
Chapter 9

Statistical Mechanics and
Path Integrals

So far we have been discussing some well defined quantum states and transi-
tions between them. However, in real experiments we are usually dealing with
mixtures of states. Very often we can reasonably assess probabilities of their
occurences and through a process of averaging take care of such uncertainties.

In this Section we are going to deal with one of the most important statistical
distributions of quantum states: a system in thermal equilibrium with a given
temperature T . Since, according to Gibbs, the probability, pi, of having our
system in the state of energy Ei is

pi =
1

Z
e−βEi (9.1)

where β = (kBT )−1, kB being the Boltzmann constant, and the normalization
factor (the so called partition function) Z equals

Z =
∑
i

e−βEi . (9.2)

It is important to construct an (Euclidean) analogue of the Feynman propagator
which is called the density matrix

ρ(x2, x1, β) =
∑
i

φi(x2)φ∗i (x1) e−βEi . (9.3)

Here φi(x) is the eigenfunction corresponding to the energy Ei.
From our earlier discussions of Euclidean propagators we know how to write

(9.3) as a functional integral:

ρ(x2, x1, β) =

∫
[DEx(τ)] e

− 1
~

β~∫
0

H(x(τ))dτ
. (9.4)

Having ρ we can calculate all thermodynamic functions of the system and have
also its complete quantal description. For instance

Z =

∫
dxρ(x, x, β) = Tr ρ = e−βF (9.5)
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where F is the free energy. Let us go quickly through definitions of some
important thermodynamic functions a relations between them.

The average energy of a system is

U =
∑
i

piEi = − 1

Z
∂Z
∂β

= F + β
∂F

∂β
=

∂

∂β
(βF ) = F − T ∂F

∂T
. (9.6)

Partial derivatives of the free energy, F , with respect to various parameters (like
temperature, volume, external potentials of various kinds) give us “forces”. For
instance:

entropy S = −∂F
∂T

∣∣∣∣
V

(9.7)

pressure P = −∂F
∂V

∣∣∣∣
T

. (9.8)

Therefore (9.6) can also be written as

U = F + TS . (9.9)

On the other hand, the expectation value of any observable A of the sytem
in thermal equilibrium is

〈A 〉 =
Tr [Aρ]

Tr ρ
(9.10)

where we have used a notation which removes the dependence of our expressions
on a representation used. Indeed,

〈A 〉 =

∫
dx
∑
n

φ∗n(x)Aφn(x)
e−βEn

Z
(9.11)

where∫
dx
∑
n

φ∗n(x)Aφn(x) e−βEn = Tr

[∫
dx′Ax′′,x′

∑
n

φn(x′)φ∗n(x) e−βEn
]

= Tr [Aρ] .

The relation between the Feynman propagators and the density matrices
following from (9.3), (9.4)

ρ(x2, x1, β) = K(x2, x1,−i~β) , (9.12)

although nobody doubts its correctness, is not well understood. Comments
of Feynman [10.1]: “...the derivation of this result requires noting the wave
equation, the existence of stationary states and eigevalues... all of which leads
to the expression (9.12). Finally, we proceed to the reverse argument producing
the path integral formulation for ρ. Is there any way to derive the path integral
expression for Z (or ρ) for a system in equilibrium directly from the path integral
description for the time-dependent motion? Can we find a short cut which
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avoids the mention of energy levels altogether? If it is possible, we do not yet
know how to do it.” Comments of Polyakov [10.2]: “Our derivation of these
analogies, (9.12) , was technical. I feel that there are deep reasons for them,
connected with the properties of space-time. Although no real explanation exists,
I shall give some comments on this below, when discussing gravity.”

In any case (9.12) leads to a description of a thermal equilibrium with the
help of the parameter ~β = ~/kBT = T which has dimension of time. This
may cause some discomfort since a system in thermal equilibrium leads a time
independent existence. We may find an equivalent time independent description
of e.g. nonrelativistic particles in equilibrium when we accept that in space-time
a particle is identified with a string, x(t) → x(t, l) (for the sake of illustration
we take one time and one space dimensions: t and l). Then its action reads

S =

∫
dt

∫
dl

[
1
2ρ

(
∂x

∂t

)2

− 1
2κ

(
∂x

∂l

)2

− v (x(t, l))

]
(9.13)

where ρ is the mass density, κ is the string tension, and v(x(t, l)) is a potential
per unit of length acting on the string.

