## Chapter 8

## Perturbation Theory

One of the simplest examples of evaluation of the functional transition amplitudes is their perturbative expansion. Now, we split the action in two

$$
\begin{equation*}
S=S_{0}+\sigma \tag{8.1}
\end{equation*}
$$

where $S_{0}$ is an action whose functional amplitudes we can evaluate exactly, and which gives us a reasonable zero order description of our system, and $\sigma$ is treated as a small perturbation. Therefore, in the notation of the previous section, we can write the following expansion

$$
\begin{align*}
& <\chi|1| \psi>_{S_{0}+\sigma}=<\chi\left|e^{\frac{i}{\hbar} \sigma}\right| \psi>_{S_{0}}= \\
& \quad=<\chi|1| \psi>_{S_{0}}+\frac{i}{\hbar}<\chi|\sigma| \psi>_{S_{0}}+\frac{1}{2!}\left(\frac{i}{\hbar}\right)^{2}<\chi\left|\sigma^{2}\right| \psi>_{S_{0}}+\ldots \tag{8.2}
\end{align*}
$$

We shall work out (8.2) in more detail for the standard case when $\sigma$ is determined by a perturbative potential $V(x, t)$, and $S_{0}$ is that of a "free" motion. Then

$$
\begin{equation*}
\sigma=-\int d t V(x(t), t) \tag{8.3}
\end{equation*}
$$

where $x(t)$ is the quantal trajectory. Thus the expansion in (8.2) becomes

$$
\begin{equation*}
e^{-\frac{i}{\hbar} \int_{t_{a}}^{t_{b}} d t V(x(t), t)}=1-\frac{i}{\hbar} \int_{t_{a}}^{t_{b}} d t V(x(t), t)+\frac{1}{2!}\left(-\frac{i}{\hbar}\right)^{2}\left[\int_{t_{a}}^{t_{b}} V(x(t), t)\right]^{2}+\ldots, \tag{8.4}
\end{equation*}
$$

and the perturbative expansion of the propagator,

$$
\begin{equation*}
K(b, a)=\int[\mathcal{D} x(t)] e^{\frac{i}{\hbar} \int_{t_{a}}^{t_{b}} d t\left(\frac{m}{2} \dot{x}^{2}-V(x, t)\right)} \tag{8.5}
\end{equation*}
$$

goes as follows:

$$
\begin{equation*}
K(b, a)=K_{0}(b, a)+K_{1}(b, a)+K_{2}(b, a)+\ldots \tag{8.6}
\end{equation*}
$$

where

$$
\begin{align*}
K_{0} & =\int[\mathcal{D} x(t)] e^{\frac{i}{\hbar} \int_{t a}^{t_{b}} d t \frac{m}{2} \dot{x}^{2}} \\
K_{1} & =-\frac{i}{\hbar} \int[\mathcal{D} x(t)] e^{\frac{i}{\hbar} \int_{t_{a}}^{t_{b}} d t \frac{m}{2} \dot{x}^{2}} \int_{t_{a}}^{t_{b}} d s V(x(s), s),  \tag{8.7}\\
K_{2} & =\frac{1}{2!}\left(-\frac{i}{\hbar}\right)^{2} \int[\mathcal{D} x(t)] e^{\frac{i}{\hbar} \int_{t_{a}}^{t_{b}} d t \frac{m}{2} \dot{x}^{2}} \int_{t_{a}}^{t_{b}} d s V(x(s), s) \int_{t_{a}}^{t_{b}} d s^{\prime} V\left(x\left(s^{\prime}\right), s^{\prime}\right) .
\end{align*}
$$

etc.
In order to exhibit the structure of consecutive terms of the expansion (8.6) let us analyze the first order contribution and exchange the order of integration: first let us do the sum over trajectories with $s$ fixed and then integrate over $d s$

$$
\begin{equation*}
K_{1}(b, a)=-\frac{i}{\hbar} \int_{t_{a}}^{t_{b}} d s \int[\mathcal{D} x(t)] e^{\frac{i}{\hbar} \int_{t_{a}}^{t_{b}} d t \frac{m}{2} \dot{x}^{2}} V(x(s), s) \tag{8.8}
\end{equation*}
$$

