
Chapter 5

Semiclassical approximation of
path integrals

5.1 Gaussian approximation

Semiclassical approximation of a path integral is its (approximate) reduction to
a Gaussian form. Since we are going to built the amplitude around a classical
trajectory through constructing the quantum mechanical corrections similarly
as it was the case for the Gaussian integrals we start by expanding the action
around a classical trajectory, x̄(t) :

S[x(t)] = S[x̄(t) + y(t)] = S[x̄] + δS[x̄, y] +
1

2!
δ2S[x̄, y] + ...

= S[x̄] +
1

2!

T∫
0

[
∂2L

∂ẋ2
ẏ2 + 2

∂2L

∂x∂ẋ
ẏy +

∂2L

∂x2
y2

]
dt+ ... (5.1)

where, similarly as in the case of Gaussian integrals, y(t) is the correction to
the classical trajectory. The difference is that now y(t) is assumed to be a
small correction (and that is the reason why the higher than quadratic terms
in the expansion of S are neglected), whereas there was no such restriction for
Gaussian integrals. Clearly, δS = 0 which leads to the Lagrange equations for
x̄

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0 . (5.2)

When ~ → 0 the significant contributions to the path integrals come from the
trajectories which differ little from the classical trajectory: summation over
them is approximately coherent, hence non-destructive because δS[x̄] = 0.

The validity criterium of our approximation is then: S[x̄]/~ � 1, i.e. S[x̄]
dominates in the exponent of the path integral, and δ2S[x̄, y]/2! is the correc-
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tion:∫
[Dx(t)] e

i
~S[x(t)] ≈ e

i
~S[x̄]

∫
y(0)=y(t)=0

[Dy(t)] e
i
~

1
2!

T∫
0

[
∂2L
∂ẋ2 ẏ

2+2 ∂2L
∂x∂ẋ

ẏy+ ∂2L
∂x2 y

2
]
dt

= e
i
~S[x̄] F (T ) . (5.3)

That is the reason we call this procedure the“semiclassical approximation”.
In order to analyze the contribution of the correction factor in (5.3) we

present δ2S in a different from given above form. We use the identities:

ẏ
∂2L

∂ẋ2
ẏ =

d

dt

(
y
∂2L

∂ẋ2
ẏ

)
− y d

dt

(
∂2L

∂ẋ2
ẏ

)

2y
∂2L

∂x∂ẋ
ẏ =

d

dt

(
∂2L

∂x∂ẋ
y2

)
− y d

dt

(
∂2L

∂x∂ẋ

)
y (5.4)

where we must remember that all derivatives of L with respect to x and ẋ are
taken at the classical trajectory x̄. Therefore all the coefficients of y and ẏ
in (5.4) are some well defined functions of t one can calculate knowing L and
x̄. Remembering that y(0) = y(T ) = 0 we can, with the help of (5.4), do
integrations by parts and obtain:

δ2S =

T∫
0

[
ẏ
∂2L

∂ẋ2
ẏ + 2y

∂2L

∂x∂ẋ
ẏ + y

∂2L

∂x2
y

]
dt

= −
T∫

0

y

[
d

dt

(
∂2L

∂ẋ2
ẏ

)
+
d

dt

(
∂2L

∂x∂ẋ

)
y − ∂2L

∂x2
y

]
dt

=

T∫
0

y D(t)y dt . (5.5)

D(t) is the Sturm-Liouville differential operator which, in general, has an infin-
ity of eigenvalues and eigenvectors:

D(t)yn(t) = λnyn(t) , n = 1, 2, 3, ... , λ1 < λ2 < ... . (5.6)

Example: Sturm-Liouville Operator for the harmonic oscillator

Let us take L = 1
2mẋ

2 − V (x), then

D(t) = −m ∂2

∂t2
− ∂2V

∂x2

∣∣∣∣
x=x̄(t)

.

This is the same differential operator we had in the equation for δx(t) when we
calculated the van Vleck prefactor in the preceding section. In the case of the
harmonic oscillator we get

D(t) = −m ∂2

∂t2
−mω2 ,
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whose eigenvalues are λn = m((nπ/T )2 − ω2).

End of Example

Any y(t) vanishing at t = 0 and t = T can be expanded in an orthonormal
set of yn(t)’ s and we get

δ2S[y] =
∞∑
n=1

λna
2
n (5.7)

where an’s are the expansion coefficients:

y(t) =
∞∑
n=1

an yn(t) . (5.8)

So, the summation over the trajectories on the r.h.s. of (5.3) is now, because
of (5.7), reduced to integrations over an’s. Thus

[Dy(t)] ∼
∞∏
n=1

dan , (5.9)

and, provided we can solve the eigenvalue problem given by (5.6), we reduce
evaluation of the r.h.s. of (5.3) to simple Gaussian integrals, and we have

F (T ) ∼

√
1∏
n λn

=

√
1

detD(t)
. (5.10)

Note the similarities with the exact solutions for the Gaussian path integrals.

The eigenvalues (5.6) and closely related with them the so called Jacobi
equation

d

dt

(
∂2L

∂ẋ2
ẏ

)
+
d

dt

(
∂2L

∂x∂ẋ

)
y − ∂2L

∂x2
y = 0 , (5.11)

play an important role in semiclassical approximations to path integrals and it
is time now to discuss their properties and applications.

This discussion which follows is in fact just another version of considerations
presented above for the Gaussian integrals adapted here for the cases when the
Lagrangian is arbitrary (i.e. not necessarily a quadratic form). We follow the
formulation of Ref.[5.1] which is a generalisation of the arguments presented
above in section ??.

