
Chapter 7

General functional transition
amplitudes

The amplitude for transition from a state ψ(x) at t1 to χ(x) at t2 can be written
with the help of the propagator K(x2, t2;x1, t1) as follows

<χ|1|ψ> =

∫ ∫
χ∗(x2)K(x2, t2;x1, t1)ψ(x1) dx2dx1 . (7.1)

One can write it also as follows

<χ|1|ψ>S =

∫ ∫
χ∗(x2)

∫
[Dx(t)] e

i
~S[x(t)] ψ(x1) dx2dx1 . (7.2)

We spell out the content of this formula as follows: This is the matrix element

between two states ψ and χ of a functional taken as unity, weighted with e
i
~S ,

and summed over trajectories .
This takes us to the general definition in which we replace in (7.2) 1 by

F [x(t)] and write

<χ|F |ψ>S =

∫ ∫
χ∗(x2)

∫
[Dx(t)] e

i
~S[x(t)] F [x(t)]ψ(x1) dx2dx1 (7.3)

where F [x(t)] should not depend on the end points x2 and x1, and be well
defined in this region. So, F [x(t)] can be many things, starting from some
“global” functional which describe complex interactions and ending with some
“local” functionals like e.g. F [x(t)] = xk which ascribes to each trajectory its
value at time tk.

The functional transition amplitude defined in ((7.3) leads to an important
differential relation for F [x(t)]. To see it we first simplify the notation dropping
the wave functions because the relations we are going to discuss are valid for
any ψ and χ:

〈F 〉S =

∫
[Dx(t)]F [x(t)] e

i
~S[x(t)] . (7.4)

Now we shift all trajectories by a fixed, infinitely small, amount η(t)

x(t) → x(t) + η(t) . (7.5)
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Since η is fixed, we have

[D(x(t) + η(t))] = [Dx(t)] , (7.6)

and 〈F 〉S does not change when x→ x+ η. Therefore, to lowest order in η we
have

〈F 〉S =

∫
F [x(t) + η(t)] e

i
~S[x(t)+η(t)] [D(x(t) + η(t))]

=

∫
F [x(t)] e

i
~S[x(t)] [Dx(t)] +

∫ (∫
δF

δx(s)
η(s)ds

)
e
i
~S[x(t)] [Dx(t)]

+
i

~

∫
F [x(t)]

(∫
δS

δx(s)
η(s)ds

)
e
i
~S[x(t)] [Dx(t)] + ... (7.7)

where we have used the functional derivatives defined as follows

F [x(t) + η(t)]− F [x(t)] =

∫
ds

δF

δx(s)
η(s) . (7.8)

Since 〈F 〉S and the first term in the second line of (7.7) are equal, and η is
arbitrary (though fixed), we obtain the following functional equation〈

δF

δx(s)

〉
S

= − i
~

〈
F

δS

δx(s)

〉
S

, (7.9)

or in a more compact notation

〈 δF 〉S = − i
~
〈FδS 〉S . (7.10)

This differential relation for a very large class of transition amplitudes is very
remarkable; it contains virtually all quantum mechanical relations like equa-
tions of motion and also commutation relations. Arbitrariness of the functional
F [x(t)] leads to a potentially very rich physical content of (7.9).

Very often it is very convenient to employ the discretized form of (7.9).
Then the functionals become functions of many variables and the sum over
trajectories becomes a multi-dimensional integral. Since

∂

∂xk

[
F (..., xk, ...) e

i
~S(...,xk,...)

]
=

∂F

∂xk
e
i
~S + F

i

~
∂S

∂xk
e
i
~S ,

we get, after integrating both sides of the above equation, and neglecting the
surface contributions∫

∂F

∂xk

i

~
S...

dxk
N

... = − i
~

∫
F
∂S

∂xk
e
i
~S ...

dxk
N

... , (7.11)

or 〈
∂F

∂xk

〉
S

= − i
~

〈
F
∂S

∂xk

〉
S

, (7.12)

where N =
√

2πi~ε/m.
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Let us look at a few applications for the simple action

S =

t2∫
t1

dt
[
mẋ2 − V (x(t))

]
. (7.13)

First, let us take F = 1, hence δF = 0. We obtain from (7.10)

− i
~

〈∫ [
m
d2x

dt2
+ V ′(x)

]
δx(t)dt

〉
S

= 0 . (7.14)

