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8.2 Applications of the golden formula

We have seen how the formula for the transition rate Γ, in the process of its
construction, gets “healed” from the maladies of the sudden switching-on of a
time independent interaction. This procedure which is simple and convincing
in the first order becomes more cumbersome when we get to the next order.
Let us therefore present some formal operation which leads to unique (and
correct!) results in all orders. This operation is an “adiabatic switching-on” of
the interaction. We replace

V (x, t) = V (x) eηt , η > 0 (V (x, t)→ 0 for t→ −∞) , (8.39)

and then with the result we go to the limit η → 0. In other words in the remote
past the interaction disappears, and we shall set t1 = −∞ in (8.22) and (8.23).

Let us apply it to the first approximation (8.22):

λ(1)
mn(t2,−∞) e

i
~ (Emt2−En(−∞)) = − i

~

∫ t2

−∞
dt3 Vmn e

ηt3+ i
~ (Em−En)t3

= − Vmn
Em − En − i~η

eηt2+ i
~ (Em−En)t2 . (8.40)

Thus the probability of transition is

P (n→ m) = |λ(1)
mn(t2)|2 = |Vmn|2

e2ηt2

(Em − En)2 + (η~)2
, (8.41)

and the rate is

dP (n→ m)

dt2
= |Vmn|2

e2ηt22η

(Em − En)2 + (η~)2
. (8.42)

Now we go to the limit η → 0 and, since

lim
η→0

2η

(Em − En)2 + (η~)2
=

2π

~
δ(Em − En) ,

we get again the expression for the differential rate

dP (n→ m)

dt2
= Γ(n→ m) =

2π

~
|Vmn|2 δ(Em − En) , (8.43)

although this time we have dealt only with some nonsingular expressions: a
singularity appeared only in the last step of going to the limit η → 0.

Problem: the adiabatic switching-on of interaction

Let

V (x, t) = V (x)
[
eiωt + e−iωt

]
.
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Find the conditions under which

dP (n→ m)

dt2
=

2π

~
|Vmn|2

[
δ(Em − En + ~ω) + δ(Em − En − ~ω)

]
.

End of Problem

Let us discuss now the second order transition amplitude applying the adi-
abatic switching-on. To this end we substitute in (8.23)

Vmk(t4) = Vmk e
ηt4 , Vkn(t3) = Vnk e

ηt3 , (8.44)

and obtain

λ(2)
mn(t2, t1) e

i
~ (Emt2−Ent1) =

= − 1

~2

t2∫
t1

dt4

t4∫
t1

dt3
∑
k

Vmk e
i
~ (Em−Ek)t4+ηt4 Vkn e

i
~ (Ek−En)t3+ηt3 .

We integrate over t3 and t4, take the limit t1 → −∞, and obtain

lim
η→0

d

dt2
|λ(2)
mn(t2,−∞)|2 =

= Γ(n→ m) =
2π

~

∣∣∣∣∣∑
k

VmkVkn
En − Ek + i~η

∣∣∣∣∣
2

δ(Em − En) . (8.45)

This is the contribution to Γ(n→ m) of the second order. When the first order
contribution, eq. (8.31), is non-zero (Vmn 6= 0), we just add up the two “matrix
elements”:

Γ(n→ m) =
2π

~

∣∣∣∣∣Vmn +
∑
k

VmkVkn
En − Ek + i~η

∣∣∣∣∣
2

δ(Em − En) . (8.46)

Note that that in (??) the amplitudes of the first and second order are being
added. Taking |...|2 of the sum and performing the limit η → 0 leads to the
same factor 2π

~ δ(Em − En) as in each case taken separately.
As we can see, e.g. from (??), the method of the adiabating switching-on of

the interaction gives us expressions which are well defined when the numerators
become singular (En −Ek = 0). We have a well defined prescription how to go
around the singularities.

Let us discuss now the first and second order corrections to the unper-
turbed energy eigenvalues. We start with the differential equations (8.26) for
λmn(t2, t1) and redefine the amplitudes:

λmn = λ̃mn e
i
~ (−Emt2+Ent1) . (8.47)

The new amplitudes λ̃mn have the “free system” dependence on time removed,

i.e. when V = 0 λ̃mn is constant in time. Note also that λ̃
(0)
mn = δmn.
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Inserting (??) into (8.26) we obtain the following equations for λ̃mn:

dλ̃mn
dt2

= − i
~
∑
k

Vmk(t2) λ̃kn e
− i

~ (Ek−Em)t2 . (8.48)

From (??) we know that the amplitude for the system to remain in the same
state is

λnn = λ̃nn e
− i

~En(t2−t1) . (8.49)

When V = 0, λ̃nn is time independent but when V 6= 0, λ̃nn acquires some time
dependence and, being an eigenstate of energy, its time dependence must be of
the form

e−
i
~∆En(t2−t1) (8.50)

where ∆En is the correction we are looking for.

Let us work out the amplitude for remaining in the same state, e.g. n. It
satisfies the equation

dλ̃nn
dt2

= − i
~
∑
k

Vnk(t2) λ̃kn e
− i

~ (Ek−En)t2 . (8.51)

We expand λ̃nn into the perturbation series

λ̃nn = λ̃(0)
nn + λ̃(1)

nn + λ̃(2)
nn + ... . (8.52)

For the first order amplitude we obtain (remember: λ̃
(0)
kn = δkn)

dλ̃
(1)
nn

dt2
= − i

~
∑
k

Vnk(t2) λ̃
(0)
kn e

− i
~ (Ek−En)t2 = − i

~
Vnn(t2) . (8.53)

From (??) we have

∆En = i~
1

λ̃nn

dλ̃nn
dt2

. (8.54)

Thus the first order correction to the energy is

∆E(1) = lim
η→0

Vnn e
ηt2 = Vnn . (8.55)

To include the second order we rewrite (??) separating the k = n term from
the sum, and get

i~
1

λ̃nn

dλ̃nn
dt2

= Vnn(t2) +
∑
k 6=n

Vnk(t2)
λ̃kn

λ̃nn
e−

i
~ (Ek−En)t2 . (8.56)

To get ∆En up to the second order we have to set in the sum on the r.h.s. of
(??):

λ̃nn = 1 and λ̃kn = λ̃
(1)
kn .
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(Note that λ̃
(0)
kn cannot contribute to

∑
k 6=n). But, from (??) we obtain

λ̃
(1)
kn = − i

~
Vkn

∫ t2

−∞
e

i
~ (Ek−En)t′2+ηt′2 dt′2 . (8.57)

We do the integration over t2, insert the result into (??) and take η → 0. The
result is

i~
1

λ̃nn

dλ̃nn
dt2

= Vnn +
∑
k 6=n

VnkVkn
En − Ek + i~η

= Vnn +
∑
k 6=n
P |Vnk|

2

En − Ek
− iπ

∑
k 6=n

δ(En − Ek)|Vkn|2

where we used the identity

1

x+ iη
= P 1

x
− iπδ(x) .

Thus we see tha the shift of the energy becomes a complex number, ∆En−
i~1

2Γ, where

∆En = Vnn +
∑
k 6=n
P |Vnk|

2

En − Ek
(8.58)

and

Γ =
2π

~
∑
k

δ(En − Ek) |Vnk|2 . (8.59)