Similarly as before we consider a family of classical trajectories which start
from the space-time point (a, 0) with various momenta p (or velocities v), x(p, t):

x(p, 0) = a , for all p . (5.12)

In order to find a measure of the density of our family of trajectories we intro-
duce

N (p, t) =
∂x(p, t)

∂p
. (5.13)
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Thus the difference between two trajectories whose momenta differ slightly is,
to lowest order,

x(p+ δp, t)− x(p, t) = N (p, t)δp . (5.14)

Thus, indeed, N (p, t) measures the density of trajectories.
Since each x(p, t) is a solution of the Lagrange equation (5.2), we get the

equation for N by differentiating (5.2) with respect to p, and get again the
Jacobi equation:

d

dt

(
∂2L

∂ẋ2
Ṅ
)

+
d

dt

(
∂2L

∂x∂ẋ

)
N − ∂2L

∂x2
N = 0 . (5.15)

For a given x(p, t) all derivatives of L taken along this trajectory are well defined
functions of time. Because of (5.12), and p = mẋ(p, 0), we have the following
initial conditions for N :

N (p, 0) = 0 and
∂N (p, 0)

∂t
=

1

m
. (5.16)

A space-time point (b, T ) we call conjugate to the initial (a, 0) when

N (p, T ) =
∂x(p, T )

∂p
= 0 . (5.17)

Note that there x(p, T ) = b does not depend on p (compare (5.17)). Therefore,
all trajectories which started at (a, 0) coincide at (b, T ). That is why we can
call this point a focal point (or a “caustic” point, καυσθικoσ = burning). Note
also that this condition (5.17) realizes the demand that variation of the initial
p does not change x(T ) = b. Indeed

δx(p, T ) = x(p+ δp, T )− x(p, T ) =
∂x(p, T )

∂p
δp (5.18)

which implies (5.14).
Now, we can compare N (p, t) with N of section ??, eq.(??). Let (b, T ) be

an arbitrary space-time endpoint. From the definition (5.13) and identification
x(p, T ) = b we get

1

N (p, T )
=
∂p

∂b
. (5.19)

On the other hand we can compute p from the action, S(a, b, T ), taken along
the trajectory x(p, t):

p = −∂S(a, b, T )

∂a
. (5.20)

Inserting this into (5.19) we finally obtain

[N (p, T )]−1 = −∂
2S(a, b, T )

∂a∂b
(5.21)

and

F =

(
− 1

2π~i
∂2S(a, b, T )

∂a∂b

) 1
2

. (5.22)
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Thus the two N ’s, eqs.(??) and (5.13), are the same objects. Note that
−∂2S/∂a∂b becomes singular at the conjugate (focal) points.

Example: Caustic point of the harmonic oscillator

Application to the harmonic oscillator:

N−1
osc =

mω

sinωT
, for T =

nπ

ω
, n = 0, 1, 2, ... Nosc = 0 .

Thus, since
∂xosc(p, nπ/ω)

∂p
= 0 for all p ,

all trajectories coincide at these “caustic” points.

End of Example

Now, we relate the above to the properties of the eigenvalues of (5.6). First,
let us observe that they depend on T , and, in general, they decrease with
increasing T (compare the examples given below). In terms of λn’s, one can
give the following definition of the point b = x̄(T ) conjugate to a = x̄(0).
These two space-time points define a Sturm–Liouville equation (5.6) and a set
of eigenfunctions and eigenvalues. When the smallest eigenvalue becomes zero,

λ1(T ) = 0 , (5.23)

b is conjugate to a.

The relation between these two alternative definitions of conjugate points
follows from realization that N and

∏∞
n=1 λn must have the same zeros. Indeed,

they appear as factors (N )−
1
2 , or (

∏∞
n=1 λn)−

1
2 , depending on which method

is followed in computing the prefactor of the exponent exp(iS[x̄]/~) in the
semiclassical approximation (5.3). So, they lead to the same singularities of the
amplitude when b becomes conjugate to a.

One can illustrate these points on the results obtained in section ?? for the
harmonic oscillator: √

1

N
=

√
mω

sinωT
(5.24)

and √
1∏
n λn

=

√√√√[∏
n

m

(
(
nπ

T
)2 − ω2

)]−1

. (5.25)

Clearly, (5.24) and (5.25) have the same singularities at

T =
nπ

ω
n = 1, 2, 3, ... . (5.26)

Which means that there are infinitely many conjugate (focal) points. The
condition (5.23) gives the first of them.
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Let us illustrate conjugation and focusing again on the harmonic oscillator
case. Let us take (e.g. from section ??) the trajectory which goes from a to b
in time T

x̄(t) =
1

sinωT
[b sinωt+ a sinω(T − t)] . (5.27)

So, when ωT = nπ, we have singularities not only in the propagator but also in
the classical trajectory. However, when b = (−1)na the singularities disappear
(show it!). One can check that K(b, a, T ) is consistent with above. Indeed,
(prove that!)