Let us illustrate this point taking for the Lagrangian

L = 1
2mẋ

2 − V (x(t)) . (9.14)

Employing (9.12) we get for the Euclidean action of (9.4)

−
~β∫
0

dτ H(x(τ)) = −
T∫

0

dτ
[

1
2mẋ

2(τ) + V (x(τ))
]
. (9.15)

Now we take the string action (9.13) for a string frozen in t. The integration
over t gives just the factor T and we have

Sfrozen = −T
L∫

0

dl

[
1
2κ

(
dx

dl

)2

+ v(x(l))

]
. (9.16)

Since both (9.15) and (9.16) have the same dimension (energy×time) we can,
through rescaling, make them identical with exception perhaps of a multiplica-
tive numerical constant. We do rescaling replacing

l = t
l0
t0

(9.17)

where the scale l0 has dimension of lenght and t0 of time. Remembering that
we can set κ = ml0/t

2
0 we obtain

Sfrozen = −T
t0

T∫
0

dt

[
1
2m

(
dx

dt

)2

+ l0v(x)

]
(9.18)

where we can identify l0v(x) as V (x) of (9.15).
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The moral of this exercise is that we can interpret (9.15) as the action of
a frozen in time string (9.16) and the path integrals of nonrelativistic parti-
cles in thermal equilibrium can be represented as sums of all paths in which
the dispacement x is a function of its position along the length of the string.
Therefore, the state of equilibrium is devoid of time dependence, and the length
of paths is inversely proportional to the temperature of the system: long paths
correspond to the low- and short paths to high temperatures:

L = T l0
t0

=
~

kBT

l0
t0
. (9.19)

All this would seem to suggest that, indeed, understanding of (9.12) needs
some connection between time and space which, in our simple exercise, is pro-
vided by a string whose spatial characteristics are related to its time character-
istics through a partial differential equation.

Clearly, we have the same rule of composition as for the Feynman propaga-
tors K

ρ(x2, x1, β) =

∫
dx3 ρ(x2, x3, β − β3) ρ(x3, x1, β3) . (9.20)

Therefore, we can write ρ in a discretized form. Dividing β~ into N segments,
η = β~/N , we have

ρ(x2, x1, β) =

∫ N−1∏
i=1

dxi
a

exp

{
−1

~

N−1∑
i=0

η

[
m

2

(xi+1 − xi)2

η2
+ V (xi)

]}
(9.21)

where a =
√

2π~η/m. Note that small η’s correspond to high temperatures.
Therefore, (9.21) tells us that we can express a density matrix for a system at a
low T (large β) through density matrices at high T (small η). The second ones
are, as a rule, better known than the first. Thus through discretization we can
attempt to construct ρ’s for very low temperatures from some well known ρ’s
at high temperatures.

From what we said it follows that we can have ρ in form of an operator

ρ = e−βH (9.22)

where H is the Hamilton operator. Indeed, from (9.22) we can construct the ρ
in any representation we wish. For instance

<x2|ρ|x1>=<x2|
∑
l

|φl><φl|e−βH
∑
k

|φk><φk|x1>

=
∑
l

<x2|φl><φl|x1> e−βEl =
∑
l

φl(x2)φ∗l (x1) e−βEl (9.23)

where φl(x) are eigenfunctions of H: Hφl(x) = Elφl(x). Clearly, we can mul-
tiply ρ by a unity operator

∑
j |ψj ><ψj | = 1, where ψj form a complete and

orthonormal set of states and use

ρ =
∑
j

e−βH |ψj><ψj | . (9.24)
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Differentiation of ρ gives

− ∂ρ
∂β

= Hρ . (9.25)

One may use (9.25) as an operator differential equation for ρ (whose solution is
given in (9.22)). We can also construct an integral equation for ρ which can be
of use for construction of a perturbative expansion. To that effect let us split
H = H0 +H1 where H0 represents a simple system which we know how to solve

ρ = e−βH , ρ0 = e−βH0 , H = H0 +H1 . (9.26)