For the quantal trajectory $x(s)$ we choose $t_{a}<s=t_{c}<t_{b}$ and then a corresponding (arbitrary) $x_{c}$. So, we have free propagation from $\left(x_{a}, t_{a}\right)$ to $\left(x_{c}, t_{c}\right)$, then the scattering takes place with the amplitude $-\frac{i}{\hbar} V d x_{c} d t_{c}$ and then free propagation continues from $\left(x_{c}, t_{c}\right)$ to $\left(x_{b}, t_{b}\right)$. In the end we have to integrate over $d x_{c} d t_{c}$ :

$$
\begin{equation*}
K_{1}(b, a)=-\frac{i}{\hbar} \int_{t_{a}}^{t_{b}} \int_{-\infty}^{+\infty} K_{0}(b, c) V(c) K_{0}(c, a) d x_{c} d t_{c} \tag{8.9}
\end{equation*}
$$

Following analogous steps we can see that $K_{2}(b, a)$ is composed of two scatterings at some intermediate space-time points $d$ and $c$ and free propagation in between:

$$
\begin{equation*}
K_{2}(b, a)=\left(-\frac{i}{\hbar}\right)^{2} \iint K_{0}(b, c) V(c) K_{0}(c, d) V(d) K_{0}(d, a) d \tau_{c} d \tau_{d} \tag{8.10}
\end{equation*}
$$

where $d \tau=d x d t$. Note that the time sequence $t_{c}>t_{d}$ is kept by the propagators $K_{0}$, because they are defined to be such that

$$
\begin{equation*}
K_{0}(b, a)=0 \quad \text { for } \quad t_{b}<t_{a} . \tag{8.11}
\end{equation*}
$$

Note that in (8.7) there is a factor $1 / 2$ which disappeared in (8.10). This is the consequence of (8.11). Indeed, we can write

$$
\begin{aligned}
& \int_{t_{a}}^{t_{b}} d s V(x(s), s) \int_{t_{a}}^{t_{b}} d s^{\prime} V\left(x\left(s^{\prime}\right), s^{\prime}\right)= \\
& =\int_{t_{a}}^{t_{b}} d s V(x(s), s) \int_{s}^{t_{b}} d s^{\prime} V\left(x\left(s^{\prime}\right), s^{\prime}\right)+\int_{t_{a}}^{t_{b}} d s V(x(s), s) \int_{t_{a}}^{s} d s^{\prime} V\left(x\left(s^{\prime}\right), s^{\prime}\right) .
\end{aligned}
$$

The integrand of the l.h.s. is symmetric in $s$ and $s^{\prime}$, therefore, each of the two terms on the r.h.s. equals

$$
\frac{1}{2} \int_{t_{a}}^{t_{b}} d s V(x(s), s) \int_{t_{a}}^{t_{b}} d s^{\prime} V\left(x\left(s^{\prime}\right), s^{\prime}\right)
$$

But only the second of them, because of (8.11), contributes to $K_{2}(b, a)$. So, we can keep in (8.10) the integration over the whole available space-time and the factor $\frac{1}{2}$ disappears because of the causal behavior of $K_{0}(b, a)$.

In fact similar things happen at all orders of our perturbative expansion (8.6). The $1 / n$ ! factors which appear in the expansion (8.4) disappear when we write down each $K_{n}(b, a)$ in terms of $n+1 K_{0}{ }^{\prime}$ s.

