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8.3 Transition amplitudes for charged particles

A charged particle moving in a given electromagnetic potential (in three dimen-
sions) has, in general, the following Lagrangean:

L = 1
2mṙ2 − eV (r, t) +

e

c
ṙ ·A(r, t) . (8.60)

However, we are not interested in the potential V and set it equal zero. Some
new interesting phenomena are generated by the vector potential A. Therefore,
we shall work with the following action:

S = S0 + σ = 1
2m

∫
dt ṙ2 +

e

c

∫
dt ṙ ·A(r, t) . (8.61)

Following the notation explained earlier, the first order contribution to the
perturbative expansion of the transition amplitude is

i

~
〈σ〉S0

=
ie

~c

〈∫
dt ṙ ·A(r, t)

〉
S0

. (8.62)

Now, we are dealing with an expression we have not encountered so far
which needs to be precisely defined. Let us look at it after we discretize the
time T which takes us from x to y. We have

σ =
e

c

∫
C(x→y)

dr ·A(r, t) (8.63)

where C(x → y) stands for a Brownian path which takes us in time T from x
to y. But how do we write σ in a discretized form. Should we write

σa =
e

c

∑
k

(rk+1 − rk) ·A(rk, tk) (8.64)

or, perhaps, we should write

σb =
e

c

∑
k

(rk+1 − rk) ·A(rk+1, tk+1) ? (8.65)

Since, as we well know, (rk+1 − rk)/ε is, in the language of the functional
integrals, proportional to the momentum operator, the alternative (8.64) or
(8.65) is equivalent to placing a differential operator before or after the function
A. Incidentally, one can convince oneself (do it!) that the difference between
σa − σb is of order one. This is so in the following sense: since this difference
is going to end up as <σb − σa>S0 , and one can employ the properties of the
Brownian paths〈

(xk+1 − xk)2
〉
S0

=
i~ε
m

and 〈(xk+1 − xk)(yk+1 − yk)〉S0
= 0 ,

we can write

〈(σb − σa)〉 ⇒ −
e

c

∑
k

~ε
im

〈
∇ ·A(rk, tk)

∣∣∣∣
ε→0

〉
=

〈
−e
c

∫
dt∇ ·A

〉
.
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How do we settle this ambiguity? It was discussed by many, and there are
standard references to the literature on the subject of mathematical questions
of such limits as in (8.64) or (8.65), [8.1] and [8.2]. Our guide is to be in
a correspondence with the Hamiltonian formulation. It turns out that the
following prescription will do:

〈σ〉S0
=

e

c

〈∑
k

ε
(rk+1 − rk)

ε
· 12 (A(rk+1, tk+1) + A(rk, tk))

〉
S0

. (8.66)

This leads to an operator

V (1) = − e

2mc
(p ·A + A · p) , (8.67)

which is its first order equivalent in the Hamiltonian perturbation expansion.
In the next order we have

1

2

(
e

~c

)2〈(∫
dt ṙ ·A(r, t)

)2〉
S0

=
1

2

(
e

~c

)2〈∑
k

ε
(rk+1 − rk)

ε
· 12(A(rk+1, tk+1) + A(rk, tk))

×
∑
l

ε
(rl+1 − rl)

ε
· 12(A(rl+1, tl+1) + A(rl, tl))

〉
S0

. (8.68)

In the above expression the “off-diagonal” terms, k 6= l, give

e2

2mc
(p ·A + A · p)2 ,

whereas the “diagonal” terms , k = l, provide

e2

2mc2
A ·A .

Therefore, in the Hamiltonian formulation, the perturbation good to up to the
second order is

V (1)+(2) = − e

2mc
(p ·A + A · p) +

e2

2mc2
A ·A . (8.69)

It turns out that (8.69) is correct to all orders. Indeed, the exact Hamilto-
nian of a charged particle moving in the field A is

H =
1

2m
(p− e

c
A) · (p− e

c
A) =

1

2m
p · p + V (1)+(2) . (8.70)

Let us give more arguments that (8.69) is the exact interaction potential: The
Feynman argument which relates K to ψ can be repeated here. One can show
that

ψ(y, T+ ε) = ψ(y, T ) +
eε

2mc
ψ∇ ·A− ie2ε

2~mc2
A2ψ +

iε~
2m

∇2ψ +
eε

mc
(A ·∇)ψ
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where

ψ(y, T+ ε) =

∫
d3xK(y,x, ε)ψ(x, T ) and

ε

T
� 1 , (8.71)

with K(y,x, ε) given by the action of (8.61):

K(y,x, ε) =

(
m

2πi~ε

) 3
2

e
i
~ [m

(y−x)2

ε
+ e
c
(y−x)·A( 1

2
(x+y)] . (8.72)

