Mechanika Kwantowa dla doktorantów zestaw $10-22.12 .2016$ at 8:15

1. For $V(x)=\kappa\left(a^{2}-x^{2}\right)^{2}$ with $\kappa=1 / 8 a^{2}$

- Find classical trajectory in Euclidean time (i.e. in a reversed potential $-V(x)$) leading from $-a$ to a (instanton) or from a to $-a$ (anty-instanton).
- Calculate the classical velocity corresponding to this solution.
- Calculate the classical action corresponding to such a trajectory. Use the fact that the total energy is zero.
- Show that the eigenequation for quantum fluctuations around the classical trajectory (with $\tau_{1}=0$, where τ_{1} is the time when the classical trajectory passes through zero):

$$
\begin{equation*}
\left[-\frac{d^{2}}{d \tau^{2}}+V^{\prime \prime}(\bar{x}(\tau))\right] y_{n}(\tau)=\lambda_{n} y_{n}(\tau) \tag{1}
\end{equation*}
$$

corresponds to the Schrödinger equation for a potential $1 / \cosh ^{2}(\tau / 2)$ and energy $E_{n}=\lambda_{n}-1$, which is discussed in the "Quantum Mechanics" of Landau and Lifischitz (probl. 5 page. 81 and probl. 4 page 88, Polish edition PWN 1979).
2. Consider Euclidean motion (in an inverted potential) of a given energy $E<0$, leading from $x_{1} \rightarrow x_{2}\left(x_{1}<x_{2}\right)$ in time T. As a potential take $V(x)=\kappa\left(x^{2}-a^{2}\right)^{2}$ with $\kappa=1 / 8 a^{2}$. For one instanton-like motion (without turning) it is clear that as $T \rightarrow \infty$ then $x_{1} \rightarrow-a, x_{2} \rightarrow a$ and $E \rightarrow 0$. Show that in this limit

$$
E=-8 a^{2} e^{-T}
$$

HINT. Use classical formula for T. In the limit $E \rightarrow 0$ the integral will contain a singular part that can be divided into a finite and still singular part by subtracting and adding $\left((x-a)^{2}+2 E\right)^{-1 / 2}$. In the finite part one can immediately set $E=0$. The other part can be calculated exactly for finite, but small E.
3. Prove that

$$
\int_{-T / 2}^{T / 2} d \tau_{1} \int_{\tau_{1}}^{T / 2} d \tau_{2} \ldots \int_{\tau_{n-1}}^{T / 2} d \tau_{n}=\frac{1}{n!} T^{n}
$$

This integral is needed to calculate the propagator for many instanton transition from $-a \rightarrow \pm a$.