We have
∂

∂β

(
eβH0ρ

)
= −eβH0H1 ρ . (9.27)

We integrate both sides over β from 0 to β. Remembering that

lim
β→0

eβH0ρ = 1 ,

we find

eβH0ρ− 1 = −
β∫

0

dβ′ eβ
′H0H1 ρ(β′) ,

hence the integral equation

ρ(β) = ρ0(β)−
β∫

0

dβ′ e(β′−β)H0H1 ρ(β′) . (9.28)

This equation can generate a perturbative series (with respect to H1) through
iterations:

ρ(β) = ρ0(β)−
β∫

0

dβ′ρ0(β − β′)H1 ρ0(β′)

+

β∫
0

dβ′
β′∫

0

dβ′′ρ0(β − β′)H1 ρ0(β′ − β′′)H1 ρ0(β′′) + . . . . (9.29)

Placing unit operators,
∑

j |j><j| = 1, at appropriate places we can write this
expansion in any representation we wish.

Another approximate procedure of relevance is the variational principle.
One of the most convenient objects to subject to this procedure is the free
energy, F , or the partition function, Z. We define them through the action
S[x(τ)]. We have :

Z = e−βF =

∫
dx ρ(x, x;β) =

∫
dx(0)

∫
x(β~)=x(0)

[Dx(τ)] e−
1
~S[x(τ)] . (9.30)
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The beginning x(0) and the end x(β~)(= x(0)) of the paths are marked as
a subscript to the integral over paths. Relation (9.30) can be written as an
average:

e−βF =
〈
e−

1
~ (S−S0)

〉
S0

e−βF0 (9.31)

where

〈
e−

1
~ (S−S0)

〉
S0

=

∫
dx(0)

∫
x(β~)=x(0)

[Dx(τ)] e−
1
~ (S−S0) e−

1
~S0

∫
dx(0)

∫
x(β~)=x(0)

[Dx(τ)] e−
1
~S0

, (9.32)

and

e−βF0 =

∫
dx(0)

∫
x(β~)=x(0)

[Dx(τ)] e−
1
~S0 . (9.33)

Clearly, S0 is to be chosen to simplify and to make the problem which is
being solved as amenable as it is possible. Let us assume, for simplicity sake,
that S and S0 are real. We can apply to (9.31) the inequality〈

e−f
〉
≥ e−〈f〉 . (9.34)

This inequality, the Jensen inequality (see [10.9] and also [10.6]), can be proven
for real functions which are convex on some interval I. A function, C(f), is
convex on I when it satisfies the inequality

C(µf1 + (1− µ)f2) ≤ µC(f1) + (1− µ)C(f2)

where f1, f2 belong to I, and 0 ≤ µ ≤ 1. One can prove that the above implies
the inequality:

C
( N∑
i=1

µifi
)
≤

N∑
i=1

µiC(fi) (9.35)

where 0 ≤ µi ≤ 1, and
∑N

i=1 µi = 1. Leaving this proof for an exercise we note
that we can take µi’s as a probability measure and can also go to a continuum
limit interpreting the summation over i as a sum over trajectories. This justifies
application of (9.34) to (9.31). So, now to our exercise.

Exercise

Prove (9.35) by induction. Assuming (9.35) valid for N , we will show that
it is also valid for N + 1. Indeed, defining

µ̄ =

N∑
i=1

µi and f̄ =

∑N
i=1 µifi
µ̄

,

we write (note that
∑N+1

i=1 µi = 1 implies µN+1 = 1−
∑N

i=1 µi)

C(
N+1∑
i=1

µifi) = C

(
N∑
i=1

µifi + (1−
N∑
i=1

µi)fN+1

)
= C(µ̄f̄ + (1− µ̄)fN+1) .
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To this last expression we apply the definition of a convex fuction and obtain

C(µ̄f̄ + (1− µ̄)fN+1) ≤ µ̄ C(f̄) + (1− µ̄)C(fN+1) .

But we assumed (9.35), therefore

µ̄ C(f̄) ≤
N∑
i=1

µiC(fi) ,

which completes the proof because

C(µ̄f̄ + (1− µ̄)fN+1) = C(

N+1∑
i=1

µifi) .