One gets the result for ψ(y, T + ε) through Taylor expansion and application
of Gaussian integrals, keeping track of the leading order terms. (Note that
the “midpoint dependence” of A on x and y, which is equivalent to taking
the average 1

2 (A(y) + A(x)), must be used to get the correct Schroedinger
equation). Since

ψ(y, T+ ε)− ψ(y, T ) = ε
∂ψ

∂t
,

we get from the above expansion the Schrödinger equation

i~
∂ψ

∂t
= − ~2

2m
∇2ψ +

i~e
mc

(A ·∇)ψ +
i~e
2mc

ψ∇ ·A +
e2

2mc2
A2ψ (8.73)

which defines H as given in (8.70).
Now we shall comment on the complete amplitude for a charged particle

moving in a given vector potential A:

K(y,x, T ) =

∫
x→y

[Dr(t)] e
i
~
∫ T
0 dt ( 1

2
mṙ2+ e

c
ṙ·A) . (8.74)

The first comment is on gauge invariance. The gauge transformation of the
vector potential A:

A′ = A + ∇f , (8.75)

where f is a scalar function, introduces into the exponent of (8.74) an additional
term

ie

~c

T∫
0

dt ṙ ·∇f =
ie

~c

y∫
x

dr ·∇f =
ie

~c
[f(y)− f(x)] . (8.76)

Thus the new propagator becomes

K ′(y,x, T ) = exp

{
ie

~c
f(y)

}
K(y,x, T ) exp

{
− ie
~c
f(x)

}
. (8.77)

This expression determines the transformation of the wave functions under
the gauge transformation (8.75), because we want to have the amplitude of
transition from e.g. the initial state ψ(x) to the final state χ(y) invariant
under (8.75). Indeed we realise such an invariance provided the wave functions
acquire a phase when (8.75) takes place:

ψ′(x) = exp

{
ie

~c
f(x)

}
ψ(x) . (8.78)
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Note that doing the integrations (8.76) along Brownian paths brings back the
problem of the lack of uniqueness of this procedure (see the alternative (8.64)
or (8.65)).

Let us look at this problem again from a somewhat different point of view,
following [8.1]. For simplicity sake we shall do the calculations in one dimension.
We start with the identity:

f(y)− f(x) =
N−1∑
j=0

[f(xj+1)− f(xj)] (8.79)

with xN = y , x0 = x, and we undo this identity into a path integral of a
derivative. For each j we define a new variable

ξθ = xj + θ (xj+1 − xj) , 0 < θ < 1 , (8.80)

and expand

f(xj+1) = f(ξθ + (1− θ)(xj+1 − xj))

= f(ξθ) + f ′(ξθ)(1− θ)(xj+1 − xj) + 1
2f
′′(ξθ)(1− θ)2(xj+1 − xj)2 + ... ,

and

f(xj) = f(ξθ − θ (xj+1 − xj))

= f(ξθ) − f ′(ξθ) θ (xj+1 − xj) + 1
2f
′′(ξθ) θ

2(xj+1 − xj)2 + ... .

Therefore, (8.79) becomes

f(y)− f(x) =
N−1∑
j=0

[f(xj+1)− f(xj)] (8.81)

=

N−1∑
j=0

[
f ′(ξθ)(xj+1 − xj) + 1

2f
′′(ξθ)(1− 2θ)(xj+1 − xj)2 + O(xj+1 − xj)3

]
.

Let us apply now (8.81) to integrations along quantal trajectories, hence
along Brownian paths which are characterized by the diffusive relation between
the steps in space ∆x, executed during the time ∆t:

(∆x)2 = D∆t (8.82)

where D is a constant of diffusion. Taking the continuous limit, i.e. N → ∞
but keeping |y − x| =const., we see that the first two terms in the expansion
(8.81) are of the same (first) order while the third one is of the second order. So,
only the first two terms survive the process of taking the limit, and we obtain
an exotic formula due to Ito [8.1]

f(y)− f(x) =

y∫
x

dx(t)
df

dx(t)
+ 1

2(1− 2θ)D

T∫
0

dt
d2f

dx(t)2
. (8.83)
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This formula reduces to the standard integral relation when we set θ = 1/2,
hence

ξ 1
2

= 1
2(xj+1 + xj) . (8.84)

This prescription of taking the“mid-point rule” (8.84) is equivalent to the
previously employed rule of taking the average. More specifically: when there
is an ambiguity of taking A(xj+1) or A(xj) in a sum these two prescriptions are
equivalent in the continuous limit

A(12 (xj+1 + xj)) is equivalent to 1
2 (A(xj+1) +A(xj)) . (8.85)