Note that the expansion (8.6) leads to an integral equation for $K(b, a)$. Indeed, we can write

$$
\begin{align*}
K(b, a)= & K_{0}(b, a)-\frac{i}{\hbar} \int K_{0}(b, c) V(c) K_{0}(c, a) d \tau_{c} \\
& +\left(-\frac{i}{\hbar}\right)^{2} \iint K_{0}(b, c) V(c) K_{0}(c, d) V(d) K_{0}(d, a) d \tau_{c} d \tau_{d}+\ldots \\
= & K_{0}(b, a)-\frac{i}{\hbar} \int K_{0}(b, c) V(c) d \tau_{c}\left[K_{0}(c, a)\right. \\
& \left.-\frac{i}{\hbar} \int K_{0}(c, d) V(d) K_{0}(d, a) d \tau_{d}+\ldots\right] \tag{8.12}
\end{align*}
$$

The expression in the square brackets equals $K(c, a)$, thus the integral equation follows

$$
\begin{equation*}
K(b, a)=K_{0}(b, a)-\frac{i}{\hbar} \int K_{0}(b, c) V(c) K(c, a) d \tau_{c} . \tag{8.13}
\end{equation*}
$$

Note that (8.13) results in an integral equation for the wave functions. Indeed, $K(b, a)$ tells us how to evolve a wave function in time and space:

$$
\begin{equation*}
\psi(b)=\int K(b, a) f(a) d x_{a} \tag{8.14}
\end{equation*}
$$

where $f(a)$ is the wave function at the space-time point $a$. Inserting (8.13) (or the perturbative expansion of $K(b, a)$ into (8.14)) we get

$$
\begin{equation*}
\psi(b)=\phi(b)-\frac{i}{\hbar} \int K_{0}(b, c) V(c) \psi(c) d \tau_{c} \tag{8.15}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi(b)=\int K_{0}(b, a) f(a) d x_{a} . \tag{8.16}
\end{equation*}
$$

These integral equations can serve to generate multiple scattering corrections both to propagators and wave functions.

Note that in the perturbative expansion (8.6) $K_{0}(b, a)$ does not have to represent propagation of a free particle: it can be any propagator whose analytic structure is known. This is illustrated on the example which follows.

### 8.1 Stationary state perturbation theory

Now we shall work out in detail the case in which we have the exact solutions for the energy eigenfunctions $\phi_{n}$ and their eigenvalues $E_{n}$, thus the zero order propagation is not that of the free motion. The zero order propagator is now:

$$
\begin{equation*}
K_{0}(2,1)=\sum_{n} \phi_{n}\left(x_{2}\right) \phi_{n}^{*}\left(x_{1}\right) e^{-\frac{i}{\hbar} E_{n}\left(t_{2}-t_{1}\right)}, \quad t_{2}>t_{1} \tag{8.17}
\end{equation*}
$$

Writing down the perturbative expansion (8.6) with $K_{0}(2,1)$ given by (8.17), we have from (8.9)

$$
\begin{align*}
K(2,1) & =\sum_{n} \phi_{n}\left(x_{2}\right) \phi_{n}^{*}\left(x_{1}\right) e^{-\frac{i}{\hbar} E_{n}\left(t_{2}-t_{1}\right)} \\
& -\frac{i}{\hbar} \sum_{n} \sum_{m} \int \phi_{m}\left(x_{2}\right) \phi_{m}^{*}\left(x_{3}\right) e^{-\frac{i}{\hbar} E_{m}\left(t_{2}-t_{3}\right)} V\left(x_{3}, t_{3}\right) \\
& \times \phi_{n}\left(x_{3}\right) \phi_{n}^{*}\left(x_{1}\right) e^{-\frac{i}{\hbar} E_{n}\left(t_{3}-t_{1}\right)} d x_{3} d t_{3}+\ldots \tag{8.18}
\end{align*}
$$

We see that in each term of the expansion (8.14) the factor $\phi_{m}\left(x_{2}\right) \phi_{n}^{*}\left(x_{1}\right)$ appears, hence we can write

$$
\begin{equation*}
K(2,1)=\sum_{n} \sum_{m} \lambda_{m n}\left(t_{2}, t_{1}\right) \phi_{m}\left(x_{2}\right) \phi_{n}^{*}\left(x_{1}\right) . \tag{8.19}
\end{equation*}
$$

Clearly, $\lambda_{m n}\left(t_{2}, t_{1}\right)$ is the transition amplitude from the stationary state $n$ to the stationary state $m$ in time $t_{2}-t_{1}$, caused by the perturbation $V(x, t)$ :

$$
\begin{equation*}
\lambda_{m n}\left(t_{2}, t_{1}\right)=\int \phi_{m}^{*}\left(x_{2}\right) K\left(x_{2}, t_{2} ; x_{1}, t_{1}\right) \phi_{n}\left(x_{1}\right) d x_{2} d x_{1} . \tag{8.20}
\end{equation*}
$$

