
Chapter 6

Semiclassical Euclidean
functional amplitudes

We have already introduced Euclidean propagators through the substitution

t = −iτ , (6.1)

so we obtain the following Euclidean versions of the propagators:

KE(xb,
1
2T ;xa,−1

2T ) = <xa|e−
1
~HT |xa>=

∫
[DEx(τ)]e−

1
~SE [x(τ)]

=

∫ ∏
j

dxj
a
e
− 1

~
∑
j [
m
2

(xj+1−xj)2

η
+ηV (xj)] (6.2)

where a =
√

2π~η/m.

Let us look now at the semiclassical Euclidean propagator for the simple
Lagrangian : L = mẋ2/2− V (x) , t = −iτ ,

SE [x(τ)] =

T/2∫
−T/2

dτ

[
1
2m

(
dx

dτ

)2

+ V (x)

]
.

Similarly as before the quantal trajectory is split into the “classical” trajectory
x̄(τ) and the quantal fluctuation y(τ) with the boundary conditions

x̄
(
−1

2T
)

= xa , x̄
(

1
2T
)

= xb , y
(
−1

2T
)

= y
(

1
2T
)

= 0 . (6.3)

We approximate SE through a sum of the “classical” action, SE [x̄(τ)], and
the gaussian (quantal) action SE [y(τ)] (the cross terms, linear in y(τ), do not
contribute because x̄(τ) is at the stationary point of SE [x(τ)])

SE [x(τ)] ≈
T/2∫
−T/2

dτ
[

1
2m ˙̄x2 + V (x̄)

]
+

T/2∫
−T/2

dτ

[
1
2mẏ

2 + 1
2

∂2V

∂x2

∣∣∣∣
x̄

y2

]
. (6.4)
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Because of (6.3) we have

T/2∫
−T/2

dτ ẏ2 =

T/2∫
−T/2

dτ

[
d

dτ
(yẏ)− yÿ

]
= −

T/2∫
−T/2

dτ y
d2y

dτ2
,

hence

SE [x(τ)] = SE [x̄(τ)] + 1
2

T/2∫
−T/2

dτ yDE(τ)y (6.5)

where

DE(τ) = −m d2

dτ2
+
∂2V

∂x2

∣∣∣∣
x̄(τ)

. (6.6)

So, now we find the eigenvalues and eigenfunctions of the differential oper-
ator DE(τ):

DEyn(τ) = λnyn(τ) ,

T/2∫
−T/2

dτ yn(τ)y′n(τ) = δnn′ , yn
(
−1

2T
)

= yn
(

1
2T
)

= 0 .

(6.7)
Expanding y(τ) into this orthonormal set of functions

y(τ) =
∑
n

anyn(τ) , (6.8)

we get

SE [x(τ)] = SE [x̄(τ)] + 1
2

∑
n

a2
nλn . (6.9)

Hence, in the semiclassical approximation, we get

KE(xb,
1
2T ;xa,−1

2T ) ≈ e−
1
~SE [x̄]N

∫ ∏
n

dan√
2π~

e−
1
2~

∑
n a

2
nλn , (6.10)

where N is to be determined. Since

+∞∫
−∞

dan√
2π~

e−
1
2~a

2
nλn = λ−1/2

n

we obtain
KE(xb,

1
2T ;xa,−1

2T ) ≈ e−
1
~SE [x̄]N [detDE ]−1/2 , (6.11)

where detDE =
∏
n λn.

A few comments are here in order. First, there are many similarities with
the semiclassical approximation for the real (Minkowski) time: many operations
are completely parallel to the ones we have done in the previous section. On
the other hand, however, there are some important differences. Now we are
dealing with real, not complex, quantities. Our present expressions are well
defined only when all λn > 0. In the case of real time transitions through
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zero of λ′s were interpreted as an appearance of focal points (caustic points) in
close analogy to what we have in optics. Thus the processes of diffraction were
present there. Now, for the Euclidean time, diffraction is absent and the cases
when λ′s go through zero need some other physical interpretation.

In order to fix N let us work out the same example which we had in the last
section of a potential with just one minimum, now for the case of the Euclidean
amplitudes. Similarly as in the case of the last section, we build the (Euclidean)
amplitude around the classical trajectory x̄ which we choose to be a constant
coordinate of the minimum of V (x̄ = 0) = 0. Note that this choice of the
classical trajectory is implied by e.g. the simulation procedure of Metropolis
discussed in Section 2 (“Brownian motion, Euclidean time”): Indeed, the largest
contributions to the propagator come from the trajectory of the particle sitting
still at the bottom of V (x), compare (6.12).

We have now in the semiclassical approximation

LE = 1
2mẋ

2 + V (x) ≈ 1
2mẋ

2 + 1
2V
′′(0)x2 . (6.12)

Setting V ′′(0) = mω2 we can now write down the Euclidean propagator taking
the result for K for the real time t , and replacing t = −iτ .

KE(x, 1
2T ; 0,−1

2T ) =

(
mω

2πi~ sin(−iωT )

) 1
2

e
i
~

mω
2 sin(−iωT )

x2 cos(−iωT )

=

(
mω

2π~ sinh(ωT )

) 1
2

e
− 1

~
mω

2 sinh(ωT )
x2 cosh(ωT )

. (6.13)

From (6.11) and(6.13) we get

N [detDE ]−1/2 =

(
mω

2π~ sinh(ωT )

) 1
2

. (6.14)

Further on we shall need the limit T → ∞ of the above expressions. From
(6.13) and (6.14) we get

KE(x, 1
2T ; 0,−1

2T )

∣∣∣∣
T→∞

= e−
1
2
ωT

(
mω

π~

) 1
2

e−
mω
2~ x

2

= e−
1
~E0Tφ0(x)φ∗0(0) , (6.15)

where E0 is the ground state energy and φ0 the ground state wave function of
our system (in the semiclassical approximation). Note that (6.15) gives us – in
accordance with our expectations – the ground state energy of the harmonic
oscillator, E0 = 1

2~ω, and the ground state wave function

φ0(x) =

(
mω

π~

) 1
4

e−
mω
2~ x

2
.
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6.1 Two minimum potential: instantons

The situation changes radically when V (x) has two minima. We shall discuss
now a symmetric double well potential which can be well approximated around
each of the two minima by an oscillator potential. For instance the following
functional form for V (x) can be used for detailed analytic calculations

V (x) = κ(x2 − a2)2 , V ′′(±a) = ω2 = 8κa2 . (6.16)

Since the “Euclidean motion” takes place in the potential −V (x) we can build
the Euclidean propagator around the classical trajectories which take the par-
ticle from one minimum to the other one. For a justification of this step we
may, again, recourse to the Metropolis simulations whose procedures prevent
the quantal trajectories to get stuck in a local minimum.