K(b, a,
nπ

ω
) = e−in

π
2 δ (b− (−1)na) . (5.28)

One can also show (show it!) that the harmonic oscillator propagator for
arbitrary T is given by the Feynman–Souriau formula (

[
Tω
π

]
= n)

K(b, a, T ) = e−i
π
4 e−i

π
2 [Tωπ ]

√
mω

2π~| sinωT |
e

imω
2~ sinωT

[(b2+a2) cosωT−2ab] . (5.29)

So, when T hits the “conjugate time-lapse” it must be b = ±a.
With the help of (5.27) we can also inspect a family of trajectories (denoted

x(p, t) above) starting from x = a with various initial momenta:

x(p, t) =
a

sinωT
[(−1)n sinωt+ sin(ωT − ωt)] . (5.30)

Note that in (5.29) we have, in fact, two families of trajectories: for n even, and
for n odd. They differ by the sign of the sinωt term. Their initial conditions
are

xeven
odd (p, 0) = a , ẋeven

odd (p, 0) =
aω

sinωT
[±1− cosωT ] . (5.31)

Changing T we regulate the initial velocity (momentum). We have now

xeven

(
p,
nπ

ω

)
= xodd

(
p,
nπ

ω

)
= (−1)na . (5.32)

Thus all trajectories, irrespective of p and n, go through the same focal points.
So far we have been writing the formulae for the case of one space and one

time dimension. They can be generalized to an arbitrary number of spatial
dimensions.

Let x be n - dimensional: x1, ..., xi, ..., xn. We have also n initial momenta:
p1, ..., pk, ..., pn. Now, the initial conditions are

xi(p1, ..., pk, ..., pn, t = 0) = ai, for all pk , (5.33)

and our old N becomes a matrix

Nik(p, t) =
∂xi(p, t)

∂pk
, (5.34)

where p stands for p1, ..., pk, ..., pn. One can show (show it!) that its differential
equation is an analogue of (5.15) (we sum over repeated indices):

d

dt

(
∂2L

∂ẋi∂ẋl
Ṅlk
)

+

(
∂2L

∂ẋi∂xl
− ∂2L

∂xi∂ẋl

)
Ṅlk

+

[
d

dt

(
∂2L

∂ẋi∂xl

)
− ∂2L

∂xi∂xl

]
Nlk = 0 (5.35)
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with the same initial conditions as given above for N

Nik(p, 0) = 0 ,
∂Nik(p, 0)

∂t
=

1

m
δik . (5.36)

The focal point we get demanding that a variation of xi with respect to all
initial pk’s, an analogue of (5.18), be zero when

xi(T ) = bi . (5.37)

Indeed, making

δxi =
∑
k

[xi(...pk + δpk..., T )− xi(...pk..., T )] =
∑
k

∂xi
∂pk

δpk = 0 , (5.38)

where all δpk’s are arbitrary but small, we get the following condition for a
solution to (5.38) to exist

det

(
∂xi
∂pk

)
= det (Nik(p, T )) = 0 . (5.39)

This is an analogue to (5.17).
Similarly as it was shown above for one dimensional case we can relate

(Nik)−1 to the derivatives of the action S. Indeed, from

Nik(p, T ) =
∂xi(p, T )

∂pk
=
∂bi
∂pk

, (5.40)

we have

(Nik)−1 =
∂pk
∂bi

. (5.41)

On the other hand we have the relation

pk = −∂S(...ak..., ...bi..., T )

∂ak
(5.42)

and from (5.41) and (5.42) we get

(Nik)−1 = −∂
2S(...ak..., ...bi..., T )

∂ak∂bi
. (5.43)

When the matrix (5.43) is symmetric it has real eigenvalues (this is the
case when we have reversibility of classical trajectories, which in the presence
of a magnetic field breaks down). These eigenvalues depend on T , in general.
These are the eigenvalues we have already discussed which determine the pref-
actors of the semiclassical approximation of the propagators. The conjugate
or focal points occur when one of the eigenvales vanishes. The rate of growth
with time T of the largest eigenvalue is called the Liapunoff exponent of the
trajectory. When some of the eigenvalues grow exponentially with time we
have instabilities. Such a behavior is very different from the stable behavior
of e.g. the harmonic oscillator. There, the eigenvalues are bounded for all T .
This means that the spatial spread of trajectories is finite at all times. Here,
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in contrast, the exponentially growing eigenvalues imply infinite spread of the
fan of trajectories. In classical physics this means big trouble. Not in quantum
physics: when λk →∞, F → 0 (see the formula below) and a classically chaotic
behavior does not lead to any difficulty. This unstable regime has a vanishing
probability amplitude.

Before writing down the complete expression for the propagator in semi-
classical approximation we shall discuss how its phase factors come about. The
prefactors of such propagators are

F ∼
( ∞∏
n=1

λn

)− 1
2

.

Therefore, when we want to have Ksc(b, a, T ) for all T , we have to know the
number of eigenvalues λn which become negative (this happens at the points
conjugate to the initial point). When a λn goes through zero it changes sign.
Thus the Gaussian integrals which give the prefactor behave as∫

dan e
i|λn|a2

n →
∫
dan e

−i|λn|a2
n .

Therefore each negative eigenvalue contributes the phase −i = e−i
1
2
π. In fact

all this has a proper mathematical formulation which is based on the so called

Morse theorem:

The second variation, δ2S =
∑

n λna
2
n, has as many negative eigenvalues as

there are conjugate points along the trajectory going from (a, 0) to (b, T ).

Note that this theorem implies that, at a conjugate point a λ changes its
sign, thus it cannot become zero without changing its sign. We must remember
also that there may be more than one classical trajectory going from (a, 0) to
(b, T ): e.g. in some topologically nontrivial cases.

