1 Formulation of the polaron problem

Let us consider electron of momentum \vec{p} interacting with the phonons

$$
\begin{equation*}
H=\frac{\vec{p}^{2}}{2 m}+\hbar \omega \int \frac{d^{3} k}{(2 \pi)^{3}} a_{\vec{k}}^{\dagger} a_{\vec{k}}+V(x) . \tag{1}
\end{equation*}
$$

Here $a_{\vec{k}}$ are Fourier components of the polarization vector $\vec{P}(\vec{x})$ induced by the displacements of the ions in the crystal due to the electron:

$$
\begin{equation*}
\vec{P}(\vec{x}) \sim \int \frac{d^{3} k}{(2 \pi)^{3}} \sum_{s=1}^{3}\left[\vec{e}(\vec{k}, s) a(\vec{k}, s) e^{i \vec{k} \cdot \vec{x}}+\vec{e}(\vec{k}, s) a^{\dagger}(\vec{k}, s) e^{-i \vec{k} \cdot \vec{x}}\right], \tag{2}
\end{equation*}
$$

where s is polarization, $\vec{e}(\vec{k}, s)$ - polarization vector. Since in the polaron problem only longitudinal polarization enters

$$
a_{\vec{k}}=a(\vec{k}, s=\text { long. })
$$

Interaction potential is then given as:

$$
\begin{equation*}
V(x)=i(\sqrt{2} \pi \alpha)^{1 / 2} \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{k}\left[a_{\vec{k}}^{\dagger} e^{-i \vec{k} \cdot \vec{x}}-a_{\vec{k}} e^{i \vec{k} \cdot \vec{x}}\right] \tag{3}
\end{equation*}
$$

Here α is a material constant. Setting $\hbar=\omega=m=1$ and changing $\vec{k} \rightarrow-\vec{k}$ in the first term in (3) we arrive at

$$
\begin{equation*}
H=\frac{1}{2} \vec{p}^{2}+\int \frac{d^{3} k}{(2 \pi)^{3}} a_{\vec{k}}^{\dagger} a_{\vec{k}}+i(\sqrt{2} \pi \alpha)^{1 / 2} \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{k}\left[a_{-\vec{k}}^{\dagger}-a_{\vec{k}}\right] e^{i \vec{k} \cdot \vec{x}} . \tag{4}
\end{equation*}
$$

It is convenient to introduce coordinates and momenta

$$
\begin{align*}
& q_{\vec{k}}=\frac{i}{\sqrt{2}}\left(a_{-\vec{k}}^{\dagger}-a_{\vec{k}}\right), q_{\vec{k}}^{\dagger}=-\frac{i}{\sqrt{2}}\left(a_{-\vec{k}}-a_{\vec{k}}^{\dagger}\right)=q_{-\vec{k}} \\
& p_{\vec{k}}=\frac{1}{\sqrt{2}}\left(a_{\vec{k}}^{\dagger}+a_{-\vec{k}}\right), p_{\vec{k}}^{\dagger}=\frac{1}{\sqrt{2}}\left(a_{\vec{k}}+a_{-\vec{k}}^{\dagger}\right)=p_{-\vec{k}} \tag{5}
\end{align*}
$$

In these variables Euclidean Lagrangian (remember $L_{E}(V)=L(-V)=H$) reads

$$
\begin{equation*}
L_{E}=\frac{1}{2} \vec{p}^{2}+\int \frac{d^{3} k}{(2 \pi)^{3}}\left\{\frac{1}{2}\left(\dot{q}_{\vec{k}}^{\dagger} \dot{q}_{\vec{k}}+q_{\vec{k}}^{\dagger} q_{\vec{k}}\right)+(2 \sqrt{2} \pi \alpha)^{1 / 2} \frac{1}{k} e^{i \vec{k} \cdot \vec{x}} q_{\vec{k}}\right\} . \tag{6}
\end{equation*}
$$

The application of path integral technique to the problem at hand consists in undoing the second quantization and replacing position operators $q_{\vec{k}}$ by classical variables.