Since δx(t) is arbitrary we have〈
m
d2x

dt2

〉
S

= −
〈
V ′(x)

〉
S
. (7.15)

This is a quantum mechanical analogue of the Newton law.
Let us take now the discretized form (7.12). We obtain〈

∂F

∂xk

〉
S

=
iε

~

〈
F

[
m
xk+1 − 2xk + xk−1

ε2
+ V ′(xk)

]〉
S

. (7.16)

Note that taking F = 1 in (7.16) we obtain again (7.15) but in the discretized
form. Let us take F = xk. To leading order (ε → 0) we can neglect the term
εxkV

′(xk) and obtain from (7.16)

−i~ 〈 1 〉S =

〈
m
xk+1 − xk

ε
xk

〉
S

−
〈
xkm

xk − xk−1
ε

〉
S

. (7.17)

Clearly this is to be compared with the commutation relation

−i~ = [p, x] . (7.18)

Indeed we shall argue that the physical content of (7.17) is the same as
the physical content of the commutation relation (7.18). Before doing it let us
discuss yet another consequence of (7.17). We compare two terms〈

xkm
xk − xk−1

ε

〉
S

and

〈
xk+1m

xk+1 − xk
ε

〉
S

. (7.19)

The difference of these two terms is of order ε because they represent the same
quantity evaluated at the neighboring moments differing by ε. So, when we
replace the second term on the r.h.s. of (7.17) by the second term of (7.19) we
obtain to leading order〈

m
xk+1 − xk

ε
xk

〉
S

−
〈
xk+1m

xk+1 − xk
ε

〉
S

=
~
i
〈 1 〉S , (7.20)

which we can write in the following form〈
(xk+1 − xk)2

ε2

〉
S

= i
~
mε
〈 1 〉S (7.21)
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or 〈
(xk+1 − xk)2

ε

〉
S

= i
~
m
〈 1 〉S . (7.22)

This last relation is nothing else than the relation characterizing Brownian mo-
tion in imaginary time. Indeed, something to be expected!. On the other hand,
(7.21) tells us that quantal trajectories do not have derivatives, i.e. velocities
are undefined, again just as in the case of Brownian trajectories.

Note

In three dimensions we have the following generalizations of (7.21)

〈
(xk+1 − xk)2

〉
S

=
〈
(yk+1 − yk)2

〉
S

=
〈
(zk+1 − zk)2

〉
S

= i
ε~
m
,

〈(xk+1 − xk)(yk+1 − yk)〉S = 〈(xk+1 − xk)(zk+1 − zk)〉S

= 〈(yk+1 − yk)(zk+1 − zk)〉S = 0 . (7.23)

End of Note

Thus a question arises what expression we may identify with the square of
velocity? One can convince oneself through several different reasonings that the
following “time splitting” expression is the right choice for the kinetic energy

1
2m

〈
xk+1 − xk

ε

xk − xk−1
ε

〉
S

=

〈
1
2m

(
xk+1 − xk

ε

)2

+
~

2iε

〉
S

. (7.24)

For example: take F = xk+1 − xk in (7.13). We have ∂F/∂xk = −1.
Neglecting εV ′(xk) we obtain

~
2iε
〈 1 〉S = − 1

2ε2
〈m(xk+1 − xk)(xk+1 − 2xk + xk−1) 〉S . (7.25)

Indeed, inserting this into the r.h.s. of (7.24) we obtain the l.h.s.:〈
1
2m

(
xk+1 − xk

ε

)2

+
~

2iε

〉
S

= 1
2m

〈
xk+1 − xk

ε

xk − xk−1
ε

〉
S

(7.26)

Note that when the kinetic energy is integrated over time (hence multiplied by
ε) one can use

1
2m

(
xk+1 − xk

ε

)2

as the kinetic energy. However as a “local object” one must employ (7.24).
Note also that according to (7.21), the r.h.s. of (7.24) vanishes but only to
order O(1ε ). To order O(1) it is finite and, as (7.24) tells us, represents the
kinetic energy.
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In order to support the statement that (7.17) is equivalent to the commu-
tation relation (7.18) let us check that the functional

F =
m

ε
(xk+1 − xk)

indeed acts as the operator of momentum. We write the matrix element of F
in a discretized form