Putting all this together we can write the e.g. three dimensional semiclas-
sical propagator Ksc(b,a, T ) as follows:

Ksc(b,a, T ) =
∑
τ

(
i

2π~

) 3
2

e−inτ
1
2
π

√∣∣∣∣det
∂2Sτ
∂a∂b

∣∣∣∣ e i~Sτ (a,b,T ) (5.44)

where τ labels all possible classical trajectories between (a, 0) and (b, T ) , and
nτ is the number of negative eigenvalues of δ2S along the classical trajectory
τ . We can check that the Feynman–Souriau formula (5.29) is a special case of
(5.44).

Note that the operation of taking the sum over classical trajectories is nev-
ertheless a quantal operation: we follow the superposition principle which says
that any two or more states may be superposed to give a new state.

Note also that the absolute value of det(...) appears because all changes of its
sign under the square root are taken care of by the phase factor exp(−inτπ/2).



58 Chapter 5 Semiclassical approximation of path integrals

5.2 Consequences of single valuedness of K(b, a)

Now, let us discuss the consequences of the single valuedness of the propagator

K(b, a, T ) = F (T ) e
i
~S(b,a,T ) . (5.45)

As we know K(b, a, T ) is also a wave function ψ(b, T ). Therefore we must be
dealing with a single valued function K(b, a, T ). In other words, starting from
b and going along a trajectory which comes back to b (once or many times) we
must be returning to the same value of K (hence ψ). Intuitively, a classical
trajectory which comes back to the same place looks like the one of a bound
state.

So, what we are going to seek now is an energy which for a given closed
classical trajectory meets the condition of the uniqueness of K(b, a, T ). From
the classical mechanics

δS(b, a, T ) = pbδb− paδa− EδT , (5.46)

thus

pb =
∂S(b, a, T )

∂b
, pa = −∂S(b, a, T )

∂a
, E = −∂S(b, a, T )

∂T
. (5.47)

The last of these equations tells us that, for a given trajectory going from a to
b in time T , there is a well defined energy E = E(T ) (which equation can also
be inverted T = T (E)).

Thus for a given trajectory with fixed T , E is also fixed. Let us write the
action in a somewhat different form, appropriate for trajectories with a given
(fixed) energy E.

S(b, a, T ) =

b∫
a

∑
r

prdqr − ET . (5.48)

One can justify this as follows:

b∫
a

∑
r

prdqr − ET =

T∫
0

∑
r

pr q̇rdt−
T∫

0

Hdt

=

T∫
0

dt(
∑
r

pr q̇r −H) =

T∫
0

dtL(qr, q̇r) = S(b, a, T ) ,

because, by definition

H(pr, qr) =
∑
r

q̇r
∂L

∂q̇r
− L and pr =

∂L

∂q̇r
. (5.49)

So, following a closed trajectory of a fixed energy, we change S → S+∆S where

∆S =

∮ ∑
r

pr dqr . (5.50)
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But, as we already know, the prefactor F also changes and, in fact, as we
have seen, passing each conjugate point gives us a phase e−iπ/2. Writing

K = F e
i
~S = elnF+ i

~S , (5.51)

we see that the change of the exponent amounts to

∆ = ∆ lnF +
i

~
∆S = −∆(i

π

2
) +

i

~

∮ ∑
r

pr dqr = −miπ
2

+
i

~

∮ ∑
r

pr dqr ,

with m being the number of conjugate points along our trajectory. Thus, in
order to keep K single valued, we have to have

∆ = 2πin = −miπ
2

+
i

~

∮ ∑
r

pr dqr , n = 0, 1, 2, ... (5.52)

hence ∮ ∑
r

pr dqr = 2π~
(
n+

m

4

)
. (5.53)

Note that K would be single valued for n = 0,±1,±2,±3..., but one must
remember that single valuedness is a necessary but not a sufficient condition for
having physically meanningful solutions. In this specific case the negative n‘s
should be rejected (discuss this point). So, in order to implement the condition
of single valuedness, we have to know the number m of conjugate points passed
with each circling of one orbit.

5.2.1 Application to harmonic oscillator

Let us apply (5.53) to the harmonic oscillator. We have now

E = 1
2mẋ

2 + 1
2mω

2x2 =
p2

2m
+ 1

2mω
2x2 . (5.54)

Thus the momentum as the function of position, p(x), and the turning points,
±xR are

p(x) = ±
√

2mE −m2ω2x2 , xR =

√
2E

mω2
. (5.55)

Circling one orbit means that we have to go from e.g. −xR to +xR, and
then back to −xR. Remembering that p(x) changes sign in the process we have

∮ ∑
r

prdqr = 2

xR∫
−xR

p(x)dx = 4
E

ω

+1∫
−1

du
√

1− u2 = 2π
E

ω
. (5.56)

Since going from −xR to +xR and back takes T = 2π/ω we know from our
discussion of the oscillator trajectories given above, that this round trip goes
through two conjugate points. Thus m in (5.53) equals 2. Therefore, for the
oscillator we obtain ∮

pdq = 2π~(n+ 1
2) = 2π

E

ω
. (5.57)
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and the well known formula

E = ~ω
(
n+ 1

2

)
. (5.58)

Note that the 1/2 in the above formula comes from m = 2 for the oscillator.
This result for E is exact because L is a Gaussian.

