
Chapter 8

Perturbation Theory

One of the simplest examples of evaluation of the functional transition ampli-
tudes is their perturbative expansion. Now, we split the action in two

S = S0 + σ (8.1)

where S0 is an action whose functional amplitudes we can evaluate exactly,
and which gives us a reasonable zero order description of our system, and σ
is treated as a small perturbation. Therefore, in the notation of the previous
section, we can write the following expansion

<χ|1|ψ>S0+σ = <χ|e
i
~σ|ψ>S0 =

= <χ|1|ψ>S0 +
i

~
<χ|σ|ψ>S0 +

1

2!

(
i

~

)2

<χ|σ2|ψ>S0 + ... (8.2)

We shall work out (8.2) in more detail for the standard case when σ is
determined by a perturbative potential V (x, t), and S0 is that of a “free” motion.
Then

σ = −
∫
dt V (x(t), t) (8.3)

where x(t) is the quantal trajectory. Thus the expansion in (8.2) becomes

e−
i
~
∫ tb
ta
dtV (x(t),t) = 1− i

~

∫ tb

ta

dt V (x(t), t) +
1

2!

(
− i
~

)2[∫ tb

ta

V (x(t), t)

]2
+ ... ,

(8.4)
and the perturbative expansion of the propagator,

K(b, a) =

∫
[Dx(t)] e

i
~
∫ tb
ta
dt (m

2
ẋ2−V (x,t)) , (8.5)

goes as follows:

K(b, a) = K0(b, a) +K1(b, a) +K2(b, a) + ... (8.6)
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where

K0 =

∫
[Dx(t)] e

i
~
∫ tb
ta
dtm

2
ẋ2 ,

K1 = − i
~

∫
[D x(t)] e

i
~
∫ tb
ta
dtm

2
ẋ2
∫ tb

ta

ds V (x(s), s) , (8.7)

K2 =
1

2!

(
− i
~

)2 ∫
[Dx(t)] e

i
~
∫ tb
ta
dtm

2
ẋ2
∫ tb

ta

ds V (x(s), s)

∫ tb

ta

ds′ V (x(s′), s′) .

etc.

In order to exhibit the structure of consecutive terms of the expansion (8.6)
let us analyze the first order contribution and exchange the order of integration:
first let us do the sum over trajectories with s fixed and then integrate over ds

K1(b, a) = − i
~

∫ tb

ta

ds

∫
[Dx(t)] e

i
~
∫ tb
ta
dtm

2
ẋ2 V (x(s), s) . (8.8)

For the quantal trajectory x(s) we choose ta < s = tc < tb and then a corre-
sponding (arbitrary) xc. So, we have free propagation from (xa, ta) to (xc, tc),
then the scattering takes place with the amplitude − i

~V dxcdtc and then free
propagation continues from (xc, tc) to (xb, tb). In the end we have to integrate
over dxcdtc:

K1(b, a) = − i
~

tb∫
ta

+∞∫
−∞

K0(b, c)V (c)K0(c, a) dxcdtc . (8.9)

Following analogous steps we can see that K2(b, a) is composed of two scat-
terings at some intermediate space-time points d and c and free propagation in
between:

K2(b, a) =

(
− i
~

)2 ∫ ∫
K0(b, c)V (c)K0(c, d)V (d)K0(d, a) dτcdτd (8.10)

where dτ = dxdt. Note that the time sequence tc > td is kept by the propagators
K0, because they are defined to be such that

K0(b, a) = 0 for tb < ta . (8.11)

Note that in (8.7) there is a factor 1/2 which disappeared in (8.10). This is the
consequence of (8.11). Indeed, we can write∫ tb

ta

ds V (x(s), s)

∫ tb

ta

ds′V (x(s′), s′) =

=

∫ tb

ta

ds V (x(s), s)

∫ tb

s
ds′ V (x(s′), s′) +

∫ tb

ta

ds V (x(s), s)

∫ s

ta

ds′ V (x(s′), s′) .
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The integrand of the l.h.s. is symmetric in s and s′, therefore, each of the two
terms on the r.h.s. equals

1
2

∫ tb

ta

ds V (x(s), s)

∫ tb

ta

ds′ V (x(s′), s′) .

But only the second of them, because of (8.11), contributes to K2(b, a). So, we
can keep in (8.10) the integration over the whole available space-time and the
factor 1

2 disappears because of the causal behavior of K0(b, a).
In fact similar things happen at all orders of our perturbative expansion

(8.6). The 1/n! factors which appear in the expansion (8.4) disappear when we
write down each Kn(b, a) in terms of n+ 1 K0’ s.

Note that the expansion (8.6) leads to an integral equation for K(b, a).
Indeed, we can write

K(b, a) = K0(b, a) − i

~

∫
K0(b, c)V (c)K0(c, a) dτc

+

(
− i
~

)2 ∫ ∫
K0(b, c)V (c)K0(c, d)V (d)K0(d, a) dτcdτd + ...