End of the exercise

Now we apply (9.34) to (9.31), and obtain

e−βF ≥ e
− 1

~ 〈S−S0〉S0 e−βF0 , (9.36)

hence for the exponents

F ≤ F0 +
1

β~
〈S − S0〉 . (9.37)

This inequality can be employed to set up a variational procedure for finding an
upper limit to the ground state energy of a system defined through S. Indeed,
from (9.2) and (9.5) we can see that taking the low temperature limit (β →∞
in F (β)) we get

lim
β→∞

F (β) = lim
β→∞

[
− 1

β
ln Tr e−βH

]
= Eground . (9.38)

Hence, in this limit

E − E0 ≤
1

β~
〈S − S0〉S0

.

Therefore, minimizing the r.h.s. of (9.37) through a judicious choice of S0

(which is arbitrary!) we can approach the ground state energy as closely as our
skill in choosing S0 let us.

9.1 The Polaron Problem

When an electron moves through a polar crystal, it polarizes the medium. Hence
a local polarization, a vector field P(x), is induced by the local displacements
of the ions of the crystal. A local charge density, ρ(x), results from the lattice
displacements, and this charge density generates a potential, V (x), felt by the
electron. These three quantities are related through the equations

∆V (x) = eρ(x) = −e∇ ·P(x) . (9.39)
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The electron charge is −e. P is related to E and the dielectric constant which,
in turn, depends on vibrations of the ions.

The crystal has vibrational modes of the lattice (phonons) and the ones
which dominate the processes we are going to discuss are the modes in which
the positive and negative ions move in opposite directions. It turns out that
the frequencies, ω, of these modes are approximately independent on the wave
vectors, k, and P is parallel to k (longitudinal oscillations):

ω(k) ≈ ω for all k . (9.40)

Thus we expand P into modes

P(x) ∼
∫

d3k

(2π)3

3∑
s=1

[
Ek,s a(k, s) eik·x + E∗k,s a

+(k, s) e−ik·x
]

(9.41)

where Ek,s is one of three polarization vectors belonging to each k. The charge
density we get from (9.39)

ρ(x) = −∇·P(x) ∼ i
∫

d3k

(2π)3

3∑
s=1

[
k·Ek,s a(k, s) eik·x − k·E∗k,s a+(k, s) e−ik·x

]
.

Since only the longitudinal displacements contribute, Ek,s is paralell to k, we
have

ρ(x) =

∫
d3k

(2π)3
ρ(k) eik·x ∼ i

∫
d3k

(2π)3
|k|
[
ake

ik·x − a+
k e
−ik·x] (9.42)

where ak are the annihilation operators for just these longitudinal modes. So,
solving (9.39) for the electron potential energy due to the lattice vibrations we
find the effective potential of the electron. From (9.39) V (k) = −eρ(k)/k2,
hence

V (x) =

∫
d3k

(2π)3

(
− e

k2
ρ(k)

)
eik·x

= i
(√

2πα
)1/2

∫
d3k

(2π)3

1

|k|
[
a+
k e
−ik·x − ak eik·x

]
, (9.43)

where α is a dimensionless constant whose value varies from crystal to crystal
between ∼ 1 and ∼ 20 (we use the same convention as in [10.4]). Assuming that
a+
k and ak are the creation and annihilation operators of phonons we can write

the complete Hamiltonian for a nonrelativistc electron moving in a vibrating
lattice

H =
p2

2m
+ ~ω

∫
d3k

(2π)3
a+
k ak + V (x) . (9.44)

Here, the first term is just the kinetic energy of the electron, the second - the
energy of the phonons, and the third - the electron interaction with the phonons
given by (9.43). To simplify the calculations we set: ~ = m = ω = 1 (remember
that ω is approximately a constant in the region of interest, compare [10.3] and
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[10.4]). Note that in our Hamiltonian we do not have a zero point fluctuations
of the phonons, i.e. when there are no phonons the energy of the crystal is zero.