So, we are seeking the transition amplitudes taking us from −a to a or vice
versa an arbitrary number of times. Because of symmetry of the potential there
are just two such amplitudes

<−a|e−
1
~HT |− a> = <a|e−

1
~HT |a>

<−a|e−
1
~HT |a> = <a|e−

1
~HT | − a> . (6.17)

The first pair are the amplitudes for the particle to remain at the original
position. The second pair is for the process of tunnelling.

Let us have a look at the classical trajectories going from e.g. a to −a. The
equations of motion following from (6.12) the energy E = 1

2m ˙̄x2 − V (x) is a
constant of motion. In our case E = 0, hence the equation of motion can be
written in either of the following forms:

1
2m ˙̄x2 − V (x) = 0 , ˙̄x =

[
2

m
V (x̄)

] 1
2

,
dτ

dx̄
=

1√
2
mV (x̄)

. (6.18)

Solving the last one we obtain

τ = τ1 +

x̄∫
0

dx̄
1√

2
mV (x̄)

, (6.19)

where τ1 is the constant of integration. Note that for V (x) given by (6.16) one
can do the integral in (6.19) and obtains x̄ ∼ tanh(const(τ − τ1)).

When the particle is right in between the two minima: x̄ = 0 and τ = τ1.
Thus τ1 is the moment when the particle moves with maximal velocity. The
classical trajectories from one minimum to the other one one calls instantons
(say, from −a to a) and anti-instantons (from a to −a). Since one transition
takes a very, very long time, the constant τ1 marks the position of an instanton
(anti-instanton) in an essentially infinitely long segment of time from −T/2 to
T/2. We shall use this constant to label instantons (anti-instantons).
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We can have an idea about the general shape of instantons solving the
differential equation (6.18) close to e.g. a. We expand V (x̄) around a:

V (x̄) ≈ 1
2V
′′(a)(x̄− a)2 .

Thus the equation in the neighborhood of a takes the form

d(x̄− a)

dτ
= −

[
V ′′(a)

m

] 1
2

(x̄− a)

where the sign is fixed such as to make dx̄/dτ positive when x̄ (hence the
particle) is approaching a from the left. Thus

|x̄− a| ∼ e−
√
V ′′(a)
m

τ = e−ωτ (6.20)

where ω =
√
V ′′(a)/m. Thus the instantons and anti-instantons are well local-

ized in time, and they are – in the commonly accepted terminalogy – kinks and
anti-kinks. In the perspective of an infinite T they look like some well localized
in time steps.

Now, we are going to build the amplitudes (6.17) from superpositions of
many instantons and anti-instantons which do not overlap. This last condition
is essential for such a procedure to be internally consistent because V (x̄) is
a non-linear function of x̄, but the lack of overlap makes it to be a sum of
contributions from all instantons and anti-instantons. On the scale of T the
instantons (anti-instantons) are very narrow: most of the time the particle stays
in the vicinity of the maxima of −V (x̄) and it passes the minimum of −V (x̄) in
an “instant”(hence the name). Therefore, the classical action S[x̄] becomes a
sum of the individual contributions from the instantons (anti-instantons). The
action of one instanton (anti-instanton) is

S0
E =

+T/2∫
−T/2

dτ

[
1
2m

2

m
V (x̄) + V (x̄)

]
=

+a∫
−a

dx̄
√

2mV (x̄) =

+a∫
−a

dx̄ p(x̄) (6.21)

where p(x̄) = m ˙̄x = m
√

2V (x̄)/m. This is a special case (E=0) of the expres-
sion which appears in the so called transmission coefficients through a barrier.

Now we come to the construction of the amplitude <−a|e−HT/~|−a>. When
we start from −a the first comes instanton, then anti-instanton and we have to
have an even number of them (we have to go back to −a). The trajectory with
n instantons (anti-instantons) present is (for T →∞)

x(τ) = x̄τ1...τn(τ) + y(τ) ≈ x̄τ1(τ) + x̄τ2(τ) + ... + x̄τn(τ) + y(τ) . (6.22)

Here y(τ) represents the quantum fluctuations around the classical trajectory of
n instantons (anti-instantons). τ1, ..., τn mark the positions of the well separated
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Figure 6.1: Chain of separated instanton–anti-instanton transitions.

in time instantons and anti-instantons.

<−a|e−
1
~HT | − a>=

∑
evenn

+T/2∫
−T/2

dτ1...

τn−2∫
−T/2

dτn−1

τn−1∫
−T/2

dτn e
− 1

~SE [x̄τ1...τn (τ)]

×
∫
y(−T

2
)=y(+T

2
)=0

[DyE(τ)] e
− 1

2~

+T/2∫
−T/2

dτy(−m d2

dτ2 +V ′′(x̄))y

. (6.23)

For a “dilute gas of instantons”

SE [x̄τ1...τn(τ)] ≈ nS0
E ,

where S0
E is given by (6.21).

Let us consider the path integral over the fluctuations y(τ)

KE(0, 1
2T ; 0,−1

2T ) =

∫
y(−T

2
)=y(+T

2
)=0

[DyE(τ)] e
− 1

2~

+T/2∫
−T/2

dτy(−m d2

dτ2 +V ′′(x̄))y

.

It can be represented as a convolution of n KE ’s with the intermediate positions
T1, ..., Tn set in between τj ’s∫

KE(0, 1
2T ; yn, Tn) dyn ... dy2KE(y2, T2; y1, T1) dy1KE(y1, T1; 0,−1

2T ) .

(6.24)
hence each Tj is, more or less, half way between two τj ’s, in the region where
our system is very well approximated by a harmonic oscillator. In fact, apart
from a flash of a kink (or anti-kink) in between of two Tj ’s the system behaves
as an oscillator. So, if not for the kinks, the convolution (6.24) would produce
KE of the harmonic oscillator.

