Mechanika Kwantowa dla doktorantów
 zestaw 7 - 24.11.2016 at 8:15

1. Particle of mass m and charge e is moving in an external magnetic field B parallel to the z axis. Lagrangian for this case reads (why?):

$$
L=\frac{m}{2}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)+\frac{e B}{2 c}(x \dot{y}-y \dot{x}) .
$$

Calculate propagator K for a motion from $\vec{a}=\left(x_{a}, y_{a}, z_{a}\right)$ to $\vec{b}=\left(x_{b}, y_{b}, z_{b}\right)$ in time T.

HINT: Introduce new variables $x^{\prime}(t)$ and $y^{\prime}(t)$ that correspond to the rotation in the $x-y$ plane with constant angular velocity α. Choose α in such a way that motion in $x-y$ plane factorizes into two independent harmonic oscillators (and a free motion in z direction). In this case it is trivial to write the propagator. Then perform the inverse transformation and express the propagator in the original variables.
2. In 3 dimensions van Vleck formula takes the following form:

$$
F=\text { const. det }\left(-\frac{\partial^{2} S_{c l}}{\partial a_{i} \partial b_{j}}\right)
$$

where the particle moves from point $\vec{a}=\left(a_{1}=x_{a}, a_{2}=y_{a}, a_{3}=z_{a}\right)$ to point $\vec{b}=\left(b_{1}=x_{b}, b_{2}=y_{b}, b_{3}=z_{b}\right)$. Find the constant by explicit calculation of F from the known action of a particle moving in an external magnetic field along the z axis (problem 1) and compare with the explicit form of the prefactor from the same problem.

