
Chapter 4

Gaussian functional integrals

A very important class of Feynman propagators results from Lagrangians which
are quadratic forms of x(t) and ẋ(t):

L(ẋ, x, t) = a(t) ẋ2(t) + b(t) ẋx+ c(t)x2 + d(t)ẋ+ e(t)x+ f(t) . (4.1)

In this case the propagator

K(xb, xa, tb − ta) =

∫
[Dx(t)] e

i
~
∫ tb
ta
dtL(ẋ,x,t) ,

is evaluated as follows. We decompose the quantal trajectory into the classical
trajectory, x̄(t),

δS[x(t)] = 0 gives x̄(t) , (4.2)

and a fluctuation, y(t), around it

x(t) = x̄(t) + y(t) , y(tb) = y(ta) = 0 . (4.3)

The action S[x(t)] is stationary around x̄(t), hence terms linear in y(t)
vanish. Thus

S[x̄(t) + y(t)] = S[x̄(t)] + 1
2δ

2S[y(t)] (4.4)

where

1
2δ

2S[y(t)] =

tb∫
ta

dt

(
a(t)ẏ2 + b(t)ẏy + c(t)y2

)
. (4.5)

Since x̄(t) is fixed, the integration over paths reduces to integrating over all
y(t)’s which vanish at the ends, thus Dx(t) = Dy(t) and

K(xb, xa, tb − ta) = F (tb − ta) e
i
~S[x̄(t)] , (4.6)

with

F (tb − ta) =

∫
[Dy(t)] e

i
~

1
2
δ2S[y(t)] (4.7)

where F (tb − ta) does not depend on the spatial positions because they are
always equal zero.
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Equation (4.6) tells us that when L is a quadratic form of ẋ(t) and x(t)
the dependence of K on xb and xa is completely determined by the classical
trajectory x̄(t) (more specifically: by the value of the functional of action,
S[x̄(t)], calculated at x̄(t)). One may interpret the prefactor F (tb − ta) as
the contribution of quantal fluctuations around the classical trajectory. Note,
however, that although exp{iS[x̄(t)]/~} is uniquely determined by the classical
trajectory, it is, nevertheless, a quantal object.

We are going to discuss now a few important examples of Gaussian propa-
gators.

4.1 A free particle

We already have expression for it, eq.(1.39)

K0(b, a) =

∫
[Dx(t)] e

i
~
∫ tb
ta

1
2mẋ

2 dt =

√
m

2iπ~(tb − ta)
e
i
1
2m

(xb−xa)
2

~(tb−ta) .

S[x̄(t)] is trivially simple to evaluate, however the prefactor is not that obvious.
In fact this situation is typical: the prefactor is, as a rule, the main problem.

4.2 The harmonic oscillator

Now we have to evaluate

K(xb, xa, tb − ta) =

∫
[Dx(t)] e

i
~
∫ tb
ta

1
2m(ẋ2−ω2x2) dt = F (T ) e

i
~S[x̄(t)] (4.8)

where T = tb − ta, and

x̄(t) =
1

sinωT
[xb sinω(t− ta) + xa sinω(tb − t)] (4.9)

x̄(t) satisfies the correct boundary conditions

x̄(ta) = xa , x̄(tb) = xb . (4.10)

With the help of (4.9) we get

S[x̄(t)] =

tb∫
ta

1
2m( ˙̄x2 − ω2x̄2) dt =

mω

2 sinωT
[(x2

b + x2
a) cosωT − 2xbxa] , (4.11)

and it remains to evaluate the prefactor

F (tb − ta) =

∫
[Dy(t)] e

i
~
∫ tb
ta

1
2m(ẏ2−ω2y2) dt . (4.12)

Note that the system does not distinguish any specific time, hence the amplitude
may depend only on the difference T = tb − ta.
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One of the methods of calculating (4.12) is to change the variables and
reduce the integrals to simple Gaussians. One does it through a Fourier trans-
formation

y(t) =
∞∑
n=1

an sin
nπt

T
, n > 0 , (4.13)

and negative n’s can be absorbed in the definition of an’s. This representation
of y(t) satisfies the boundary conditions, y(0) = y(T ) = 0. Now we have (note
that functions sin nπt

T (and cos nπtT ) form a complete set of orthogonal functions
over the time interval 0 ≤ t ≤ T ):

T∫
0

1

2
m(ẏ2 − ω2y2) dt =

1

2
m
T

2

∑
n

((nπ
T

)2
− ω2

)
a2
n . (4.14)

Changing integrations over paths from integrations over y(t)’s to integra-
tions over an’s introduces into the right hand side of (4.12) all kinds of factors,
but we do not need to calculate them. This is so because we know the normal-
ization of F in the limit ω → 0 which just the free particle prefactor

Fω=0(T ) =

√
m

2πi~T
. (4.15)

So, as long as we do not skip any factors containig ω we do not bother about
normalizations and get (we start with a finite number of modes)

F (T ) = C ′
N∏
n=1

+∞∫
−∞

e
i
~
m
2
T
2

[n
2π2

T2 −ω2] a2n = C
N∏
n=1

(
1− ω2T 2

n2π2

)− 1
2

. (4.16)

But (compare ref. [4.1])

lim
N→∞

N∏
n=1

(
1− ω2T 2

n2π2

)− 1
2

=

(
sinωT

ωT

)− 1
2

, (4.17)

therefore, from (4.15), the harmonic oscillator prefactor is

F (T ) =

(
mω

2πi~ sinωT

) 1
2

, (4.18)

and the complete expression for the propagator is

K(xb, xa, T ) =
( mω

2πi~ sinωT

) 1
2
e
i
~

mω
2 sinωT

[(x2b+x
2
a) cosωT−2xbxa] . (4.19)

4.3 Forced harmonic oscillator

Now the Lagrangian is

L(ẋ(t), x(t), t) = 1
2mẋ

2 − 1
2mω

2x2 + f(t)x (4.20)
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where f(t) is a given, time dependent, external force applied to the oscillator.
From the discussion presented above it is clear that the prefactor stays the same
(given by (4.18)) but we have to calculate S[x̄(t)].