Now we make the following approximation:

KE(yj , Tj ; yj−1, Tj−1) = K̃ Kosc
E (yj , Tj ; yj−1, Tj−1) (6.25)
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where K̃ is a constant to be determined later. Hence we assume that a renor-
malisation constant, K̃, takes care of the deviations of the fluctuations y(τ)
from the ones one encounters in the harmonic oscillator. This implies that

KE(0, 1
2T, 0,−

1
2T )

∣∣∣∣
T→∞

= K̃n

(
mω

π~

) 1
2

e−
1
2
ωT , ω2 =

V ′′(±a)

m
. (6.26)

Since the integrand in (6.23) does not depend any more on τ1, ..., τn we can
evaluate the integral over all τ ’s:

+T/2∫
−T/2

dτ1...

τn−2∫
−T/2

dτn−1

τn−1∫
−T/2

dτn =
1

n!
Tn . (6.27)

So, our semiclassical amplitude, in the limit of a very large T becomes

<−a|e−
1
~HT | − a> ≈

(
mω

π~

) 1
2

e−
1
2
ωT

∑
evenn

1

n!

(
K̃e−S

0
E/~T

)n
(6.28)

=

(
mω

π~

) 1
2

e−
1
2
ωT 1

2

[
eK̃e

−S0
E/~T + e−K̃e

−S0
E/~T

]

= 1
2

(
mω

π~

) 1
2
[
e−( 1

2
ω−K̃e−S

0
E/~)T + e−( 1

2
ω+K̃e−S

0
E/~)T

]
.

Since we took the limit of very large T , we are left with the contributions
of the states of the lowest energies. Eq. (6.28) tells us that the process of
tunnelling removes the degeneracy of the ground state of the system with a
potential energy with two identical minima. Instead of two degenerate states
(the particle is either in the minimum −a or in +a) the particle is either in the
state (call it | s>) of the energy

Es = 1
2~ω − ~K̃e−S

0
E/~ ,

or in the state of somewhat higher energy (call it | r>)

Er = 1
2~ω + ~K̃e−S

0
E/~ .

We get all amplitudes following the same steps and obtain

<∓a|e−
1
~HT |−a>≈ 1

2

(
mω

π~

) 1
2
[
e−( 1

2
ω−K̃e−S

0
E/~)T±e−( 1

2
ω+K̃e−S

0
E/~)T

]
. (6.29)

What can we say about | s > and | r >? From the general formula in the
representation of eigenstates of energy

<∓a|e−
1
~HT | − a>=

∑
l

<∓a|l> e−ElT/~ <l| − a> ,
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in the limit of large T , just two lowest energy contributions remain

<∓a|e−
1
~HT | − a> ≈ <∓a|s><s| − a> e−( 1

2
ω−K̃e−S

0
E/~)T

± <∓a|r><r| − a> e−( 1
2
ω+K̃e−S

0
E/~)T . (6.30)

Comparing (6.30) with (6.29) we obtain

<∓a|s><s| − a> = 1
2

(
mω

π~

) 1
2

<∓a|r><r| − a> = ±1
2

(
mω

π~

) 1
2

. (6.31)

On the other hand we know that, without tunnelling, we have two degenerate
states of energy 1

2~ω:

Ψ0(x− a) and Ψ0(x+ a)

where

Ψ0(x) =

(
mω

π~

) 1
4

e−
mω
2~ x

2
.

We also know that (in the first approximation) the states with removed degen-
eracies are linear combinations of the degenerate states. Indeed, it is fairly easy
to find such combinations in our case. In the position representation

<∓a|x>= δ(x± a),

therefore

<∓a|s> =

∫
dx

1√
2

[Ψ0(x+ a) + Ψ0(x− a)] δ(x± a)

<∓a|r> =

∫
dx

1√
2

[Ψ0(x+ a)−Ψ0(x− a)] δ(x± a) .

We get

<∓a|s> =
1√
2

[Ψ0(∓a+ a) + Ψ0(∓a− a)] ≈ 1√
2

(
mω

π~

) 1
4

<∓a|r> =
1√
2

[Ψ0(∓a+ a)−Ψ0(∓a− a)] ≈ ± 1√
2

(
mω

π~

) 1
4

,

because Ψ0(±2a)� Ψ0(0). So we recover (6.31).

The fact that | s> corresponds to lower and | r > to higher energy follows
from the oscillation theorem of the one dimensional Sturm–Liouville problem
of the eigenfunctions and eigenvalues of the second order differential equations:
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the eigefunction Ψn(x) corresponding to the (n+ 1)’th eigenvalue En has
(for finite x’s) exactly n zeros (n = 0, 1, 2, ...).

Therefore | s> having no zeros has lower energy than | r> which has one zero.
Analogous calculations one can perform for periodic potentials with pre-

dictable results that the infinitely degenerate system without tunnelling be-
comes a band of states when tunnelling is switched on. Let us go through
similar steps as in the case of a double well.

We start with an infinitely degenerate state for a particle which may sit at
any of the identical minima at

xj(τ) = ja j = ...− 2,−1, 0,+1,+2, ... . (6.32)

In the limit of very large T we evaluate the amplitude for transitions (in time
T ) from the initial position j−a to the position j+a. In the semiclassical ap-
proximation we build the amplitude around multi-instanton configurations. Let
there be: n instantons and m anti-instantons. We have

<j+|e−
1
~HT |j−> =

(
mω

π~

) 1
2

e−
1
2
ωT (6.33)

×
∞∑
n=0

∞∑
m=0

1

n!m!

(
K̃e−S

0
E/~T

)n+m

δ(n−m)(j+−j−) .

We use the following representation of the Kronecker delta

δ(n−m)(j+−j−) =

2π∫
0

dθ

2π
eiθ(n−m)eiθ(j−−j+) , (6.34)

and obtain

<j+|e−
1
~HT |j−>=

(
mω

π~

) 1
2

e−
1
2
ωT

2π∫
0

dθ

2π
eiθ(j−−j+)

×
∞∑
n=0

1

n!

(
K̃Te−S

0
E/~+iθ

)n ∞∑
m=0

1

m!

(
K̃Te−S

0
E/~−iθ

)m

=

(
mω

π~

) 1
2

e−
1
2
ωT

2π∫
0

dθ

2π
eiθ(j−−j+)eK̃Te

−S0
E/~+iθ

eK̃Te
−S0

E/~−iθ

=

(
mω

π~

) 1
2

e−
1
2
ωT

2π∫
0

dθ

2π
eiθ(j−−j+)e2K̃Te−S

0
E/~ cos θ . (6.35)

Thus, indeed, the ground state energy of the harmonic oscillator splits into a
band of states:

1
2~ω → E(θ) = 1

2~ω − 2K̃~e−S
0
E/~ cos θ . (6.36)
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Writing

<j+|e−
1
~HT |j−> =

2π∫
0

dθ <j+|θ><θ|e−HT/~|θ><θ|j−>

we get

<θ|j> =

(
mω

π~

) 1
4 1√

2π
eiθj .