= K0(b, a) − i

~

∫
K0(b, c)V (c) dτc

[
K0(c, a)

− i

~

∫
K0(c, d)V (d)K0(d, a) dτd + ...

]
. (8.12)

The expression in the square brackets equals K(c, a), thus the integral equation
follows

K(b, a) = K0(b, a) − i

~

∫
K0(b, c)V (c)K(c, a) dτc . (8.13)

Note that (8.13) results in an integral equation for the wave functions. In-
deed, K(b, a) tells us how to evolve a wave function in time and space:

ψ(b) =

∫
K(b, a)f(a) dxa (8.14)

where f(a) is the wave function at the space-time point a. Inserting (8.13) (or
the perturbative expansion of K(b, a) into (8.14)) we get

ψ(b) = φ(b)− i

~

∫
K0(b, c)V (c)ψ(c) dτc (8.15)

where

φ(b) =

∫
K0(b, a)f(a) dxa . (8.16)

These integral equations can serve to generate multiple scattering corrections
both to propagators and wave functions.

Note that in the perturbative expansion (8.6) K0(b, a) does not have to
represent propagation of a free particle: it can be any propagator whose analytic
structure is known. This is illustrated on the example which follows.
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8.1 Stationary state perturbation theory

Now we shall work out in detail the case in which we have the exact solutions
for the energy eigenfunctions φn and their eigenvalues En, thus the zero order
propagation is not that of the free motion. The zero order propagator is now:

K0(2, 1) =
∑
n

φn(x2)φ
∗
n(x1) e

− i
~En(t2−t1) , t2 > t1 . (8.17)

Writing down the perturbative expansion (8.6) with K0(2, 1) given by (8.17),
we have from (8.9)

K(2, 1) =
∑
n

φn(x2)φ
∗
n(x1) e

− i
~En(t2−t1)

− i

~
∑
n

∑
m

∫
φm(x2)φ

∗
m(x3) e

− i
~Em(t2−t3) V (x3, t3)

×φn(x3)φ
∗
n(x1) e

− i
~En(t3−t1) dx3dt3 + ... . (8.18)

We see that in each term of the expansion (8.14) the factor φm(x2)φ
∗
n(x1) ap-

pears, hence we can write

K(2, 1) =
∑
n

∑
m

λmn(t2, t1)φm(x2)φ
∗
n(x1) . (8.19)

Clearly, λmn(t2, t1) is the transition amplitude from the stationary state n to
the stationary state m in time t2 − t1, caused by the perturbation V (x, t):

λmn(t2, t1) =

∫
φ∗m(x2)K(x2, t2;x1, t1)φn(x1) dx2dx1 . (8.20)

Note that when V = 0 all amplitudes λm6=n = 0.
Expanding λmn(t2, t1) in a perturbation series with increasing powers of V ,

we obtain

λmn(t2, t1) = δmne
− i

~En(t2−t1) + λ(1)mn(t2, t1) + λ(2)mn(t2, t1) + ... (8.21)

where the first term on the r.h.s. is λ
(0)
mn(t2, t1). From the perturbative expan-

sion of K(b, a), we find from (8.9)

λ(1)mn(t2, t1) = − i
~
e−

i
~Emt2e+

i
~Ent1

∫ t2

t1

dt3 Vmn(t3) e
i
~ (Em−En)t3 , (8.22)

and from (8.10)

λ(2)mn(t2, t1) =

(
− i
~

)2

e−
i
~Emt2 e+

i
~Ent1

∑
k

t2∫
t1

dt4 e
i
~ t4(Em−Ek) Vmk(t4)

×
[ t4∫
t1

dt3 e
i
~ t3(Ek−En) Vkn(t3)

]
, (8.23)
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etc., where

Vmn(t) =

∫
dxφ∗m(x)V (x, t)φn(x) . (8.24)

Clearly, this perturbation theory is applicable to the systems whose zero order
description is in terms of a time independent Hamiltonian. The perturbative
interaction V however, may assume various time dependencies.

Note that the integral equation for K(b, a) implies the following integral
equation for λmn:

λmn(t2, t1) = δmnE
− i

~En(t2−t1) − i

~

t2∫
t1

dt3 e
− i

~Em(t2−t3)
∑
k

Vmk(t3)λkn(t3, t1) .

(8.25)
Differentiating both sides of this integral equation with respect to t2 we obtain
a differential equation for λmn:

d

dt2
λmn(t2, t1) = − i

~
∑
k

Vmk(t2)λkn(t2, t1)−
i

~
Em λmn(t2, t1) . (8.26)

Let us discuss now the first order transition amplitude in more detail. Let

V (x, t) = V (x) for t > 0 and 0 otherwise .