5.2.2 Application to Coulomb potential

Let us discuss some non-Gaussian cases e.g. the Bohr formula for the hydro-
gen spectrum: an electron moving in Coulomb potential, −e2/r, centered at
the infinitely heavy proton (we neglect spin and relativistic corrections). The
first thing we must decide about is the number of conjugate points of a closed
trajectory. This is known from classical trajectories of the Kepler problem. It
was found in [5.5] that there are four conjugate points on the Kepler ellipse in
three dimensions. Thus in (5.53) we set m = 4, and the quantization condition
for the Bohr atom becomes∮ ∑

r

pr dqr = 2π~ (n+ 1) , n = 0, 1, 2, ... . (5.59)

To calculate the l.h.s. of eq.(5.59) let us consider an approximate model of
the hydrogen atom. The motion is in the (x, y)-plane. We introduce the polar
coordinates

x = r cosφ , y = r sinφ . (5.60)

The Lagrangian is

L = 1
2m
(
ṙ2 + (rφ̇)2

)
+
e2

r
. (5.61)

Thus we have two generalized momenta

pr =
∂L

∂ṙ
= mṙ , pφ =

∂L

∂φ̇
= mr2φ̇ , (5.62)

and the Hamiltonian is

H =
1

2m

(
p2
r +

p2
φ

r2

)
− e2

r
. (5.63)

For simplicity sake let us take a circular classical trajectory, hence ṙ = 0 and
only only pφ is different from zero. Thus the action (5.53) for this trajectory
reduces to ∮

p dq =

∫ T

0
dtpφ φ̇ =

∫ φb

φa

dφ pφ . (5.64)

Thus the quantization condition becomes∮
dφ pφ = 2π~ (n+ 1) = 2π~ ν , (5.65)
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where ν = 1, 2, 3, .... From the Hamilton equations we eliminate r and express
pφ in terms of the energy

E =
1

2m

(
p2
r +

p2
φ

r2

)
− e2

r
, (5.66)

and obtain

pφ =

√
−m

2

e4

E
. (5.67)

Since pφ does not depend on φ we obtain from (5.51)

E = −m e4

2~2

1

ν2
, ν = 1, 2, ... . (5.68)

This is the well known Bohr’s formula for the hydrogen spectrum.
One may wonder whether restricting the above calculations to a circular

trajectory leads to oversimplified results. This is not so. One can do similar
calculations to the above ones but for an arbitrary elliptic orbit and get the
same results. Now the situation is somewhat more complicated: pr is not zero,
and we have two constants of motion which determine pφ and pr which in turn
determine the l.h.s. of (5.53). Following (5.53) we have now two objects to
quantize, pφ and pr. We have also two constants of motion to employ

pφ = M ,
1

2m

(
p2
r +

M2

r2

)
− e2

r
= E . (5.69)

Fixing M ≥ 0 and E < 0 we fix the excentricity of the elliptic trajectory:

ε2 = 1 +
M2E

2me4
. (5.70)

So, now we have to have∮ ∑
r

pr dqr =

∮
pφ dφ+

∮
pr dr = 2π~ν , ν = 1, 2, 3, ... . (5.71)

Thus it is enough to make∮
pφdφ = 2π~l ,

∮
prdr = 2π~k , hence ν = l + k . (5.72)

The first integral is easy (pφ = const):

M = l~ . (5.73)

The second one is more complicated. We have to solve (5.69) for pr, and
integrate over r from r = rmin to r = rmax and back:∮

prdr = 2

∫ rmax

rmin

pr dr , pr =

√
2mE + 2m

e2

r
− M2

r2
. (5.74)
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The minimal and maximal values of r one can get from the Kepler relation
between r and the “true anomaly”, ∆φ, i.e. the polar angle counted from the
position of the perihelion (closest approach to the sun, here: to the hydrogen
nucleus):

r =
M2

2me2(1 + ε cos ∆φ)
. (5.75)

After long but elementary calculations we get∮
pr dr = 2πk~ =

√
2π2me4

−E
− 2πM = 2π~k . (5.76)

Since ν = k + l we get again the Bohr formula

En = − me4

2~2ν2
. (5.77)

5.3 The story of two actions

In (5.48) we defined the action S for a given time T . This relation taken as a
Legendre transformation, see Appendix C, implicitely introduces the action S̃
defined for a given energy E. We can write S̃ in terms of integrals over time (q
and p stand for the generalized coordinates and momenta):

S̃(b, a, E) =

T (E)∫
0

dtL(q, q̇) +

T (E)∫
0

dtH(p, q) (5.78)

or
S(b, a, T ) = S̃(b, a, E)− ET , (5.79)

where T (E) is here the solution of the relation we have already encountered
earlier

E = −∂S(b, a, T )

∂T
. (5.80)

Indeed, inserting

H(p, q) =
∑

q̇
∂L

∂q̇
− L

into (5.78) we obtain

S̃(b, a, E) =

∫ T (E)

0

∑
pq̇ dt =

∫ b

a

∑
p dq . (5.81)

Let us remind the reader that the action S̃ can also be employed to determine
classical trajectories at fixed energy, E. One can find the equation of motion
by adding a small deviation to the trajectory and demanding that the first
variation of S̃ is zero: δS̃ = 0. Note that now variations of the trajectory must
keep E = const, thus are different from the ones we have been using thus far
which keep T = const. In fact this was the first variational principle introduced
into physics by Maupertuis [5.3] and Euler [5.4] in 1744–46.
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In order to appreciate that S and S̃ are quite different let us calculate S̃ for
a free particle with a given energy E, hence a constant momentum p =

√
2mE.