Note that when $V=0$ all amplitudes $\lambda_{m \neq n}=0$.
Expanding $\lambda_{m n}\left(t_{2}, t_{1}\right)$ in a perturbation series with increasing powers of $V$, we obtain

$$
\begin{equation*}
\lambda_{m n}\left(t_{2}, t_{1}\right)=\delta_{m n} e^{-\frac{i}{\hbar} E_{n}\left(t_{2}-t_{1}\right)}+\lambda_{m n}^{(1)}\left(t_{2}, t_{1}\right)+\lambda_{m n}^{(2)}\left(t_{2}, t_{1}\right)+\ldots \tag{8.21}
\end{equation*}
$$

where the first term on the r.h.s. is $\lambda_{m n}^{(0)}\left(t_{2}, t_{1}\right)$. From the perturbative expansion of $K(b, a)$, we find from (8.9)

$$
\begin{equation*}
\lambda_{m n}^{(1)}\left(t_{2}, t_{1}\right)=-\frac{i}{\hbar} e^{-\frac{i}{\hbar} E_{m} t_{2}} e^{+\frac{i}{\hbar} E_{n} t_{1}} \int_{t_{1}}^{t_{2}} d t_{3} V_{m n}\left(t_{3}\right) e^{\frac{i}{\hbar}\left(E_{m}-E_{n}\right) t_{3}}, \tag{8.22}
\end{equation*}
$$

and from (8.10)

$$
\begin{align*}
\lambda_{m n}^{(2)}\left(t_{2}, t_{1}\right) & =\left(-\frac{i}{\hbar}\right)^{2} e^{-\frac{i}{\hbar} E_{m} t_{2}} e^{+\frac{i}{\hbar} E_{n} t_{1}} \sum_{k} \int_{t_{1}}^{t_{2}} d t_{4} e^{\frac{i}{\hbar} t_{4}\left(E_{m}-E_{k}\right)} V_{m k}\left(t_{4}\right) \\
& \times\left[\int_{t_{1}}^{t_{4}} d t_{3} e^{\frac{i}{\hbar} t_{3}\left(E_{k}-E_{n}\right)} V_{k n}\left(t_{3}\right)\right] \tag{8.23}
\end{align*}
$$

etc., where

$$
\begin{equation*}
V_{m n}(t)=\int d x \phi_{m}^{*}(x) V(x, t) \phi_{n}(x) . \tag{8.24}
\end{equation*}
$$

Clearly, this perturbation theory is applicable to the systems whose zero order description is in terms of a time independent Hamiltonian. The perturbative interaction $V$ however, may assume various time dependencies.

Note that the integral equation for $K(b, a)$ implies the following integral equation for $\lambda_{m n}$ :

$$
\begin{equation*}
\lambda_{m n}\left(t_{2}, t_{1}\right)=\delta_{m n} E^{-\frac{i}{\hbar} E_{n}\left(t_{2}-t_{1}\right)}-\frac{i}{\hbar} \int_{t_{1}}^{t_{2}} d t_{3} e^{-\frac{i}{\hbar} E_{m}\left(t_{2}-t_{3}\right)} \sum_{k} V_{m k}\left(t_{3}\right) \lambda_{k n}\left(t_{3}, t_{1}\right) . \tag{8.25}
\end{equation*}
$$

Differentiating both sides of this integral equation with respect to $t_{2}$ we obtain a differential equation for $\lambda_{m n}$ :

$$
\begin{equation*}
\frac{d}{d t_{2}} \lambda_{m n}\left(t_{2}, t_{1}\right)=-\frac{i}{\hbar} \sum_{k} V_{m k}\left(t_{2}\right) \lambda_{k n}\left(t_{2}, t_{1}\right)-\frac{i}{\hbar} E_{m} \lambda_{m n}\left(t_{2}, t_{1}\right) . \tag{8.26}
\end{equation*}
$$