Following similar steps as in the case of the double well potential we get the
following spatial representation of the wave function of the band labelled by θ:

Φθ(x) =
1√
2π

+∞∑
j=−∞

Ψ0(x− ja) eiθj , (6.37)

where Ψ0(x) is the wave function of the particle sitting in the well whose min-
imum (zero) is at x = 0. Under the translation T : x → x + a, Φθ acquires a
phase:

Φθ(x+ a) =
1√
2π

+∞∑
j=−∞

Ψ0(x− (j − 1)a) eiθj

= eiθ
1√
2π

+∞∑
j=−∞

Ψ0(x− (j − 1)a) eiθ(j−1) = eiθΦθ(x) .

Thus

T Φθ(x) = eiθΦθ(x) . (6.38)

Introducing the wave vector k

θj =
θ

a
ja = kxj

we can write

Φθ(x) = Φk(x) =
1√
2π

∑
j

Ψ0(x− xj) eikxj . (6.39)

Φk(x) are called the Bloch waves, and are commonly employed in descriptions
of the band structure of solids.

To summarize:

– without tunnelling the symmetry under T is broken,

– tunnelling restores it in the form given by (6.38).
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6.2 Detailed calculations of K̃

A few comments are now in order. First let us re-write the equation of motion
of one instanton:

dx̄

dτ
=

(
2

m
V (x̄)

) 1
2

→ d2x̄

dτ2
=

d

dx̄

[(
2

m
V (x̄)

) 1
2
]
dx̄

dτ
=

1

m

dV

dx̄
. (6.40)

Another differentiation over τ gives(
−m d2

dτ2
+
d2V

dx̄2

)
dx̄

dτ
= 0 . (6.41)

When we compare the above with our eigenvalue equation(
−m d2

dτ2
+
d2V

dx̄2

)
yn(τ) = λnyn(τ) , (6.42)

we see that

y1(τ) =

(
S0
E

)− 1
2√

m
dx̄

dτ
(6.43)

is a normalized eigen solution corresponding to the eigenvalue λ1 = 0. Indeed,
since

S0
E =

+T/2∫
−T/2

dτ 2V (x̄) , (6.44)

we have
+T/2∫
−T/2

dτy2
1 =

(
S0
E

)−1

m

+T/2∫
−T/2

dτ
2V (x̄)

m
= 1 . (6.45)

It would seem that we run into serious problem: the integral over da1 is
divergent! This is, nevertheless, not so. First, let us point out that y1(τ) has
no zeros. Hence λ1 is the lowest of all λ’s. In other words the oscillation theorem
tells us that λn > 0, for all n > 1, hence the only problem is with λ1. But it
turns out that the integration over τ1 made the integration over a1 redundant.
Indeed,

x(τ) = x̄(τ) + y(τ) = x̄(τ) + a1y1(τ) +
∑
l>1

al yl(τ) . (6.46)

Hence the the integration over dτ1 is equivalent to integration over da1. In
other words: the integration over da1 is already done. Indeed, we can change
the trajectory either by shifting τ1 or a1:

either dx(τ) =
dx̄

dτ1
dτ1

or dx(τ) = y1da1 . (6.47)
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Equating the r.h.s. of (6.42) and employing the normalized y1 we get

dτ1 =

(
S0
E

)− 1
2√

m da1 . (6.48)

Note that only the specific form of y1 makes possible this simple equivalence of
integrations over dτ1 and da1.

Now we can find a formula for K̃. We calculate the contribution of the
quantal fluctuations around one instanton positioned anywhere between −T/2
and T/2 in two ways: (a) using the general formula (6.10), and (b) the ap-
proximate formula with K̃ present and the fluctuations around the classical
trajectory (one instanton) taken over from one oscillator. Then we equate (a)
and (b) and get

K̃ =
Kone inst.,λ1=0(a, 1

2T ;−a,−1
2T )

Kone inst.,harm.osc.(a,
1
2T ;−a,−1

2T )
. (6.49)

Since

Kone inst.,λ1=0(a, 1
2T,−a,−

1
2T ) = e−

1
~S

0
E [x̄]N

∫ ∏
n=1

dan√
2π~

e−
1
2~

∑
n λna

2
n

= e−
1
~S

0
E [x̄]N [det ′(−m d2

dτ2
+ V ′′(x̄))]−

1
2

+∞∫
−∞

da1√
2π~

= e−
1
~S

0
E [x̄]N [det ′(−m d2

dτ2
+ V ′′(x̄))]−

1
2

+T/2∫
−T/2

dτ1

(
S0
E

) 1
2 1√

m

1√
2π~

= e−
1
~S

0
E [x̄]N [det ′(−m d2

dτ2
+ V ′′(x̄))]−

1
2 T

(
S0
E

) 1
2 1√

m

1√
2π~

, (6.50)

where

det ′(−m d2

dτ2
+ V ′′(x̄)) =

∏
n=2

λn .

On the other hand

Kone inst.,harm.osc.(a,
1
2T,−a,−

1
2T ) = e−

1
~S

0
E [x̄]N [det(−m d2

dτ2
+mω2))]−

1
2 T

with mω2 = V ′′(±a). Thus we obtain

K̃ =

(
S0
E

m2π~

) 1
2 [det(−m d2

dτ2 +mω2))]
1
2

[det ′(−m d2

dτ2 + V ′′(x̄))]
1
2

. (6.51)

To obtain K̃ we have to have a method for calculating the determinants in
(6.51). This can be done as follows [6.1]. The starting point is the eigevalue



6.2 Detailed calculations of K̃ 83

equation which we write in a simplified form (for simplicity sake we set m = 1,
and write ∂t in place of ∂

∂t):

(−∂2
t +W (t)) y(t) = λ y(t) (6.52)

where W (t) is bounded for all t. Let y(t) be the solution satisfying the following
initial conditions:

yλ
(
−1

2T
)

= 0 , ∂tyλ
(
−1

2T
)

= 1 . (6.53)