From (5.81) we get
S̃0 = |b− a|

√
2mE , (5.82)

whereas

S0 = 1
2m

(b− a)2

T
. (5.83)

Let us extract now the energy levels of the system in the semiclassical ap-
proximation employing S̃. We start with the general formula for the Feynman
propagator in the energy representation (given in (??)):

K(b, a, T ) =
∑
n

φn(b)φ∗n(a) e−
i
~EnT ,

where we suppressed the vector markings for the sake of simplicity. We take its
Laplace transform

G(b, a, E) =

∞∫
0

dTK(b, a, T ) e
i
~ET =

∑
n

φn(b)φ∗n(a)

∞∫
0

dT e
i
~ (E−En)T . (5.84)

The intergals over T are well defined when we give E a small positive imaginary
part E → E + iε. Then

G(b, a, E) = i~
∑
n

φn(b)φ∗n(a)

E + iε− En
. (5.85)

Thus the poles of G(b, a, E) give us the eigenvalues of the energy, and their
residua are determined by the corresponding wave functions. Note thatG(b, a, E)
satisfies the following equation (Hb being the Hamilton operator acting on the
variable b):

(E −Hb)G(b, a, E) = i~
∑
n

φn(b)φ∗n(a) = i~ δ(b− a) . (5.86)

Therefore, G(b, a, E) is not a propagator but rather a Green’s function. Note
that the composition principle valid for the propagators

K(b, a, T ) =

∫
dcK(b, c, T − tc)K(c, a, tc) , (5.87)

where tc is any moment inside the evolution time T (0 < tc < T ) is not applicable
to the Green functions G(b, a, E). More specifically the composition∫

dcG(b, c, E)G(c, a, E′) 6= G(b, a, E) ,

for whatever E, E′ might be, is not a Green function any more. The energy
E is not a variable which could control an evolution of a trajectory from a to
b – in this case there is simply no evolution.
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We apply this operation to the semiclassical propagators (5.44). We have to
calculate (remember that the sum over τ runs over a set of classical trajectories,
some examples are worked out below)

Gsc(b,a, E) =
∑
τ

(
i

2π~

) 3
2

e−inτ
1
2
π

∞∫
0

dT

√∣∣∣∣det ∂2Sτ
∂a∂b

∣∣∣∣ e i~ (ET+Sτ (a,b,T )) .

(5.88)
This we do employing the stationary phase approximation to the integral over
time (the factor

√
|det...| we assume to be weakly depending on T , as compared

to exp(i(ET...)/~), and take it out of the integral). This is reasonable because,
when ~ is small, the exponent oscillates violently and the dominant contribution
comes from around the stationary point. Thus we seek the stationary point,
Tτσ (for each trajectory τ there may be more than one labelled by σ) solving
the equation

∂

∂T
(ET + Sτ (b, a, T )) = E +

∂Sτ (b, a, T )

∂T
= 0 . (5.89)

Note that the last part of (5.89) is the general relation (5.80) We expand the
exponent of the integrand around the solution of (5.89)

Tτσ = Tτσ(b, a, E) , (5.90)

and get

ET + Sτ (b, a, T ) ≈ S̃τσ +
1

2

∂2Sτ
∂T 2

∣∣∣∣
Tτσ

(T − Tτσ)2 + ... , (5.91)

where

S̃τσ(b, a, E) = ETτσ + Sτ (b, a, Tτσ) (5.92)

is an action integral which is also defined by a trajectory going from a to b but
instead of a given time T the energy E is fixed. So, (5.88) becomes

Gsc(b, a, E) =
∑
τ

(
i

2π~

) 3
2

e−inτ
1
2
π+ i

~ S̃τσ

√∣∣∣∣det∂2Sτ
∂a∂b

∣∣∣∣
∞∫

0

dT e
i

2~
∂2Sτσ
∂T2 (T−Tτσ)2

.

Extending the integration over T from −∞ to +∞ we get

Gsc(b, a, E) = − 1

2π~
∑
τσ

√
|Dτσ| e−inτ

1
2
π+ i

~ S̃τσ , (5.93)

where

Dτσ =
det
(
∂2Sτσ
∂a∂b

)
∂2Sτσ
∂T 2

=
∂2S̃τσ
∂a∂b

∂2S̃τσ
∂E2

− ∂2S̃τσ
∂a∂E

∂2S̃τσ
∂b∂E

. (5.94)

A comment on our somewhat confusing notation is here in order. In one
space dimension the symbol det(...) upstairs on l.h.s. is redundant (the deter-
minant is just one number). On the r.h.s. however, we have a two dimensional
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determinant explicitly written down. In n dimensions we have a n × n deter-
minant on the l.h.s.,and a (n+ 1)× (n+ 1) determinant on the r.h.s.. The n by
n determinant constructed from the n× n derivatives of S̃ is supplemented by
the column of n elements ∂2S̃/∂ai∂E, and by a row of n elements ∂2S/∂E∂bi.

Comparing (5.93) with (5.44) for the semiclassical propagator with fixed
time T we see that |Dτσ| in (5.93) is the analogue of | det ∂2S/∂a∂b| in (5.44)
which gives the density of trajectories with fixed time T . Thus we accept that
|Dτσ| gives the density of trajectories on the energy surface fixed by E. eq.(5.94)
provides us with a relation between these two densities. The last step in (5.94)
one can obtain expressing the density of trajectories with fixed T through the
action for fixed energy, E (we skip the subscripts for the sake of simplicity).

One more comment on (5.93) is in order: nτ in the phase factor is the
number of conjugate points but now the conjugate points are determined by the
singularities of Dτσ, hence by the density of trajectories at fixed E.