<χ|m
ε

(xk+1 − xk)|ψ>S =
m

ε

(
〈χ|xk+1|ψ〉S − 〈χ|xk|ψ〉S

)
(7.27)

where

<χ|xk|ψ>S =
1

N

∫
χ∗(xN )xk e

i
~S(...xk+1,xk,xk−1...) ψ(x1) ...

dxk
N

... dxNdx1

(7.28)
where N =

√
2πi~ε/m, and

S(...xk+1, xk, xk−1, ...) =
N−1∑
k=1

S[xk+1, tk+1;xk, tk]

=

N−1∑
k=1

εL(
xk+1 − xk

ε
,
xk+1 + xk

2
,
tk+1 + tk

2
) . (7.29)

The propagator

K(xk+1, xk) =
1

N
e
i
~ εL(

xk+1−xk
ε

,
xk+1+xk

2
,
tk+1+tk

2
) (7.30)

shifts the wave functions one step, either forward

ψ(xk+1) =

∫
K(xk+1, xk)ψ(xk) dxk (7.31)

or backward in time

χ∗(xk) =

∫
χ∗(xk+1)K(xk+1, xk) dxk+1 . (7.32)

(Show that K∗(xk+1, xk) propagates backward in time!). Thus

<χ|m
ε

(xk+1 − xk)|ψ>S =

=
m

ε

[∫
χ∗(x, t+ ε)xψ(x, t+ ε) dx −

∫
χ∗(x, t)xψ(x, t) dx

]
. (7.33)

Since

ψ(x, t+ ε) = ψ(x, t) − iε

~
Hψ(x, t)

χ∗(x, t+ ε) = χ∗(x, t) +
iε

~
(Hχ(x, t))∗ ,
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we obtain from (7.33)

lim
ε→o

<χ|m
ε

(xk+1 − xk)|ψ>S = − i
~
m

∫
χ∗(x) (xH −Hx)ψ(x) dx . (7.34)

Since

Hx− xH = −~2

m

∂

∂x
,

we finally obtain

lim
ε→o

<χ|m
ε

(xk+1 − xk)|ψ>S =

∫
χ∗(x)

~
i

∂

∂x
ψ(x) dx . (7.35)

====> Example added

Example

In this example we shall show that the proper way of discretizing the com-
mutation relation for the momentum operator (7.35) consists in writing a path
ordered product

m

ε
〈χ |xk+1(xk+1 − xk)− (xk+1 − xk)xk|ψ〉

?
= i~ 〈χ|ψ〉 (7.36)

which can be conveniently rewritten as〈
χ
∣∣x2k+1 + x2k − 2xk+1xk

∣∣ψ〉 ?
=
i~ε
m
〈χ|ψ〉 . (7.37)

For further calculations let us denote

tk+1 = t, tk = t− ε, xk+1 = x, xk = y = x+ η. (7.38)

(which is more convenient here than previously used tk = t ). Therefore〈
χ
∣∣x2k∣∣ψ〉 =

∫
dy χ∗(y, t− ε)y2ψ(y, t− ε)〈

χ
∣∣x2k+1

∣∣ψ〉 =

∫
dxχ∗(x, t)x2ψ(x, t). (7.39)

Although for the purpose of this example it is enough to work up to linear
order in ε, we shall shortly need expression (7.37) up to ε2. In the first integral
the dummy integration variable y can be renamed as x and the remainder has
to be expanded in ε:〈

χ
∣∣x2k∣∣ψ〉 =

∫
dxχ∗(x, t− ε)x2ψ(x, t− ε)

=

∫
dx

[
χ∗x2ψ − ε

(
χ∗x2

dψ

dt
+
dχ∗

dt
x2ψ

)
+
ε2

2

(
χ∗x2

d2ψ

dt2
+ 2

dχ∗

dt
x2
dψ

dt
+
d2χ∗

dt2
x2ψ

)]
(7.40)
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where we omit arguments of the wave functions if they refer to the point (x, t).
We shall make use of the Schrödinger equation

dψ

dt
= − i

~
Hψ,

dχ∗

dt
=
i

~
χ∗H,

d2ψ

dt2
= − 1

~2
H2ψ,

dχ∗

dt
= − 1

~2
χ∗H2

which leads to〈
χ
∣∣x2k∣∣ψ〉 =

∫
dxχ∗x2ψ − iε

~

∫
dxχ∗

[
H,x2

]
ψ

− ε2

2~2

∫
dxχ∗[H, [H,x2]]ψ. (7.41)