We want to calculate the full partition function

$$
\begin{equation*}
\mathcal{Z}=\int d x(0) \int_{x(0)=x(\beta)} \mathcal{D}[x(\tau)] \int d q(0) \int_{q(0)=q(\beta)} \mathcal{D}[q(\tau)] e^{-\int_{0}^{\beta} d t L_{E}[\dot{x}(t), x(t), \dot{q}(t), q(t)]} \tag{7}
\end{equation*}
$$

Since for every \vec{k} mode L_{E} looks like forced oscillator in variables $q_{\vec{k}}$ with

$$
\begin{equation*}
f_{\vec{k}}(t)=(2 \sqrt{2} \pi \alpha)^{1 / 2} \frac{1}{k} e^{i \vec{k} \cdot \vec{x}(t)} \tag{8}
\end{equation*}
$$

we can use the result for \mathcal{Z} obtained previuously

$$
\begin{align*}
\mathcal{Z}= & \int d x(0) \int_{x(0)=x(\beta)} \mathcal{D}[x(\tau)] \tag{9}\\
& \frac{1}{2 \sinh \frac{\beta}{2}} \exp \left\{-\frac{1}{2} \int_{0}^{\beta} d t \frac{d \vec{x}^{2}}{d t}+\frac{1}{2} \int \frac{d^{3} k}{(2 \pi)^{3}} \int_{0}^{\beta} d t f_{\vec{k}}(t) \int_{0}^{t} d s f_{\vec{k}}^{*}(s) \frac{e^{(t-s)-\beta}+e^{-(t-s)}}{1-e^{-\beta}}\right\} .
\end{align*}
$$

Note that factor $1 / 2$ in front of the $d^{3} k$ integral is due to the fact that we integrate over $d s$ up to t rather than to β.

2 Variational approach to the polaron

We shall apply to (9) variational approach based on the equality

$$
\begin{equation*}
E-E_{0} \leq \frac{1}{\beta}\left\langle S-S_{0}\right\rangle_{S_{0}} . \tag{10}
\end{equation*}
$$

Here S is the effective action derived in the previous section

$$
\begin{equation*}
S=\frac{1}{2} \int_{0}^{\beta} d t \frac{d \vec{x}^{2}}{d t}-\frac{1}{2} \int \frac{d^{3} k}{(2 \pi)^{3}} \int_{0}^{\beta} d t f_{\vec{k}}(t) \int_{0}^{t} d s f_{\vec{k}}^{*}(s) \frac{e^{(t-s)-\beta}+e^{-(t-s)}}{1-e^{-\beta}} \tag{11}
\end{equation*}
$$

Variation refers to the choice of S_{0}. Choosing

$$
\begin{equation*}
S_{0}=\frac{1}{2} \int_{0}^{\beta} d t \frac{d \vec{x}^{2}}{d t} \tag{12}
\end{equation*}
$$

we have

$$
\begin{align*}
S-S_{0} & =-2 \sqrt{2} \pi \alpha \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{k^{2}} \frac{1}{2} \int_{0}^{\beta} d t \int_{0}^{t} d s e^{-i \vec{k} \cdot(\vec{x}(s)-\vec{x}(t))} \frac{e^{(t-s)-\beta}+e^{-(t-s)}}{1-e^{-\beta}} \tag{13}\\
& =-\frac{\sqrt{2} \alpha}{2} \frac{1}{(2 \pi)^{2}} \int \frac{d^{3} k}{k^{2}} \int_{0}^{\beta} d t \int_{0}^{t} d s e^{-i \vec{k} \cdot(\vec{x}(s)-\vec{x}(t))} \frac{e^{(t-s)-\beta}+e^{-(t-s)}}{1-e^{-\beta}} . \tag{14}
\end{align*}
$$

Therefore

$$
\begin{equation*}
\frac{1}{\beta}\left\langle S-S_{0}\right\rangle_{S_{0}}=-\frac{\sqrt{2} \alpha}{2 \beta} I(\beta) \tag{15}
\end{equation*}
$$

where $I(\beta)$ is given by

$$
\begin{equation*}
I(\beta)=\int_{\vec{r}(0)=\vec{x}}^{\vec{r}(\beta)=\vec{x}} \mathcal{D}[\vec{r}(\tau)] e^{-\frac{1}{2} \int_{0}^{\beta} d \tau \frac{d \vec{r}^{2}}{d \tau}} \int_{0}^{\beta} d t \int_{0}^{t} d s \frac{e^{(t-s)-\beta}+e^{-(t-s)}}{1-e^{-\beta}} \frac{1}{(2 \pi)^{2}} \int_{0}^{\infty} \frac{d^{3} k}{k^{2}} e^{-i \vec{k} \cdot \vec{r}(s)-\vec{r}(t))} \tag{16}
\end{equation*}
$$

where we have expressed $\langle\ldots\rangle_{S_{0}}$ explicitly by the path integral. Note that symbol $\langle\ldots\rangle_{S_{0}}$ includes normalization to the free case, which has not been explicitly included in (16). This will be taken care of later.