To prove (5.94) we start with the relation (5.92). Differentiating it with
respect to E, and then with respect to T we get two “sister” relations

∂S̃(b, a, E)

∂E
= T , − ∂S(b, a, T )

∂T
= E . (5.95)

Keeping T fixed, we differentiate the first one with respect to a. We get

∂T

∂a
=

∂

∂a

∂S̃

∂E
=

∂2S̃

∂a∂E
+
∂2S̃

∂E2

∂E

∂a
= 0 , (5.96)

and the same for b. Thus we have

∂E

∂a
= − ∂2S̃

∂E∂a

(
∂2S̃

∂E2

)−1

, (5.97)

∂E

∂b
= − ∂2S̃

∂E∂b

(
∂2S̃

∂E2

)−1

. (5.98)

We write (5.92) in the form

S(b, a, T ) = S̃(b, a, E(b, a, T ))− E(b, a, T )T . (5.99)

Now a judicious differentiation of the above (remember that T is fixed and that
T = ∂S̃/∂E ) gives

∂2S

∂a∂b
=

∂2S̃

∂a∂b
+

∂2S̃

∂E∂a

∂E

∂b
. (5.100)

Employing (5.95) we obtain

∂2S

∂a∂b
=

∂2S̃

∂a∂b
− ∂2S̃

∂a∂E

∂2S̃

∂b∂E

(
∂2S̃

∂E2

)−1

. (5.101)

On the other hand we have from the two relations (5.95), with a, b fixed this
time

δE = −∂
2S

∂T 2
δT , δE =

(
∂2S̃

∂E2

)−1

δT . (5.102)
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Equating these two δE’s we get(
∂2S

∂T 2

)−1

= − ∂
2S̃

∂E2
. (5.103)

Multiplying both sides of (5.101) by ∂2S/∂E2 and employing (5.103) we obtain
(5.94).

From (5.102) we see that when we keep E fixed but let T vary ∂2S/∂T 2 = 0,
on the other hand, when we keep T fixed and vary E we have ∂2S/∂T 2 = ∞.
These are the places where the classical trajectories focus in these two cases.
In other words where ∂2S/∂b∂a hits a singularity (a conjugate point) we have
also a singularity of ∂2S/∂T 2, see example below.

Example: Semiclassical approximation for the harmonic oscillator

The action for the harmonic oscillator

S(b, a, T ) =
mω

2 sinωT
[(a2 + b2) cosωT − 2ab] , (5.104)

gives
∂2S

∂b∂a
= − mω

sinωT
. (5.105)

Therefore, where sinωT = 0, ∂2S/∂b∂a has a singularity and changes its sign.
Thus the propagator K(b, a, T ) acquires the phase exp (−iπ/2).

We calculate

E(b, a, T ) = −∂S(b, a, T )

∂T
=
mω2

2

(a2 + b2)− 2ab cosωT

sin2 ωT
, (5.106)

and then

−∂
2S(b, a, T )

∂T 2
=
∂E

∂T
= mω3 2ab− ab sin2 ωT + (a2 + b2) cosωT

sin3 ωT
. (5.107)

Now we calculate D at the conjugate points (sinωT = 0 , cosωT = ±1)

−∂
2S/∂b∂a

∂2S/∂T 2

∣∣∣∣
( sinωT=0

cosωT=±1)
=

mω sin2 ωT

mω3(2ab± (a2 + b2))
, (5.108)

where we left the factor sinωT to show that:

(a) the sigularities of ∂2S/∂b∂a are cancelled by ∂2S/∂T 2, and D is zero
there,

(b) D goes through zero but it does not change the sign. Thus these points
do not generate any phase factors.

Let us consider now the trajectories of fixed energy E.

E = 1
2mẋ

2 + 1
2mω

2x2 , (5.109)
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thus
dx

dt
= ±

√
2

m
(E − 1

2mω
2x2) , (5.110)

where ± gives two possible directions of motion. Now we calculate the time T
needed for the particle of a fixed energy E to go from a to b:

T =

b∫
a

dx
√
m√

2(E − 1
2mω

2x2)
=

1

ω

b

√
mω2

2E∫
a

√
mω2

2E

du√
1− u2

=
1

ω

[
arcsin b

√
mω2

2E
− arcsin a

√
mω2

2E

]
, (5.111)

and then calculate

∂T

∂E
= − 1

∂2S/∂T 2
= −1

2

√
m

2
E−

3
2

 b√
1− mω2

2E b2
− a√

1− mω2

2E a2

 (5.112)

to find singularities of G(b, a, E).
Now a few comments are in order. ±xT = ±

√
2E/mω2 are the two turning

points where the particle stops and reverses its direction of motion. Hence we
see that G(b, a, E) goes through a singularity every time the particle is at ±xT .
Let us suppose that our particle starts from a goes to the right, reaches xT and
slides down to b. Now the time it takes to go from a to b is the sum of two
times: T = T1 + T2 , where T1 is for going from a to xT , and T2 for going from
xT to b,

T = T1 + T2 =
1

ω

[
lim
b→xT

arcsin(
b

xT
)− arcsin(

a

xT
)

]
+

1

ω

[
π

2
− arcsin(

b

xT
)

]
.

The singularity of ∂T/∂E before b reached xT comes from the derivative
with respect to E of

arcsin

(
b

xT

)
,

whereas when b has passed xT it comes from

− arcsin

(
b

xT

)
.

Thus ∂T/∂E changes sign every time it goes through ±xT , and each such
passage adds the factor exp (−iπ/2). But, for a given (a, b), there are infinitely
many classical trajectories of fixed E, and each of them is characterized by the
number of passages through the turning points, nτ , hence contributes the factor
exp (−iπnτ/2). In Gsc(b, a, E) we have to sum over all τ ′s.