In order to check (7.37) we shall work with accuracy O(ε). Evaluating the
commutator [

H,x2
]

= − ~2

2m

[
d2

dx2
, x2
]

= −~2

m

{
1 + 2x

d

dx

}
. (7.42)

gives〈
χ
∣∣x2k+1 + x2k

∣∣ψ〉 = 2

∫
dxχ∗x2ψ +

iε~
m

∫
dxχ∗

{
1 + 2x

d

dx

}
ψ. (7.43)

Now let us consider

〈χ |xk+1xk|ψ〉 =

∫
dx dy

1

A
e−β(x−y)

2
χ∗(x, t) yx e−

iε
~ Uψ(y, t− ε) (7.44)

Expanding in η we get (see exercise on the Schrödinger equation, eq.(??))

〈χ |xk+1xk|ψ〉 =

∫
dxχ∗x2

(
ψ + ε

dψ

dt
+
ε2

2

d2ψ

dt2

)∣∣∣∣
t=t−ε

+

∫
dxχ∗x

∫
dη

A
e−βη

2

(
η2ψ′ +

1

6
η4ψ′′′ − iε

~
η2
(

1

2
V ′ψ + V ψ′

))∣∣∣∣
t=t−ε

.

Note that the argument of function ψ is here ψ(x, t − ε). The first line above
equals ψ by virtue of the Schrödinger equation. Indeed(

ψ + ε
dψ

dt
+
ε2

2

d2ψ

dt2

)∣∣∣∣
t=t−ε

= ψ − εdψ
dt

+
ε2

2

d2ψ

dt2

+ ε
dψ

dt
− ε2d

2ψ

dt2
+
ε2

2

d2ψ

dt2

= ψ. (7.45)

Integrating the second line over η gives

〈χ |xk+1xk|ψ〉 =

∫
dxχ∗x2ψ (7.46)

+

∫
dxχ∗x

(
i~ε
m
ψ′ − ~2ε2

2m2
ψ′′′ +

ε2

m

(
1

2
V ′ψ + V ψ′

))∣∣∣∣
t=t−ε
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To calculate (7.37) we need (7.47) with accuracy linear in ε:

〈χ |xk+1xk|ψ〉 =

∫
dxχ∗x2ψ +

i~ε
m

∫
dxχ∗x

dψ

dx
. (7.47)

So finally〈
χ
∣∣x2k+1 + x2k − 2xk+1xk

∣∣ψ〉 = 2

∫
dxχ∗x2ψ +

i~ε
m

∫
dxχ∗

{
1 + 2x

d

dx

}
ψ

−2

∫
dxχ∗x2ψ − 2

i~ε
m

∫
dxχ∗x

dψ

dx

=
i~ε
m
〈χ|ψ〉 . (7.48)

in agreement with the commutation rule [x, p] = i~.
End of Example

The exercise above boils down to the equalities:

<χ|mxk+1 − xk
ε

xk|ψ>S =

∫
χ∗(x, t)

~
i

∂

∂x
xψ(x, t) dx (7.49)

and

<χ|xk+1m
xk+1 − xk

ε
|ψ>S =

∫
χ∗(x, t)x

~
i

∂

∂x
ψ(x, t) dx , (7.50)

thus, indeed, the content of (7.17) is equivalent to the commutation relation
(7.18).

====> Example added below

Example

In this example we shall show explicitly that the properly defined discrete
kinetic energy reads

T =
m

2

〈
χ

∣∣∣∣∣
(
xk+1 − xk

ε

)2

− i~
mε

∣∣∣∣∣ψ
〉
. (7.51)

Since, the O(1/ε) term is equal 0 (once we have subtracted i~
mε) by virtue of the

commutation relation (7.36), we have to extend calculation from the previous
example to the second order in ε. Consider first (see eqs.(7.47,7.41))〈

χ
∣∣x2k+1

∣∣ψ〉∣∣
ε2

= 0〈
χ
∣∣x2k∣∣ψ〉∣∣ε2 = − ε2

2~2

∫
dxχ∗[H, [H,x2]]ψ. (7.52)

The double commutator can be written as:

[H, [H,x2]] = 2
~2

m

(
~2

m

d2

dx2
+ xV ′

)
(7.53)
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and we get 〈
χ
∣∣x2k∣∣ψ〉∣∣ε2 =

1

m2

∫
dxχ∗p2ψ − 1

m

∫
dxχ∗xV ′ ψ. (7.54)

Similarly, from the next term we have to retain only pieces proportional to
ε2:

〈χ |xk+1xk|ψ〉|ε2 =
1

m

∫
dxχ∗x

(
−i~dψ

′

dt
− ~2

2m
ψ′′′ +

(
1

2
V ′ψ + V ψ′

))
.