An intuitive argument justifying (8.85) is to plot A(x) versus x. When xj+1

and xj approach each other, the two sides of (8.85) become the same.
The second comment (strictly speaking a group of comments) on the com-

plete expression (8.74) is a discussion of its important special cases. The first
example is the case of a constant magnetic field B directed along the z-axis.
Then A lies in the (x, y)-plane

A = 1
2B [−y, x, 0] , B = ∇×A = k̂B (8.86)

where k̂ is the versor along the z-axis. Then the Lagrangian in (8.74) is a
quadratic form

L = 1
2m(ẋ2 + ẏ2 + ż2) +

eB

2c
(−ẋy + ẏx) , (8.87)

and (8.74) can be evaluated exactly (as it was already done in one of exercises
on Gaussian path integrals).

The second special case is of a magnetic flux line perpendicular to the (x, y)-
plane. Now the vector potential we take in the following form

A(x, y) =
κ

x2 + y2
[−y, x, 0] . (8.88)

Here 2πκ is the magnetic flux concentrated at the singularity x = y = 0,

2πκ =

∮
dr ·A =

∫
d2s ·∇×A =

∫
d2s ·B = Φ (8.89)

where d2s is the element of the plane perpendicular to B. Indeed, calculating
B from (8.88) we obtain

B = ∇×A = k̂κ

(
∂x

x

x2 + y2
+ ∂y

y

x2 + y2

)
= 0 . (8.90)

Therefore A given by (8.88) represents a flux tube with zero diameter but finite
flux. Incidentally, the integrals in (8.89) can be taken along the Brownian paths
following e.g. the midpoint prescription, as we have indicated earlier.

The units of κ come naturally from the fact that the phase appearing in
(8.74) must be dimensionless. This condition tells us that

κ = q
~c
e

(8.91)
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where q is an arbitrary real number. Thus the magnetic flux is

Φ = 2πκ = q
hc

e
= q × 4.135 · 10−7 gauss · cm2 . (8.92)

Our path integral (8.74) implies that, when our charged particle moves
through space where a magnetic flux tube is present, it is being influenced by
this flux even if it is kept away from it and the magnetic field is zero along
all allowed quantal trajectories. This is so called Aharonov–Bohm effect [8.3].
When the diameter of the flux is not equal zero (which is the case in all real
experiments), the restriction of possible quantal trajectories to these portions
of space where B = 0 can be accomplished by a suitable arrangements of
impenetrable screens.

Let us comment on the path integral with A given by (8.88) without any
screening restrictions. Our initial point is 1 and the final one 2. The motion is
two dimensional, the origin of reference system coincides with the position of
the singularity. We work out the phase of the path integral (8.74) acquired by
going from 1 to 2 along a path C12 in the polar coordinates

x = r cosφ , y = r sinφ , (8.93)

and ∫
C12

dr ·A = κ

∫
C12

−ydx+ xdy

x2 + y2
. (8.94)

Since along the path

dx =

(
dr

dφ
cosφ− r sinφ

)
dφ

dy =

(
dr

dφ
sinφ+ r cosφ

)
dφ ,

and every time we go around the singularity we pick up the contribution 2πκ
(compare (8.89)) we get for the phase we are looking for∫

C12

dr ·A = (φ2 − φ1 + 2πn)κ (8.95)

where n is the number of times we encircled the singularity (one counterclock-
wise circulation brings +1, the circulation in the opposite sense gives −1. The
number n is called the winding number. This winding number index appears
when we have to deal with a plane punctured by the flux tube and has to be
explicitly used in the process of summing over all trajectories, i.e. the sum over
trajectories must involve

∑∞
n=0. For A given by (8.88) this summation can be

analytically performed. We shall not do it here, one can find it in [8.4]
One can explicitly determine the magnetic phase in some specific experi-

mental setups. The case in point is the Aharonov–Bohm effect we have already
mentioned above. Indeed, let us imagine a double slit experiment modified in
the following manner. In between the two slits, in the place which is protected
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from the incident beam by the screen, we place a very thin magnetic flux. It
can be generated by a small solenoid whose magnetic field is completely con-
fined to the interior of the solenoid and its flux precisely controlled. When it
is placed very close to the screen, and the distance between the two slits is
large enough, we can be virtually sure the electrons passing through slits have
a negligible chance to hit the flux. Also with such a geometry there is no chance
for electrons to circle the magnetic flux.

