Mechanika Kwantowa dla doktorantów
 zestaw $9-15.12 .2016$ at 8:15

1. Using path integral formalism calculate the propagator of a free particle moving on a circle of radius r. The problem consists in performing the sumation over all possible windings of a free motion. So the trajectory from $x_{i} \rightarrow x_{f}$ is characterized by the winding number n

$$
x_{f}^{(n)}=x_{i}+s+n L
$$

where $L=2 \pi r$ and s is the shortest distance along the circle between x_{i} and x_{f}. The summation over n can be performed by means of a Poisson summation formula. Solution of this problem can be found in a book:
Classical and Quantum Dynamics: From Classical Paths to Path Integrals by Walter Dittrich, Martin Reuter
(Springer)
2. Using known formula for a classical action of a harmonic oscillator in one dimension $S(b, a, T)$ calculate $\partial^{2} S / \partial b \partial a$. Show that in focal points $\partial^{2} S / \partial b \partial a$ has a singularity and when the particle crosses the focal point $\partial^{2} S / \partial b \partial a$ changes its sign. Using the formula

$$
E(b, a, T)=-\frac{\partial S(b, a, T)}{\partial T}
$$

calculate the energy and $\partial E / \partial T=-\partial^{2} S(b, a, T) / \partial T^{2}$. Next, calulate

$$
D=-\frac{\partial^{2} S / \partial b \partial a}{\partial^{2} S / \partial T^{2}}
$$

at the conjugate (focal) points. Suppose the system crosses the focal point, what happens to the sign of D ?
3. For the harmonic oscillator the energy is given by

$$
E=\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} m \omega^{2} x^{2} .
$$

Show that for fixed E the time of motion from $a \rightarrow b$ is equal to

$$
T=\frac{1}{\omega}\left[\arcsin \frac{b}{x_{T}}-\arcsin \frac{a}{x_{T}}\right]
$$

where

$$
\pm x_{T}= \pm \sqrt{\frac{2 E}{m \omega^{2}}}
$$

are classical turning points. From this formula derive $\partial T / \partial E$. Note that this is the quantity responsible for the singularities of S.