From the relation (5.117) below, one can get the spectrum of a system
finding poles of G(b, a, E). It can be done for Gsc(b, a, E) after the sum over
τ is performed. One can show [5.1] that for a partice moving in a potential
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V (x) which V (±∞) = +∞ we get the following factor in Gsc which exhibits
singularities in E

Gsc(b, a, E) ∼ 1

1− exp
{

2i
~
∫ xT (R)
xT (L) dx

√
2m(E − V (x)− ~π

} , (5.113)

where xT (R) and xT (L) are the right and the left turning points, respectively.
Thus Gsc(b, a, E) has singularities at E′s which satisfy the following equation

1 = exp

{
2i

~

∫ xT (R)

xT (L)
dx
√

2m(E − V (x)− ~π

}
. (5.114)

For the harmonic oscillator we have

2

xT (R)∫
xT (L)

dx
√

2m(E − V (x) = 2π
E

ω
, (5.115)

hence we get the following condition for a singularity to occur

2π
E

ω
= 2π~

(
l + 1

2

)
, l = 0, 1, 2, ... , (5.116)

and we get the well known result: E = ~ω(l + 1
2).

End of Example

Extraction of the energy spectra from the propagators K(b, a, T ) or the
Green functions G(b, a, E) is one of the important applications of the method of
path integrals. Above, we have applied the single valuedness of the propagators
along a closed classical trajectory to obtain the energy spectra of some quantal
systems. Now we shall briefly discuss the method taking traces of K or G for
the same purposes.

First let us write K and G in the representation of energy eigenstates:

K(b, a, T ) =
∑
l

φl(b)φ
∗
l (a) e−

i
~ElT ,

G(b, a, E) = i~
∑
l

φl(b)φ
∗
l (a)

E − El + iε
. (5.117)

Their traces

TrK(b, a, T ) =

∫
dxK(x, x, T ) =

∑
l

e−
i
~ElT ,

TrG(b, a, E) =

∫
dxG(x, x,E) = i~

∑
l

1

E − El + iε
(5.118)

depend only on the energy eigenvalues (and the constants of trajectories T or
E).
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Let us look at the example of the harmonic oscillator

TrK(b, a, T ) =

(
mω

2πi~ sinωT

) 1
2

+∞∫
−∞

dx e
i
~

mω
2 sinωT

(2x2 cosωT−2x2)

=

(
mω

2πi~ sinωT

) 1
2

+∞∫
−∞

dx e−[ i~2 mω
sinωT

sin2 ωT
2

]x2
=

1√
−1

1

2 sin ωT
2

=
1

ei
ωT
2 (1− e−iωT )

= e−i
ωT
2

∞∑
l=0

e−ilωT =

∞∑
l=0

e−(l+ 1
2

)ωT .

Thus from (5.118) we obtain

El =
(
l + 1

2

)
~ω . (5.119)

This was an exact result, but when we have a potential with just one smooth
minimum we can approximate it by a parabola and, in the semiclassical approx-
imation, we have a harmonic oscillator again. Indeed,

L = 1
2mẋ

2 − V (x) ≈ 1
2mẋ

2 − V (x̄)− 1
2

d2V

dx2

∣∣∣∣
x=x̄

(x̄− x)2 + ... , (5.120)

where at x̄ the potential V (x) has its minimum, dV/dx|x=x̄ = 0. We build the
semiclassical propagator around the trajectory x(t) = x̄ = const:

K(b, a, T ) = e
i
~S[x̄]

∫
[Dy(t)] e

i
~
∫ T
0 dt ( 1

2
mẏ2− 1

2
d2V
dx2

∣∣
x̄
y2)

. (5.121)

Since S[x̄] = −V (x̄)T , and we can define the constant

d2V

dx2

∣∣∣∣
x̄

= mω2 , (5.122)

we find
TrK(b, a, T ) = e−

i
~V (x̄)T

∑
l

e−
i
~ (l+ 1

2
)~ωT . (5.123)

Thus, in the semiclassical approximation, we have

El ≈ V (x̄) + (l +
1

2
)~ω . (5.124)

We close this section with the following general comment. Into a mathe-
matical analysis of the traces TrT and TrG an impressive intellectual effort
has been invested (a comprehensible discussion of these and related problems
one finds in ref. [5.6]). In particular TrG(E) can be cast in the form of the
trace formula [5.6] which is a sum over contributions from periodic orbits and
is able to give the spectral structure of some chaotic systems. The special role
of periodic orbits seems to fulfill the prophecy of Poincare:

“...what makes these periodic solutions so valuable, is that they offer in a man-
ner of speaking, the only opening through which we might try to penetrate into
the fortress which has the reputation of being impregnable”.
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Appendix C: The Legendre transformation

Let f(x, y) be a function of two variables x, y:

df = udx+ vdy , u =
∂f

∂x
, v =

∂f

∂y
. (C.1)

Suppose we want to change the basic variables from x, y to u, in the function g
defined as follows:

g = f − ∂f

∂x
x = f − ux . (C.2)

Also
dg = df − udx− xdu = vdy − xdu . (C.3)

The quantities v, x are now v = ∂g/∂y, x = −∂g/∂u. We can get

g(y, u) = f − ux (C.4)

by solving u = ∂f(x, y)/∂x for x = x(u, y) and inserting this x into (C.4). We
can also write

dg =
∂g

∂y
dy − ∂g

∂u
du . (C.5)

The relations between H and L, and between S and S̃ are thus Legendre trans-
formations.
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