From (8.22) we get for the probability of transition n→ m in time T :

P (n→ m) = |λ(1)mn|2 = |Vmn|2
4 sin2

[
(Em−En)T

2~

]
(Em − En)2

. (8.27)

For large T , P (n → m) is a strongly fluctuating function of Em − En = ∆E.
It reaches its maximum (T/~)2 at ∆E = 0. The total probability of transition
(to any final energy) is

+∞∫
−∞

dEm ρ(Em)P (n→ m) = ρ(En) |Vmn|2
2π

~
T = ΓT (8.28)

where ρ(Em) is the density of the final states, and where we employed conser-
vation of energy in the transition n→ m.

This leads to a few comments. Firstly, the large T limit is reasonable because
the time involved in any realistic detection is much longer than any “atomic
scales” of our quantal system. But then the transitions ∆E = 0 dominate, and
we are dealing with processes which conserve the energy. Secondly, the total
transition probability is proportional to T , hence it is useful to introduce the
concept of the transition rate Γ of the process in question (compare (8.29)). This
transition rate is therefore given directly through the well defined quantities

Γ =
2π

~
|Vmn|2ρ(En) . (8.29)
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It is the famous “golden rule” of Fermi. Note that since

lim
T→∞

4 sin2
[
(Em−En)T

2~

]
(Em − En)2

=
2π

~
T δ(Em − En) , (8.30)

we can introduce a differential transition rate

Γ(n→ m) =
2π

~
|Vmn|2 δ(Em − En) . (8.31)

Indeed,

Γ =

∫
dEm ρ(Em) Γ(n→ m) =

2π

~
|Vmn|2 ρ(En) . (8.32)

The fact that the probability becomes infinite for very large T is an artifact
of the first approximation which is valid, after all, only when V is very small and
the probability is also very small (in other words: to have internal consistency
we have to take T large, but not too large). As it will be argued below the
higher orders may remedy these shortcomings. The fluctuations of P with ∆E,
on the other hand, stem from the sudden switch-on of the interaction V at
t = 0. They are of no physical consequence.

Before discussing all these limitations, let us mention still another one.
When we set En = Em in (8.27) we obtain

P (n→ m) = |Vmn|2
T 2

~2
. (8.33)

Therefore, for two degenerate states the rate concept does not make sense. Let
us, however, consider a simple model of a degenerate system which can be solved
exactly with the help of the set of differential equations (8.26).

Take a two level system whose two eigenenergies are the same, E1 = E2 = E.
As it turns out we can find an exact solution for its four amplitudes:

|λ11|2 = |λ22|2 = cos2
(
|V12|

T

~

)

|λ12|2 = |λ21|2 = sin2

(
|V12|

T

~

)
. (8.34)

These results can be obtained from (8.26):

dλ11
dt

= − i
~
E λ11 −

i

~
(V11λ11 + V12λ21)

dλ12
dt

= − i
~
E λ12 −

i

~
(V11λ12 + V12λ22)

dλ21
dt

= − i
~
E λ21 −

i

~
(V21λ11 + V22λ21)

dλ22
dt

= − i
~
E λ22 −

i

~
(V21λ12 + V22λ22) . (8.35)
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We simplify these equations setting V12 = V21 = v and V11 = V22 = 0 (taking
V11 = V22 6= 0 would merely renormalize the energy, whereas V11 6= V22 would
remove the degeneracy). The symmetry of the problem tells us to take λ22 = λ11
and λ12 = λ21. Finally, we obtain:

dλ11
dt

= − i
~

(E λ11 + vλ12)

dλ12
dt

= − i
~

(E λ12 + vλ11) . (8.36)

Substituting

λ11 = e−
i
~Et f(t) , λ12 = e−

i
~Et g(t) ,

with the initial conditions f(0) = 1 and g(0) = 0, we find

f(t) = cos

(
|v|
~
t

)
, g(t) = −i sin

(
|v|
~
t

)
. (8.37)

Thus, indeed, we obtain (8.34). So, our system oscillates between the two states,
and the first order perturbation gives the correct answer for |v|T � ~, which is
|λ12|2 = |v|2T 2/~2.

The moral of all this is that we should use the first order perturbation with
clear understanding of its limitations. Let us suppose, for instance, that the
final states form a fairly dense but discrete set of states. We get the following
limitations on T . The energy conservation demands that the width of the group
of the final states ∆m be bigger than the distance of the first zero of P (n→ m),
i.e. 2π~/T (compare (8.27)). This gives a lower limit on T :

T >
2π~
∆m

.

On the other hand the distance between the final states δm must be less than
2π~/T . This gives the upper limit for T :

T <
2π~
δm

.

Clearly, the golden formula works when

∆m � δm . (8.38)


