# Mechanika Kwantowa dla doktorantów zestaw $6-17.11 .2016$ at 8:15 

1. Startując z 2 równań telegrafistów:

$$
\frac{\partial P_{ \pm}(x, t)}{\partial t}=a\left(P_{ \pm}(x, t)-P_{\mp}(x, t)\right) \mp v \frac{\partial P_{ \pm}(x, t)}{\partial x}
$$

wyprowadzić 2 równania 2 rzędu każde, jedno na $P_{+}$drugie na $P_{-}$.
2. Show that for large $N$

$$
\binom{N}{\mu}\left(\frac{1}{2}\right)^{N} \approx \sqrt{\frac{2}{\pi N}} e^{-\frac{j^{2}}{2 N}} .
$$

Here $j=\mu-\nu$ and $N=\mu+\nu$ (see lecture notes on random walks).
3. Following the steps discussed at the lecture find $n=2,3,4$ moments of a random walk probability distribution:

$$
\mu_{n}(t)=\left\langle(\Delta x(t))^{n}\right\rangle
$$

where

$$
\Delta x(t)=v \int_{0}^{t} d \tau(-)^{N(\tau)}
$$

with probability of $N(\tau)$ reversals equal $r$ given by

$$
\mathcal{P}(N(\tau)=r)=e^{-a t} \frac{(a t)^{r}}{r!}
$$

The averaging over the number of reversals is understood in the following way:

$$
\left\langle F(N(\tau)\rangle=\sum_{r=0}^{\infty} F(r) e^{-a t} \frac{(a t)^{r}}{r!}\right.
$$

4. Show that the Laplace transform of the moments calculated in the previous problem is given by

$$
\int_{0}^{\infty} d t e^{-s t} \frac{\mu_{m}(t)}{m!v^{m}}= \begin{cases}\frac{1}{s^{(m+1) / 2}} \frac{1}{(s+2 a)^{(m+1) / 2}} & \text { for odd } m \\ \frac{1}{s^{m / 2+1}} \frac{1}{(s+2 a)^{m / 2}} & \text { for even } m\end{cases}
$$

5. Derive the Van Vleck formula

$$
F(T)=\left(-\frac{1}{2 \pi i \hbar} \frac{\partial^{2} S}{\partial x \partial x_{0}}\right)^{1 / 2}
$$

for the "quantum"part of the propagator

$$
K=F(T) \exp \frac{i}{\hbar} S_{\mathrm{cl}}
$$

for one dimensional problem of a particle moving in potential $V$. Start from the Schrödinger equation

$$
i \hbar \frac{\partial}{\partial t} K\left(x, x_{0} ; t\right)=\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)\right] K\left(x, x_{0} ; t\right)
$$

write

$$
K=\exp \left(\frac{i}{\hbar} S+\ln F+\ldots\right)
$$

and expand $K$ in powers of $\hbar$. Show that in the first two orders in $\hbar$ the Schrödinger equation reduces to

$$
\begin{equation*}
\partial_{t} S+\frac{1}{2 m}\left(\partial_{x} S\right)^{2}+V(x)=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial_{t}(\ln F)+\frac{1}{2 m} \partial_{x}^{2} S+\frac{1}{m} \partial_{x} S \partial_{x}(\ln F)=0 . \tag{2}
\end{equation*}
$$

Differenciate (1) $\frac{\partial^{2}}{\partial x \partial x_{0}}$ and show that the equation obtained that way is identical to (2) where $\ln F$ has been replaced by $\frac{1}{2} \ln \frac{\partial^{2} S}{\partial x \partial x_{0}}$ up to a constant that can be fixed from the normalization condition of the propagator for $t \rightarrow 0$ :

$$
K\left(x_{b}, x_{a} ; t=0\right)=\delta\left(x_{b}-x_{a}\right) .
$$