Let us take the initial point 1 at the source and the final point 2 at some
place on the detection screen where we observe the diffractive pattern forming
through interference of each electron passing through both slits. This inter-
ference comes from the difference in phase of the two amplitudes for passing
through the two slits. When the magnetic flux is inserted in between the slits
this difference in phase acquires an additional contribution equal

Φ = q
hc

e
. (8.96)

This can be seen as follows. Call the two slits (a) and (b), and take the two

paths C
(a)
12 , and C

(b)
12 . From our earlier considerations we know that∫

C
(a)
12

dr ·A +

∫
C

(b)
21

dr ·A =

∮
dr ·A = q

hc

e
. (8.97)

But we also know that ∫
C

(b)
21

dr ·A = −
∫
C

(b)
12

dr ·A , (8.98)

therefore ∫
C

(a)
12

dr ·A =

∫
C

(b)
12

dr ·A + q
hc

e
. (8.99)

So, one can establish the Aharnov–Bohm effect (A-B) starting the observation
of the diffractional pattern in the two-slit experiment without magnetic flux
in the solenoid. Then we increase the flux inside the solenoid from zero and
observe the shift of the diffractive pattern produced on the screen. This will
happen (as we have already stressed) even though the charged particles never
go through any magnetic field.

This truly amazing effect tells us that the electromagnetic potentials are the
fundamental quantities in quantum mechanics, not the electromagnetic fields.
It has been experimentally confirmed [8.5], [8.6]. We can also re-phrase it as fol-
lows. The A-B effect tells us that electrically charged particles interact through
gauge fields A which are defined up to a gauge transformation (8.75). This,
in turn, implies that the phases of transition amplitudes (and wave functions)
can be arbitrarily chosen at any point of space-time. This is the simplest case
of gauge invariance: the phases are arbitrary. On the other hand, traversing a
closed loop (compare (8.97)) the phase is increased by Φ, and this change of
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phase is seen experimentally! This is the simplest example of gauge interactions
which are (presumably) the backbone of all “fundamental interactions”.

It is also very important to note that when q becomes an integer

q = n hence κ = n
~c
e
, n = 1, 2, 3, ... , (8.100)

the A-B effect disappears in spite of the magnetic flux being different from zero.
In other words in these cases charged particles “cease to see” the magnetic flux.

Let us go back to the situation where the only object in space is A given
by (8.88). When κ = n~c/e the charged particles moving through space will
not“see” the flux! (the trajectories of particles which hit this flux line, i.e. pass
the origin, can be ignored because they are of measure zero). So the propagator
must be identical to the one of an empty space.

One can look at it also this way. The phase factor in the propagator
K(y,x, T ) is

exp

{
i
e

~c

∫
C12

dr ·A
}

= exp

{
i
e

~c
(φ2 − φ1 + 2πn)

~c
e

}
= exp

{
i
e

~c
(φ2 − φ1)

}
,

which phase can be totally eliminated by a gauge transformation with f(y) = φ2
and f(x) = φ1. Thus we can insert into any stable (stationary) quantum
mechanical system consisting of charged particles a flux

Φ = 2πκ = n
hc

e
, (8.101)

and the system will not see it !.
The well known example of a realization of this is the phenomenon of quan-

tization of magnetic fluxes inside superconductors. The state of electrons in
superconductors is, in a sense, given by just one wave function (usually called
an order parameter, a complex function of the position). Now, in order to have
a stable configuration of a magnetic flux penetrating the superconductor, this
wave function (order parameter) must be single valued (i.e. must behave like
a bona fide wave function). This is possible only when the magnetic flux is
quantized in such a way as to become “invisible” in the sense of the A-B effect.
Thus we arrive at the following quantization condition for a magnetic flux to
exist inside a superconductor

Φ = n
hc

e∗
, n = 1, 2, 3, ... (8.102)

where e∗ is an effective charge of quasiparticles which carry the current in
the superconductors (so called “Cooper pairs” of electrons). This effect was
predicted (long time ago!) by F. London [8.7], and then found in experiment
[8.8].

References



124

[8.1] K. Ito, Mem. Am. Math. Soc., No. 4 (1951).

[8.2] R. L. Stratonovich, Conditional Markov Processes and their Application
to the Theory of Optimal Control, American Elsevier, New York, (1968).

[8.3] Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in
quantum theory, Phys. Rev. 115, 485 (1959).

[8.4] G. Roepstorff, Path Integral Approach to Quantum Physics, Springer-
Verlag, 2-nd printing (1996), Section 6 Magnetic Fields.

[8.5] R. G. Chambers, Phys. Rev. Lett. 5 (1960)

[8.6] S. Olarin and I. I. Popescu,The quantum effects of electromagnetic fluxes,
Rev. Mod. Phys. 57, 485 (1985).

[8.7] F. London, Superfluids, Dover Publications Inc. New York (1961).

[8.8] B. S. Deaver Jr and W. M. Fairbank, Phys. Rev. Lett. 7, 43 (1961); R.
Doll and M. Naubauer, Phys. Rev. Lett. 7, 51 (1961).