(7.55)
Since

−i~dψ
′

dt
= −i~ d

dx

dψ

dt
= − d

dx
(Hψ). (7.56)

The last term reads

− d

dx
(Hψ) = − d

dx

(
− ~2

2m
ψ′′ + V ψ

)
.

=
~2

2m
ψ′′′ − V ′ψ − V ψ′. (7.57)

Hence the round bracket in eq. (7.55) reads

(. . .) =
~2

2m
ψ′′′ − V ′ψ − V ψ′ − ~2

2m
ψ′′′ +

1

2
V ′ψ + V ψ′ = −1

2
V ′ψ

and

〈χ |xk+1xk|ψ〉|ε2 = − 1

2m

∫
dxχ∗xV ′ψ (7.58)

which cancels the V ′ term in eq.(7.54). Summarizing, we get

T =
m

2
〈χ| 1

ε2
(
x2k+1 − 2xk+1xk + x2k

)2 − i~
mε
|ψ〉 =

1

2m
〈χ| p2 |ψ〉 (7.59)

where p = −i~ d/dx. Hence we have shown explicitly that (7.51) is the proper
expression for a discretized kinetic energy operator.
End of Example

To close this part let us discuss some useful formulae for Gaussian ampli-
tudes. Now S is a quadratic form and we can evaluate the transition amplitudes
for the functional

F = e
i
~
∫
f(t)x(t)dt , (7.60)

where f(t) is an arbitrary function of time. We have〈
e
i
~
∫
f(t)x(t)dt

〉
S

=

∫
x(ta)=a,x(tb)=b

e
i
~ [S+

∫
f(t)x(t)dt] [Dx(t)] . (7.61)

When S is Gaussian, so is S′ = S+
∫
f(t)x(t)dt, and we know how to calculate

(7.61). We have a factor exp(i~S′cl/~), where S′cl is evaluated for a classical
trajectory, and the remaining factor is the sum over trajectories y(t), which
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run from y(ta) = 0 to y(tb) = 0. Denoting the quadratic part of S′ by S′2 (the
quadratic part of S = S2 = S′2), we have〈

e
i
~
∫
f(t)x(t)dt

〉
S

= e
i
~S
′
cl Φ (7.62)

where

Φ =

∫
[Dy(t)] e

i
~S
′
2[y(t)] . (7.63)

On the other hand

〈1〉S =

∫
[Dx(t)] e

i
~S[x(t)] = e

i
~Scl Φ , (7.64)

because S′2 = S2. Thus

Φ = 〈1〉S e
− i

~Scl . (7.65)

Inserting it into (7.62) we obtain

L =

〈
e[
i
~
∫
f(t)x(t)dt]

〉
S

= 〈1〉S e
i
~ (S
′
cl−Scl) = R . (7.66)

From (7.66) we get some useful relations. For instance,

δL

δf(t)

∣∣∣∣
f(t)=0

=
δR

δf(t)

∣∣∣∣
f(t)=0

(7.67)

gives an average

〈x(t)〉S =
δS′cl
δf(t)

∣∣∣∣
f(t)=0

〈1〉S , (7.68)

whereas a double functional differentiation gives a correlation function:

〈x(t)x(s)〉S =

(
~
i

)2 δ2

δf(t)δf(s)
e
i
~ (S
′
cl−Scl)

∣∣∣∣
f=0

〈1〉S

= 〈1〉S
(
~
i

δ2S′cl
δf(t)δf(s)

+
δS′cl
δf(t)

δS′cl
δf(s)

)∣∣∣∣
f=0

. (7.69)

Since S′cl is a quadratic function of f(t), a correlation function of an arbitrary
number of x’s is expressible through the first and the second functional deriva-
tives,

δS′cl
δf(t)

and
δ2S′cl

δf(t)δf(s)
,

only!


