ∫
−T.2

dτ ′B(τ , τ ′)yT (τ ′). (4)

In order to find time-dependenc of λ1(T ) one has to demand that yT (T/2) = 0.
Assuming that for finite T eigenvalue λ1(T ) is non-zero but small, show that

λ1(T ) = 4A2e−ωT .



3. Consider a particle of mass m moving in a potential V (x). The potential takes the
following form: it is an infinite potential well of length 2L. Inside the well there
is a symmetric barier of width 2a and height V0. Since the potential is symmetric
the wave functions are either symmetric or antisymmetric. Construct quantization
conditions separately for symmetric and antisymmetric solutions. Assuming m =
h̄ = 1, and taking some arbitrary numerical values for L, a and V0 solve numerically
(using e.g. Mathematica) quantization conditions for two lowest energy levels. Plot
the wave functions and the probability density. Write time-dependent wave function
that initially is concentrated in the left (or right) sub-well of the potential. Make
an animated plot of time evolution of probability densities corresponding to such
wave functions.