We calculate the ground state energy of an electron of momentum p (fixed)
in perturbation theory and using the variation method (from inequality (9.37)).
The first perturbative calculations were done in [10.5].
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9.1.1 Ground state from perturbation theory

V (x) is our perturbation , therefore we use the eigenstates

H0|n>= En|n> , H0 =
p2

2
+

∫
d3k

(2π)3
a+
k ak (9.45)

in the perturbative expansion. They are specified by the number and momenta
of the phonons, and the momentum of the electron. The unperturbed ground
state is therefore composed of zero phonons and a plane wave, eip·x, represent-
ing the electron. The argument of V (x) is the position of the electron, therefore
only these matrix elements <m|V |n> are different from zero which create or
annihilate one phonon of momentum k and shift at the same time the electron
momentum from p to p ± k. For instance: the initial state of one electron of
momentum p goes into one phonon of momentum k and the electron of momen-
tum p − k (the product e−ik·xeip·x appears). Consequently, the ground state
expectation value <0|V |0>= 0. Therefore, the lowest perturbative correction
to the ground state energy of the electron E0 = p2/2 is

∆E0 =
∑
n

V0nVn0

E0 − En
+ ... . (9.46)

Now
E0 = 1

2p
2 , En = 1

2(p− k)2 + (~ω = 1) . (9.47)

Since

V0n = −i(
√

2πα)
1
2

1

k
and Vn0 = −Vn , (9.48)

where the ground state consists of the electron of momentum p and no phonons,
and the final state consists of the electron of momentum p−k and one phonon
of momentum k, we get from (??)

∆E0 = −2
√

2πα

∫
d3k

(2π)3

2

k2(k2 − 2p · k + 2)
. (9.49)

We took care of the spin of the electron putting an extra factor of 2. The
integral on the r.h.s. of (??) is calculated using the Feynman identity

1

ab
=

1∫
0

dx

[ax+ b(1− x)]2
. (9.50)

Setting b = k2 and a = k2 − 2p · k + 2, we have

∆E0 = −4
√

2απ

∫
d3k

(2π)3

1∫
0

dx
1

[x(k2 − 2p · k + 2) + k2(1− x)]2

= −4
√

2απ

1∫
0

dx

∫
d3k′

(2π)3

1

[k′2 + 2x− x2p2]2
= − α√

2

1∫
0

dx√
2x− x2p2
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where we substituted k − xp = k′. Doing the last integral over x we obtain
finally:

∆E0 = −α
√

2

p
arcsin

p√
2
. (9.51)

To this end we have used the following integrals:

∞∫
0

dk
k2

(k2 + a)2
=

π

4
√
a

(9.52)

and
1∫

0

dx
1√

x− a2x2
=

2

a
arcsin(a). (9.53)

We expand the r.h.s. of (??) in powers of p and get

∆E0 = −α (1 +
p2

12
+ ...) . (9.54)

Thus when electron is at rest (p = 0), it is bound by the crystal. When it moves
slowly its energy becomes

E0 =
p2

2
+ ∆E0 =

p2

2

(
1− α

6

)
− α ≈ p2

2
(
1 + α

6

) − α . (9.55)

Hence the electron acquires an effective mass (in units of the unperturbed mass)

meff

m
= 1 +

α

6
. (9.56)

An interesting phenomenon occurs when the momentum of the electron
becomes large enough. When p >

√
2 the shift ∆E0 (??) becomes a complex

number. This means that above the threshold (p0 =
√

2) the electron starts dis-
sipating its energy into the phonon field, hence radiates phonons. This threshold
is also implied by the cinematics. From the energy and momentum conservation

(p− k)2

2
+ 1 =

p2

2
(9.57)

we get the relation

p =
1

cos θ

(
k

2
+

1

k

)
(9.58)

where θ is the angle between k and p. Minimizing p:

∂p

∂k
=

1

cos θ

(
1

2
− 1

k2

)
= 0 (9.59)

we obtain kmin =
√

2, hence p0 =
√

2 is reached for the forward emission
(cos θ = 1).

We are dealing here with a general phenomenon first encountered in Electro-
dynamics and called the Cherenkov radiation. It can occur in a medium which
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is a host to some “elementary excitations” which can propagate through this
medium and are characterized by a wave vector k and a frequency ω. A particle
traversing this medium coupled to such excitations can induce the medium to
radiate them provided it is allowed by the energy-momentum conservation and
that in turn crucially depends on the dispersive properties of the medium, hence
on the relation between k and ω.