Let us discuss now the first order transition amplitude in more detail. Let

$$
V(x, t)=V(x) \quad \text { for } \quad t>0 \quad \text { and } \quad 0 \quad \text { otherwise } .
$$

From (8.22) we get for the probability of transition $n \rightarrow m$ in time $T$ :

$$
\begin{equation*}
P(n \rightarrow m)=\left|\lambda_{m n}^{(1)}\right|^{2}=\left|V_{m n}\right|^{2} \frac{4 \sin ^{2}\left[\frac{\left(E_{m}-E_{n}\right) T}{2 \hbar}\right]}{\left(E_{m}-E_{n}\right)^{2}} . \tag{8.27}
\end{equation*}
$$

For large $T, P(n \rightarrow m)$ is a strongly fluctuating function of $E_{m}-E_{n}=\Delta E$. It reaches its maximum $(T / \hbar)^{2}$ at $\Delta E=0$. The total probability of transition (to any final energy) is

$$
\begin{equation*}
\int_{-\infty}^{+\infty} d E_{m} \rho\left(E_{m}\right) P(n \rightarrow m)=\rho\left(E_{n}\right)\left|V_{m n}\right|^{2} \frac{2 \pi}{\hbar} T=\Gamma T \tag{8.28}
\end{equation*}
$$

where $\rho\left(E_{m}\right)$ is the density of the final states, and where we employed conservation of energy in the transition $n \rightarrow m$.

This leads to a few comments. Firstly, the large $T$ limit is reasonable because the time involved in any realistic detection is much longer than any "atomic scales" of our quantal system. But then the transitions $\Delta E=0$ dominate, and we are dealing with processes which conserve the energy. Secondly, the total transition probability is proportional to $T$, hence it is useful to introduce the concept of the transition rate $\Gamma$ of the process in question (compare (8.29)). This transition rate is therefore given directly through the well defined quantities

$$
\begin{equation*}
\Gamma=\frac{2 \pi}{\hbar}\left|V_{m n}\right|^{2} \rho\left(E_{n}\right) . \tag{8.29}
\end{equation*}
$$

It is the famous "golden rule" of Fermi. Note that since

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{4 \sin ^{2}\left[\frac{\left(E_{m}-E_{n}\right) T}{2 \hbar}\right]}{\left(E_{m}-E_{n}\right)^{2}}=\frac{2 \pi}{\hbar} T \delta\left(E_{m}-E_{n}\right), \tag{8.30}
\end{equation*}
$$

we can introduce a differential transition rate

$$
\begin{equation*}
\Gamma(n \rightarrow m)=\frac{2 \pi}{\hbar}\left|V_{m n}\right|^{2} \delta\left(E_{m}-E_{n}\right) . \tag{8.31}
\end{equation*}
$$

Indeed,

$$
\begin{equation*}
\Gamma=\int d E_{m} \rho\left(E_{m}\right) \Gamma(n \rightarrow m)=\frac{2 \pi}{\hbar}\left|V_{m n}\right|^{2} \rho\left(E_{n}\right) \tag{8.32}
\end{equation*}
$$

The fact that the probability becomes infinite for very large $T$ is an artifact of the first approximation which is valid, after all, only when $V$ is very small and the probability is also very small (in other words: to have internal consistency we have to take $T$ large, but not too large). As it will be argued below the higher orders may remedy these shortcomings. The fluctuations of $P$ with $\Delta E$, on the other hand, stem from the sudden switch-on of the interaction $V$ at $t=0$. They are of no physical consequence.

Before discussing all these limitations, let us mention still another one. When we set $E_{n}=E_{m}$ in (8.27) we obtain

$$
\begin{equation*}
P(n \rightarrow m)=\left|V_{m n}\right|^{2} \frac{T^{2}}{\hbar^{2}} \tag{8.33}
\end{equation*}
$$

Therefore, for two degenerate states the rate concept does not make sense. Let us, however, consider a simple model of a degenerate system which can be solved exactly with the help of the set of differential equations (8.26).

