
1 Formulation of the polaron problem

Let us consider electron of momentum ~p interacting with the phonons

H =
~p 2

2m
+ h̄ω

∫
d3k

(2π)3
a†~ka~k + V (x). (1)

Here a~k are Fourier components of the polarization vector ~P (~x) induced by the displace-
ments of the ions in the crystal due to the electron:

~P (~x) ∼
∫

d3k

(2π)3

3∑
s=1

[
~e(~k, s) a(~k, s) ei

~k·~x + ~e(~k, s) a†(~k, s) e−i
~k·~x
]
, (2)

where s is polarization, ~e(~k, s) – polarization vector. Since in the polaron problem only
longitudinal polarization enters

a~k = a(~k, s = long.).

Interaction potential is then given as:

V (x) = i
(√

2πα
)1/2 ∫ d3k

(2π)3
1

k

[
a†~k e

−i~k·~x − a~ke
i~k·~x
]
. (3)

Here α is a material constant. Setting h̄ = ω = m = 1 and changing ~k → −~k in the first
term in (3) we arrive at

H =
1

2
~p2 +

∫
d3k

(2π)3
a†~ka~k + i

(√
2πα

)1/2 ∫ d3k

(2π)3
1

k

[
a†
−~k
− a~k

]
ei
~k·~x. (4)

It is convenient to introduce coordinates and momenta

q~k =
i√
2

(
a†
−~k
− a~k

)
, q†~k = − i√

2

(
a−~k − a

†
~k

)
= q−~k,

p~k =
1√
2

(
a†~k + a−~k

)
, p†~k =

1√
2

(
a~k + a†

−~k

)
= p−~k. (5)

In these variables Euclidean Lagrangian (remember LE(V ) = L(−V ) = H) reads

LE =
1

2
~p 2 +

∫
d3k

(2π)3

{
1

2

(
q̇†~kq̇~k + q†~kq~k

)
+
(

2
√

2πα
)1/2 1

k
ei
~k·~xq~k

}
. (6)

The application of path integral technique to the problem at hand consists in undoing the
second quantization and replacing position operators q~k by classical variables.

We want to calculate the full partition function

Z =

∫
dx(0)

∫
x(0)=x(β)

D[x(τ)]

∫
dq(0)

∫
q(0)=q(β)

D[q(τ)] e
−
β∫
0

dtLE [ẋ(t),x(t),q̇(t),q(t)]
. (7)
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Since for every ~k mode LE looks like forced oscillator in variables q~k with

f~k(t) =
(

2
√

2πα
)1/2 1

k
ei
~k·~x(t) (8)

we can use the result for Z obtained previuously

Z =

∫
dx(0)

∫
x(0)=x(β)

D[x(τ)] (9)

1

2 sinh β
2

exp

−1

2

β∫
0

dt
d~x

dt

2

+
1

2

∫
d3k

(2π)3

β∫
0

dt f~k(t)

t∫
0

ds f ∗~k (s)
e(t−s)−β + e

−(t−s)

1− e−β

 .

Note that factor 1/2 in front of the d3k integral is due to the fact that we integrate over
ds up to t rather than to β.

2 Variational approach to the polaron

We shall apply to (9) variational approach based on the equality

E − E0 ≤
1

β
〈S − S0〉S0

. (10)

Here S is the effective action derived in the previous section

S =
1

2

β∫
0

dt
d~x

dt

2

− 1

2

∫
d3k

(2π)3

β∫
0

dt f~k(t)

t∫
0

ds f ∗~k (s)
e(t−s)−β + e

−(t−s)

1− e−β
(11)

Variation refers to the choice of S0. Choosing

S0 =
1

2

β∫
0

dt
d~x

dt

2

(12)

we have

S − S0 = −2
√

2πα

∫
d3k

(2π)3
1

k2
1

2

β∫
0

dt

t∫
0

ds e−i
~k·(~x(s)−~x(t)) e

(t−s)−β + e
−(t−s)

1− e−β
(13)

= −
√

2α

2

1

(2π)2

∫
d3k

k2

β∫
0

dt

t∫
0

ds e−i
~k·(~x(s)−~x(t)) e

(t−s)−β + e
−(t−s)

1− e−β
. (14)

Therefore
1

β
〈S − S0〉S0

= −
√

2α

2β
I(β) (15)
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where I(β) is given by

I(β) =

~r(β)=~x∫
~r(0)=~x

D [~r(τ)] e
− 1

2

β∫
0

dτ d~r
dτ

2
β∫

0

dt

t∫
0

ds
e(t−s)−β + e

−(t−s)

1− e−β
1

(2π)2

∞∫
0

d3k

k2
e−i

~k·(~r(s)−~r(t))

(16)
where we have expressed 〈. . .〉S0

explicitly by the path integral. Note that symbol 〈. . .〉S0

includes normalization to the free case, which has not been explicitly included in (16).
This will be taken care of later.
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