The operator (−∂2
t +W ) acting on functions yλn(t) has the eigenvalue λn only

when yλn(+T/2) = 0. Note that

(−∂2
t +W − λ) yλn = (λn − λ) yλn , (6.54)

thus yλn diagonalize not only (−∂2
t +W ) but also (−∂2

t +W − λ). Clearly :

det(−∂2
t +W ) =

∏
n

λn . (6.55)

Let W (1), W (2) be two functions bounded for all t, and let y(1) and y(2) be
two solutions of (6.52). One can show [6.1] that

det[−∂2
t +W (1) − λ]

det[−∂2
t +W (2) − λ]

=
y

(1)
λ

(
1
2T
)

y
(2)
λ

(
1
2T
) =

∏
n(λ

(1)
n − λ)∏

n(λ
(2)
n − λ)

. (6.56)

If so, then

det[−∂2
t +W (1) − λ]

y
(1)
λ

(
1
2T
) =

det[−∂2
t +W (2) − λ]

y
(2)
λ

(
1
2T
) = 2N 2π~ , (6.57)

where N does not depend on W !
Let us apply this relation to the case of simple harmonic oscillator and check

(6.57) on a well known case:

λ = 0 → (−∂2
t + ω2) y0(t) = 0 , (6.58)

and its solution

y0(t) =
1

2ω

(
eω(t+ 1

2
T ) − e−ω(t+ 1

2
T )

)
, (6.59)

satify the initial conditions (6.53). Thus

y0

(
1
2T
)

=
1

2ω

(
eωT − e−ωT

)
, (6.60)

and
det(−∂2

t + ω2)
1

2ω (eωT − e−ωT )
= 2π~N 2 . (6.61)

In the limit of very large T , taking square roots of both sides of (6.61) we
obtain the formula we are very familiar with:

N [det(−∂2
t + ω2)]−

1
2 =

√
ω

π~
e−

1
2
ωT . (6.62)
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The arguments in support of (6.56) go along the following lines [6.1]. Both
sides of (6.56) are some meromorphic functions of λ in the complex plane and
tend to 1 when λ→∞ (except along the positive real axis) with poles and zeros
at the same values of λ. Moreover, they are the same functions. (Incidentally:
when all the singularities of a function in a given region of the complex plane
are poles, the function is meromorphic in this region). Be it as it may, (6.56)
gives us a handle to compute (6.51). We know det(−∂2

t +ω2), now we compute
det ′(−∂2

t + V ′′(x̄)) following these steps:

1. First we compute

det(−∂2
t + V ′′(x̄)) = 2π~N 2yλ=0

(
1
2T
)
, (6.63)

yλ=0

(
−1

2T
)

= 0 , ∂tyλ=0

(
−1

2T
)

= 1

where we set λ = 0 in (6.52).

2. Then, we compute λ1(T ) for finite but large T (which must be such that
limT→∞ λ1(T ) = 0) and calculate

det ′(−∂2
t + V ′′(x̄)) = lim

T→∞

det(−∂2
t + V ′′(x̄))

λ1(T )
. (6.64)

We construct yλ=0(t) from two independent solutions of (−∂2
t +V ′′(x̄)) y = 0

of which we already know one

y1(t) =

(
S0
E

)− 1
2√

m
dx̄

dt
. (6.65)

Thus we take a linear combination of y1 and a linearly independent solution ỹ1

to form yλ=0 satisfying the initial conditions (6.53)

yλ=0(t) = ay1(t) + b ỹ1(t) . (6.66)

The condition for ỹ1 to be linearly independent of y1 is to have their Wronskian
different from zero:

y1(t) ∂tỹ1(t) − ỹ1(t) ∂ty1(t) 6= 0 . (6.67)

Since we attempt to construct det ′(...) for very large times |t| close to |12T | it
will be enough to employ the asymptotic forms of the solutions y1(t) and ỹ1(t).
We already know it for y1:

y1(t) = Ae−|t|ω , ω =
√
V ′′(±a) . (6.68)

It is easy to guess the asymptotic form of ỹ1:

ỹ1(t) = ±Ae|t|ω , t→ ±∞ . (6.69)

Indeed, we find that

y1(t) ∂tỹ1(t) − ỹ1(t) ∂ty1(t) = 2A2ω . (6.70)
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This means that y1(t) and ỹ1(t) are two independent solutions, and we can now
construct the solution yλ=0(t) choosing a and b such that the initial conditions
(6.53) are satisfied. Choosing (since ω =const we can, without loosing anything,
set ω = 1)

yλ=0(t) =
1

2A

(
e

1
2
T y1(t) + e−

1
2
T ỹ1(t)

)
, (6.71)

we see that indeed

yλ=0(−1
2T ) = 0 and ∂tyλ=0(−1

2T ) = 1 . (6.72)

Note that we also find

yλ=0(1
2T ) =

1

2A

(
e

1
2
TAe−

1
2
T + e−

1
2
TAe

1
2
T
)

= 1 , (6.73)

which we shall presently need to calculate the determinant (for large T ) from
(6.63):

det(−∂2
t + V ′′(x̄)) = 2π~N 2yλ=0

(
1
2T
)

= 2π~N 2 . (6.74)

Now, in order to obtain λ1(T ), we have to solve

(−∂2
t + V ′′(x̄)) yT (t) = λ1(T ) yT (t) (6.75)

for finite (but large !) T . Thus λ1(T ) must be small because for T → ∞ it is
zero.

First, we convert (6.75) into an integral equation. It is an exercise in math-
ematical physics that

yT (t) = yλ=0(t)− λ1(T )
1

2A2

t∫
−T/2

dt′
{
ỹ1(t) y1(t′)− y1(t) ỹ1(t′)

}
yT (t′) (6.76)

is the integral equation we are looking for. Note that

yT
(
−1

2T
)

= yλ=0

(
−1

2T
)

= 0 and (−∂2
t + V ′′(x̄)) yλ=0 = 0 . (6.77)

In order to check that yT (t) of (6.76) is a solution of (6.75) we employ the
familiar equations

∂2
t y1(t) = V ′′(x̄)y1(t) and ∂2

t ỹ1(t) = V ′′(x̄)ỹ1(t) , (6.78)

and note that

t∫
−T/2

dt′
{
ỹ1(t) y1(t′)− y1(t) ỹ1(t′)

}
yT (t′) =

=

T/2∫
−T/2

dt′ θ(t− t′)
{
ỹ1(t) y1(t′)− y1(t) ỹ1(t′)

}
yT (t′) . (6.79)
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With the help of eqs.(6.78) and (6.70) we get (remember that ∂tθ(t − t′) =
δ(t− t′), ∂2

t θ(t− t′) = δ′(t− t′) and
∫
dt′δ′(t− t′)f(t′) = ∂tf(t).)