It is instructive to recall the kinematics of the Cherenkov radiation. We
have to use the relativistic kinematics because, as we shall see, the threshold
for this radiation occurs at the charged particle velocities very close to that of
the light.

The Vavilov - Cherenkov radiation (those who know the history of the prob-
lem insist that the role of Vavilov in the discovery of this effect was crucial, how-
ever we shall use the shorter name commonly accepted in the literature) is the
radiation of a uniformly moving charge in a transparent medium with refractive
index n(ω) and the following dispersion relation for the photons propagating in
the medium (we restore ~, m and c in the formulae)

kc = ωn(ω) where c = velocity of light . (9.60)

This photon is an analogue of the phonon discussed above. The energy mo-
mentum conservation for production of one such photon is

E0 = E1 + ~ω , E0,1 =
√
m2c4 + c2p2

0,1 (9.61)

where
p0 = p1 + ~k , kc = ωn(ω) . (9.62)

Squaring (??) and employing (??) we get

2cp0 ~ωn(ω) cos θ = 2~ω
√
m2c4 + c2p2

0 + (~ω)2(n2(ω)− 1) (9.63)

where θ is, as before, the angle between k and p0. Inserting

p0 =
mv0√
1− v20

c2

,
√
m2c4 + c2p2

0 =
mc2√
1− v20

c2

, (9.64)

we obtain

cos θ =
c

n(ω)v0

(
1 +

~ω(n2(ω)− 1)

2mc2

√
1− v2

0

c2

)
. (9.65)

If we take the soft photons, ~ω/mc2 � 1, we get the very well known condition
for the Cherenkov radiation to occur

cos θ =
c

n(ω)v0
, (9.66)

which is also the classical limit of (??).
Comments: We may look at photons in a medium as “elementary excita-

tions” of this medium coupled to a charged particle traversing it at high veloc-
ity, v0. Now we can see the role of dispersion relation (??) in well established
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physical realizations. First, let n(ω) > 1. The formulae (??) and (??) can be
satisfied (cos θ < 1) when v0 is very close to c. This effect has been observed in
the thirties and later applied to variety of detection devices. Second, we may
also look at the photons in an empty space as “elementary excitations” of the
vacuum. But now n(ω) = 1, and (??) and (??) cannot be satisfied and the
effect disappears.

Now, we go back to the polaron. We can calculate the transition probability
per unit of time for the “Cherenkov emmision” of phonons. We use again the
formulae we have worked out in perturbation theory (back to ~ = ω = m = 1
units).

1

τ
= Γ = 2π

∑
n

|Vn0|2 δ(En − E0) (9.67)

where Vn0 is given above. Employing the energy momentum conservation rela-
tions given above in detail we get

Γ =
√

2α

∫
dΩ

2π

∞∫
0

dk δ(−kp cos θ + 1
2k

2 + 1) . (9.68)

In order to calculate this integral we find the roots of the equation

1
2k

2 − kp cos θ + 1 = 0

which is
kt = p cos θ ±

√
p2 cos2 θ − 2 . (9.69)

Employing the identity

1
2k

2 − kp cos θ + 1 = 1
2

(
(k − p cos θ)2 − (kt − p cos θ)2

)
, (9.70)

we find

δ(1
2k

2 − kp cos θ + 1) =
1

|kt − p cos θ|

× δ ((k − p cos θ)− (kt − p cos θ)) + δ((k − p cos θ) + (kt − p cos θ))

where we used the identity

δ(x2 − a2) =
1

2|a|
[δ(x− a) + δ(x+ a)] .

Thus, we get

Γ = 2
√

2α

∫
sin θ dθ√
p2 cos2 θ − 2

= 2
√

2α

θc∫
0

sin θ dθ√
p2 cos2 θ − 2

. (9.71)

The upper limit of integration comes from the condition

cos θ ≤
√

2

p
, (9.72)
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otherwise kt becomes complex. Thus θc = arccos(
√

2/p). The integration over
θ is elementary and we obtain finally

Γ = 2

√
2α

p
arccosh

p√
2
. (9.73)

We find contact with (??) through the following relation valid for p >
√

2

arcsin
p√
2

= 1
2 + i arccosh

p√
2
. (9.74)