Take a two level system whose two eigenenergies are the same, $E_{1}=E_{2}=E$. As it turns out we can find an exact solution for its four amplitudes:

$$
\begin{align*}
& \left|\lambda_{11}\right|^{2}=\left|\lambda_{22}\right|^{2}=\cos ^{2}\left(\left|V_{12}\right| \frac{T}{\hbar}\right) \\
& \left|\lambda_{12}\right|^{2}=\left|\lambda_{21}\right|^{2}=\sin ^{2}\left(\left|V_{12}\right| \frac{T}{\hbar}\right) . \tag{8.34}
\end{align*}
$$

These results can be obtained from (8.26):

$$
\begin{align*}
\frac{d \lambda_{11}}{d t} & =-\frac{i}{\hbar} E \lambda_{11}-\frac{i}{\hbar}\left(V_{11} \lambda_{11}+V_{12} \lambda_{21}\right) \\
\frac{d \lambda_{12}}{d t} & =-\frac{i}{\hbar} E \lambda_{12}-\frac{i}{\hbar}\left(V_{11} \lambda_{12}+V_{12} \lambda_{22}\right) \\
\frac{d \lambda_{21}}{d t} & =-\frac{i}{\hbar} E \lambda_{21}-\frac{i}{\hbar}\left(V_{21} \lambda_{11}+V_{22} \lambda_{21}\right) \\
\frac{d \lambda_{22}}{d t} & =-\frac{i}{\hbar} E \lambda_{22}-\frac{i}{\hbar}\left(V_{21} \lambda_{12}+V_{22} \lambda_{22}\right) \tag{8.35}
\end{align*}
$$

We simplify these equations setting $V_{12}=V_{21}=v$ and $V_{11}=V_{22}=0$ (taking $V_{11}=V_{22} \neq 0$ would merely renormalize the energy, whereas $V_{11} \neq V_{22}$ would remove the degeneracy). The symmetry of the problem tells us to take $\lambda_{22}=\lambda_{11}$ and $\lambda_{12}=\lambda_{21}$. Finally, we obtain:

$$
\begin{align*}
\frac{d \lambda_{11}}{d t} & =-\frac{i}{\hbar}\left(E \lambda_{11}+v \lambda_{12}\right) \\
\frac{d \lambda_{12}}{d t} & =-\frac{i}{\hbar}\left(E \lambda_{12}+v \lambda_{11}\right) . \tag{8.36}
\end{align*}
$$

Substituting

$$
\lambda_{11}=e^{-\frac{i}{\hbar} E t} f(t), \quad \lambda_{12}=e^{-\frac{i}{\hbar} E t} g(t),
$$

with the initial conditions $f(0)=1$ and $g(0)=0$, we find

$$
\begin{equation*}
f(t)=\cos \left(\frac{|v|}{\hbar} t\right), \quad g(t)=-i \sin \left(\frac{|v|}{\hbar} t\right) \tag{8.37}
\end{equation*}
$$

Thus, indeed, we obtain (8.34). So, our system oscillates between the two states, and the first order perturbation gives the correct answer for $|v| T \ll \hbar$, which is $\left|\lambda_{12}\right|^{2}=|v|^{2} T^{2} / \hbar^{2}$.

The moral of all this is that we should use the first order perturbation with clear understanding of its limitations. Let us suppose, for instance, that the final states form a fairly dense but discrete set of states. We get the following limitations on $T$. The energy conservation demands that the width of the group of the final states $\Delta_{m}$ be bigger than the distance of the first zero of $P(n \rightarrow m)$, i.e. $2 \pi \hbar / T$ (compare (8.27)). This gives a lower limit on $T$ :

$$
T>\frac{2 \pi \hbar}{\Delta_{m}}
$$

On the other hand the distance between the final states $\delta_{m}$ must be less than $2 \pi \hbar / T$. This gives the upper limit for $T$ :

$$
T<\frac{2 \pi \hbar}{\delta_{m}}
$$

Clearly, the golden formula works when

$$
\begin{equation*}
\Delta_{m} \gg \delta_{m} \tag{8.38}
\end{equation*}
$$