(−∂2
t + V ′′)

T/2∫
−T/2

dt′ θ(t− t′)
{
ỹ1(t) y1(t′)− y1(t) ỹ1(t′)

}
yT (t′) = −2A2yT (t) ,

(6.80)
thus it is clear that (6.76) leads to (6.75).

Since we expect λ1(T ) to be very small (T very large) we solve (6.76) in the
first approximation setting under the integral

yT (t′) = yλ=0(t′) . (6.81)

Our yT (t) satisfies one boundary condition: yT (−T/2) = 0. In order to have
an eigensolution we have to have also yT (T/2) = 0. Demanding this amounts
to imposing the relation

0 = 1− λ1(T )
1

2A2

T/2∫
−T/2

dt′
{
ỹ1(1

2T ) y1(t′)− y1(1
2T ) ỹ1(t′)

}
yλ=0(t′) , (6.82)

which, for large T (ỹ1(t) → Aet, y1(t) → Ae−t) and after inserting (6.71),
becomes

0 = 1− λ1(T )
1

4A2

T/2∫
−T/2

dt′
(
eT y2

1(t′)− e−T ỹ2
1(t′)

)
. (6.83)

Now, since y1(t) is normalized

T/2∫
−T/2

dt′eT y2
1(t′) = eT and

T/2∫
−T/2

dt′e−T ỹ2
1(t′) <∞ ,

we can neglect the second term in (6.83) relative to eT . Thus our final equation
is

0 = 1− λ1(T )
1

4A2
eT , (6.84)

hence our final formula for the eigenvalue λ1(T ) for finite but large T is

λ1(T ) = 4A2e−T . (6.85)

Indeed, it goes to zero as T →∞.
Thus

R =
det ′[−∂2

t + V ′′(x̄)]

det[−∂2
t + ω2]

=
2π~N 2

4A2e−T

2π~N 2 1
2e
T

=
1

2A2
, (6.86)

and the problem of calculation of K̃ is reduced to determination of the asymp-
totic coefficient A of

y1(t) =

√
m

S0
E

dx̄

dt

∣∣∣∣
t large

= Ae−|t| , (6.87)
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that is to say for x̄ close to a. One can show that

A =
1√
S0
E

|x̄− a| e
∫ x̄
0 dx 1√

2V (x) , (6.88)

with S0
E =

∫ a
−a dx

√
2mV (x). An alternative expression is∫ x̄

0
dx

1√
2V (x)

= −ln
(

(S0
E)−

1
2A−1|x̄− a|

)
. (6.89)

So, A can be found numerically from one of these formulae by taking x̄ close to
a.

6.2.1 The amplitude for decay processes

Our last application of the semiclassical approximations to tunnelling is a brief
outline of construction of the amplitude for decay processes.

In this case the potential is such that it cannot contain the particle for ever
around its minimum. Let us take V (x) such that V (x) → ±∞ as x → ∓∞,
V (0) = 0 is its local minimum, V has one finite maximum at some positive x
and V (xb) = 0 for xb > 0. Now the “elementary” Euclidean trajectory from
which we shall built the amplitude is one “bounce”: the motion, as before, is
in the potential −V (x). It starts at x = 0 (the total energy is again zero), goes
through the minimum of −V (x) (where it has the maximal kinetic energy),
stops at xb and immediately goes back to x = 0. Since the total energy is zero,
it takes an infinitely long time T to complete one “bounce”.

The classical trajectory is now a sequence of an arbitrary number of “bounces”.
The energy is a constant of motion and gives the equation of motion:

˙̄x = ±
√

2V (x̄)

m
(6.90)

which, in turn, gives the action for one bounce

S0
E ≡ B =

∫
dτ

(
1
2m

2

m
V + V

)
=

xb∫
0

dx̄
2V (x̄)√
2V (x̄)/m

+

∫ 0

xb

dx̄
V (x̄)

−
√

2V (x̄)/m

= 2

∫ xb

0
dx̄
√

2mV (x̄) . (6.91)

Summing over an arbitrary number of bounces we get the amplitude for the
particle to remain at x = 0:

<0|e−
1
~HT |0>=

√
mω

π~
e−

1
2
ωT

∞∑
n=0

(K̃e−B/~T )n

n!
=

√
mω

π~
e(− 1

2
ω+K̃e−B/~)T .

(6.92)
Therefore, the ground state energy is

E0 = 1
2ω~− ~K̃e−

B
~ . (6.93)
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However, we know that

K̃ ∼
∏
l

(λl)
− 1

2 .

On the other hand going through similar steps as before we can convince our-
selves that we have again the eigenvalue λ1 = 0 whose eigenfunction is propor-
tional to dx̄

dτ , x̄ being this time the trajectory of one bounce. λ1 = 0 itself does
not bother us any more because we know that the integration over the position
of a bounce on the time axis gets rid of the problem, but dx̄

dτ has exactly one
zero! (Because it has one maximum at the time when it reaches xb). There-
fore, the oscillation theorem tells us that there exist an eigevalue λ0 < 0 whose
eigenfunction has no zeros. But that means that K̃ is purely imaginary, hence
E0 of (6.93) is complex. So we may expect that the width of the ground state
is

Γ = |K̃| e−
B
~ . (6.94)

That this indeed is the case takes some additional arguments because an un-
stable state cannot be an eigenvalue of H. One has to perform a process of
analytic continuation. Instead of going into this we suggest reading some clas-
sic contributions to this subject [6.1]-[6.4].

====> This part is completely redone

6.3 Explicit calculation of the instanton propagator

6.3.1 Classical trajectory

In this section we shall calculate explicitly ratio of two determinants R defined
in eq. (6.86) for a motion of a particle of a unit mass m = 1 in the double well
potential (6.16):

V (x) =
1

8a2
(a2 − x2)2 (6.95)

where for simplicity we have set κ = 1/8a2. Most of the material presented
here is based on Ref.[6.5].

From general considerations of the previous section we know that

R =
1

2A2
(6.96)

where A is normalization factor of the classical solution x(τ), defined for exam-
ple, by eq. (6.89):

τ → − ln

 1

A
√
SE0

(a− x̄)

 . (6.97)

for large τ . The classical trajectory can be calculated from eq. (6.19):

τ − τ1 =

x̄(τ)∫
0

dx√
2V (x)

= ln
a+ x̄

a− x̄
(6.98)
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which yields:

x̄(τ) = a tanh
τ − τ1

2
. (6.99)

The classical action along the trajectory (6.99) is given by eq. (6.21):

S0
E =

+a∫
−a

dx
√

2V (x) =
1

2a

+a∫
−a

dx
(
a2 − x2

)
=

2

3
a2. (6.100)

From eqs. (6.97), (6.98) and (6.100) we find:

A =
2a√
S0
E

=
√

6. (6.101)

Hence the ratio R = 1/12 for the potential (6.95).
Finally, let us calculate the velocity of the instanton:

dx̄(τ)

dτ
=
a

2

1

cosh2
(
τ−τ0

2

) (6.102)

which we shall need later in sect.6.3.4.

6.3.2 Euclidean harmonic oscillator

Before proceeding with the instanton case, let us for completeness consider the
case of a harmonic oscillator with unit mass and unit frequency m = ω = 1.
The classical trajectory of an Euclidean oscillator is simply zero, hence the
classical action is also zero. What remains to be calculated is a determinant of
the Sturm-Liouville operator:

D(τ) = − d2

dτ2
+ V ′′[x̄(τ)]. (6.103)

To calculate the determinant we have to solve the eigenproblem for D(τ)
and calculate a product of all nonzero eigenvalues. For the case of a harmonic
oscillator the eigenequation takes the following form:[

− d2

dτ2
+ 1

]
yn(τ) = λn yn(τ). (6.104)

Since eq.(6.104) has a continuous spectrum we have to close system in a box
−T/2 < τ < T/2 and impose boundary conditions on the functions yn

yn

(
−T

2

)
= yn

(
T

2

)
= 0. (6.105)

Defining k2
n = λn − 1 we get by elementary differential equation theory

yn(τ) = const sin (knτ) , kn =
πn

T
(6.106)

with n = 1, 2, 3... .
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Now we shall calculate determinant of D(τ) :

det

[
− d2

dτ2
+ 1

]
=

∞∏
n=1

λn =

∞∏
n=1

(
1 + k2

n

)
=

∞∏
n=1

(
1 +

(πn
T

)2
)

(6.107)

This expression can be explicitly evaluated. For that purpose let us restore the
frequency ω :

∞∏
n=1

(
ω +

(πn
T

)2
)

=
∞∏
n=1

(πn
T

)2
∞∏
n=1

(
1 +

(
ωT

πn

)2
)

= const
sinh (ωT )

ωT
.

(6.108)
Here const corresponds to the first product in Eq.(6.108) which does not depend
on ω and combines with the Jacobian and other factors into a single constant
which can be determined from the propagator of a free particle. Indeed for this
case the determinant of a Sturm-Liouville operator reads:

det

[
− d2

dτ2

]
=

∞∏
n=1

λn =

∞∏
n=1

k2
n =

∞∏
n=1

(πn
T

)2
. (6.109)

6.3.3 Sturm-Liouville equation for the instanton

For the potential (6.95) and the instanton centered around τ1 = 0 the Sturm-
Liouville equation (6.103) takes the following form:[

− d2

dτ2
− 3

2

1

cosh2
(
τ
2

)] yn(τ) = (λn − 1) yn(τ). (6.110)

This is a Schrödinger equation for a motion in a potential 1/ cosh2 (τ/2) which
is discussed, for example, in Ref. [6.6]. The spectrum of the eigenenergies
εn = (λn − 1) for this potential consists from a finite number of discrete levels
with εn < 0 and a continuous spectrum with εn > 0. Therefore in the case of
εn < 0 we can push T → ∞ , whereas for εn > 0 we have to work in a finite
box with the boundary conditions (6.105).

Since the asymptotics of eq.(6.110) is exponential, let us substitute:

yn(τ) = eατwn(τ). (6.111)

This substitution leads to the following equation[
− d2

dτ2
− 2α

d

dτ
−
[
α2 − (1− λn)

]
− 3

2

(
1− tanh2

(τ
2

))]
wn(τ) = 0 (6.112)

where we have used
1

cosh2
(
τ
2

) = 1− tanh2
(τ

2

)
.

To satisfy (6.111) we have to choose:

α = ±
√
−εn = ±

√
1− λn. (6.113)
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For the discrete levels εn < 0 and we have to make sure that the solutions
have proper asymptotics, by choosing the right sign in eq.(6.113). For the
continuous spectrum α is imaginary and both solutions (6.113) will contribute.

Let us introduce a new variable

z = tanh
(τ

2

)
,

d

dτ
=

1

2

(
1− z2

) d
dz

with −1 < z < 1. In this new variable eq.(6.110) reads:[(
1− z2

) d2

dz2
+ 2(2α− z) d

dz
+ 6

]
wn(z) = 0. (6.114)

It is convenient to change variables once more

u =
1

2
(1 + z),

d

dz
=

1

2

d

du

with 0 < u < 1 and rewrite eq.(6.114) as[
u(1− u)

d2

du2
+ (2α+ 1− 2u)

d

du
+ 6

]
wn(u) = 0. (6.115)

This a hypergeometric equation of the form

u(1− u)w′′(u) + {c− (a+ b+ 1)u} w′(u)− abw(u) = 0 (6.116)

with

c = 2α+ 1, a = 3, b = −2.

Let us recall that the general solution of eq.(6.116) is given as a power series:

F (a, b, c;u) = 1 +
ab

c

u

1!
+ ...+

a(a+ 1)...(a+ n) b(b+ 1)...(b+ n)

c(c+ 1)...(c+ n)

un+1

(n+ 1)!
+ ...

(6.117)
and therefore the solution for wn(u) = AF (3,−2, c;u) is a polynomial 1. Com-
ing back to the original variables, and choosing the normalization factor to be
A = c(c+ 1) = 2(α+ 1)(2α+ 1) we arrive at

yn(τ) = N
(

3 tanh2
(τ

2

)
− 6α tanh

(τ
2

)
+
(
4α2 − 1

))
eατ . (6.118)

Note that these are in fact two solutions depending on the sign of α (see
eq.(6.113)).

6.3.4 Discrete spectrum

Let us denote κ =
√
−εn > 0. Consider the first case α = +κ:

y(+)
n (τ) = N

(
3 tanh2

(τ
2

)
− 6κ tanh

(τ
2

)
+
(
4κ2 − 1

))
eκτ . (6.119)

1We thank T. Romańczukiewicz for pointing out this simple form of the solution to us.
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Figure 6.2: Schematic spectrum of energy levels of eq. (6.110). Continuous levels of positive

energy are discretized by imposing boundary conditions (6.127).

This solution vanishes for τ → −∞, however it explodes for τ →∞ unless the
coefficient in the bracket vanishes in this limit:

2− 6κ+ 4κ2 = 2(2κ− 1)(κ− 1) = 0. (6.120)

Two solutions κ1 = 1 and κ2 = 1/2 translate into the following two values of λ:

λ1 = 0, λ2 =
3

4
. (6.121)

For α = −κ the solution reads

y(−)
n (τ) = N

(
3 tanh2

(τ
2

)
+ 6κ tanh

(τ
2

)
+
(
4κ2 − 1

))
e−κτ . (6.122)

This time the coefficient in bracket has to vanish for τ → −∞ which leads again
to the condition (6.120).

We see, as anticipated from the general discussion in the previous section,
that the instanton determinant has one zero mode corresponding to λ1 = 0,
which cannot be treated in the Gaussian approximation. The exact treatment
of this mode corresponds to the integration over the center of the instanton. For
the purpose of the present calculation we simply drop λ1 = 0 from the formula
for the determinant. It is interesting to rewrite the zero mode solution (6.119)
for κ = 1 (or (6.122) for κ = −1) as:

y1(τ) = 3N
(

tanh
(τ

2

)
− 1
)2
eτ = 6N 1

cosh2 τ
2

which, up to the normalization factor N , coincides with the classical velocity
(6.102). This is an illustration of the general property of the zero mode solution
(6.43).
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6.3.5 Continuous spectrum

For εn > 0 we have two solutions α = ±ik (with k =
√
εn > 0):

y
(±)
k (τ) = N

(
3 tanh2

(τ
2

)
∓ i6k tanh

(τ
2

)
−
(
4k2 + 1

))
e±ikτ (6.123)

corresponding to the right (+) or left (−) moving waves. Note that there is
no reflection in the present potential; the solutions (6.123) remain left or right
moving on the both sides of the potential:

2N (1 + ik)(1 + 2ik)eikτ ←−
τ→−∞

y
(+)
k −→

τ→∞
2N (1− ik)(1− 2ik)eikτ ,

2N (1− ik)(1− 2ik)e−ikτ ←−
τ→−∞

y
(−)
k −→

τ→∞
2N (1 + ik)(1 + 2ik)e−ikτ .

(6.124)

The only effect of the potential is the phase shift:

eiδk =
1 + ik

1− ik
1 + 2ik

1− 2ik
. (6.125)

Indeed:

2N (1− ik)(1− 2ik)ei(kτ+δk) ←−
τ→−∞

y
(+)
k −→

τ→∞
2N (1− ik)(1− 2ik)eikτ ,

2N (1 + ik)(1 + 2ik)e−i(kτ+δk) ←−
τ→−∞

y
(−)
k −→

τ→∞
2N (1 + ik)(1 + 2ik)e−ikτ .

(6.126)

(Note that δ−k = −δk).
In order to calculate the determinant ratio R we shall proceed as in the case

of the of the harmonic oscillator, namely we shall consider a general solution

Yk(τ) = Ay
(+)
k (τ) +B y

(−)
k (τ),

close the system in a box −T/2 < τ < T/2 and impose the boundary conditions:

Yk(
T

2
) = Ay

(+)
k (

T

2
) +B y

(−)
k (

T

2
) = 0,

Yk(−
T

2
) = Ay

(+)
k (−T

2
) +B y

(−)
k (−T

2
) = 0. (6.127)

Eqs.(6.127) imply that:
kn T − δk = π n (6.128)

where n = 0, 1, .... Let us denote the solution of this equation as kIn, to be
distinguished from kn = πn corresponding to the harmonic oscillator (6.106).

We shall now compute the continuum contribution to R:

Rcont =
detcont

(
− d2

dτ2 + V ′′[x̄(τ)]
)

det
(
− d2

dτ2 + 1
) (6.129)
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which is the ratio of the instanton determinant over the one of the harmonic
oscillator. We have:

Rcont =

∏
λIn∏
λn

=

∏(
1 + kI 2

n

)∏
(1 + k2

n)
= exp

{∑
n

ln
1 + kI 2

n

1 + k2
n

}
. (6.130)

In order to calculate (6.130) we shall transform the sum over n to an integral
over dk, and make use of the fact that in the limit of large T , kn and kIn differ
by a small quantity δk/T . Therefore we shall keep only terms linear in δk/T .
This is done in the following way:

Rcont = exp

{∑
n

ln
1 + k2

n + kI 2
n − k2

n

1 + k2
n

}
= exp

{∑
n

ln

(
1 +

kI 2
n − k2

n

1 + k2
n

)}

' exp

{∑
n

kI 2
n − k2

n

1 + k2
n

}
' exp

{∑
n

2kn
(
kIn − kn

)
1 + k2

n

}

= exp

{
1

T

∑
n

2knδk
1 + k2

n

}
. (6.131)

Now we shall transform the sum over n into an integral over dk:∑
n

=

∫
dn =

T

π

∫
dk (6.132)

With this substitution we have

Rcont = exp

 1

π

∞∫
0

dk
2k δk

1 + k2

 = exp

 1

π

∞∫
0

dk
dδk
dk

ln
(
1 + k2

) . (6.133)

The derivative of δk over k can be calculated from eq.(6.125)

dδk
dk

=
6
(
1 + 2k2

)
(1 + k2) (1 + 4k2)

= 2

(
1

1 + k2
+

1

1 + 4k2

)
. (6.134)

What remains to be calculated is the integral

− 2

π

∞∫
0

dk

(
1

1 + k2
+

1

1 + 4k2

)
ln
(
1 + k2

)
= − ln 9. (6.135)

The last equality follows from the general formula given in Ref.[6.7]

∞∫
0

dk
1

c2 + g2k2
ln
(
a2 + b2k2

)
=

π

cg
ln
ag + bc

g
. (6.136)

So we finally arrive at

Rcont =
1

9
(6.137)
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and the final answer for R consists in multiplying Rcont by λ2 = 3/4 calculated
in sect. (6.3.4):

R =
1

12
(6.138)

as anticipated in the beginning of this section.
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