Here are a few pointers on how to do it. We solve the classical equations of
motion

¨̄x+ ω2x̄ =
f(t)

m
= j(t) (4.21)

with the help of a Green function. The solution is in the form:

x̄(t) = x0(t) + xf (t) where xf (t) =

tb∫
ta

G(t, s) j(s)ds , (4.22)

and x0(t) is the solution of the homogeneous equation

ẍ0 + ω2x0 = 0 (4.23)

satisfying the boundary conditions: x0(ta) = xa, x0(tb) = xb, whereas G(t, s)
is the solution of the inhomogeneous equation

d2

dt2
G(t, s) + ω2G(t, s) = δ(t− s) (4.24)

with the boundary conditions G(tb, s) = G(ta, s) = 0. These conditions guar-
antie that at t = ta and t = tb, xf (t) does not change the boundary values of
x̄(t) set by x0(t).

The standard method of finding G(t, s) is to construct it from two indepen-
dent solutions of the homogeneous equation. Let u(t) and v(t) be such solutions
that u(ta) = 0 and v(tb) = 0. For t > s let G(t, s) as a function of t be pro-
portional to u(t), and for t < s to v(t). Then G(t, s) satisfies (4.24) everywhere
except t = s. To get a δ function at t = s we have to fix dependences on s and
the normalization. Indeed, the following construction satisfies all conditions
stated above:

G(t, s) = − 1

ω sinωT
[θ(s− t) v(s)u(t) + θ(t− s)u(s)v(t)] (4.25)

with u(t) = sinω(t− ta) and v(t) = sinω(tb − t) .

To obtain S[x̄(t)] it is convenient, before employing x̄(t) calculated above,
to integrate by parts the term of S containing x̄, and then use (4.21). Thus we
obtain the following convenient form of the classical action:

S[x̄(t)] = 1
2m[xb ˙̄x(tb)− xa ˙̄x(ta)] + 1

2

tb∫
ta

dtf(t)x̄(t) . (4.26)
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Inserting x̄(t) obtained from (4.22) we find

S[x̄(t)] =
mω

2 sinωT

{
(x2
a + x2

b) cosωT − 2xaxb

+
2xb
mω

tb∫
ta

dtf(t) sinω(t− ta) +
2xa
mω

tb∫
ta

dtf(t) sinω(tb − t)

− 2

m2ω2

tb∫
ta

dt

t∫
ta

dsf(t)f(s) sinω(tb − t) sinω(s− ta)
}
. (4.27)

4.4 The van Vleck formula for the prefactor

There is a formula which gives the prefactor through differentiation of the action
calculated for a classical trajectory x̄(t):

F (tb − ta) =

(
− 1

2πi~
∂2S(xb, xa, tb − ta)

∂xb∂xa

) 1
2

. (4.28)

Note that the Gaussian actions are always quadratic functions of xa and xb, thus
F from (4.28) depends only on T = tb − ta, as it should be. Indeed, applying
(4.28) to (4.27) we obtain the correct prefactor which we have calculated for
the harmonic oscillator.

The justification of the van Vleck formula (4.28) can be done in many ways.
Let us start with some classical physics arguments, which give an intuitive
explanation of the formula. From (4.6) we see that the probability density of
transition from (xa, ta) to (xb, tb) is

|K(xb, xa, tb − ta)|2 = |F (tb − ta)|2 = P (tb − ta) , . (4.29)

The best one can do through classical description of the evolution of our system
is to calculate P (tb − ta), and obtain F =

√
P eiφ with an undetermined phase

factor.
In order to determine P we look at the fan of classical trajectories around

x̄(t) which leads from (xa, ta) to (xb, tb). This fan of trajectories is given by
x̄(t)+δx(t) where δx(ta) = 0, but we shall vary the initial velocities (momenta)

mδẋ(ta) = δpa . (4.30)

In the lowest order, δx(t) satisfies the equation

m
d2δx

dt2
= −∂

2V

∂x2

∣∣∣∣
x̄(t)

δx . (4.31)

All trajectories start from xa but with different momenta pa + δpa. The spread
of δpa’s determines the spread of final positions δxb at tb. We relate δxb with δpa
with the help of relations between the derivatives of the action and momenta.
In our case we need

∂S(xb, xa, tb − ta)
∂xa

= −pa . (4.32)
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Thus, as long as the spread is small,

−δpa =
∂2S

∂xa∂xb
δxb , (4.33)

and

N−1 = − ∂2S

∂xa∂xb
, (4.34)

(which becomes a matrix for more than one dimensions) give us the spread of
the fan of trajectories around x̄(t)

δxb = N δpa . (4.35)

When the classical motion is reversible in time, N−1 is a symmetric matrix
in more than one dimensions, hence its eigenvalues are real (but depend on t).
It may happen that N−1 is singular at a certain time. For instance, for the
harmonic oscillator

N−1
osc =

mω

sinω(tb − ta)
, (4.36)

hence, for tb − ta = nπ/ω where n = 0, 1, 2, ..., we have N = 0 and δxb = 0.
So, for these lapses of time, different pa’s give the same position as x̄. Note
the consequence of this fact: there are infinitely many trajectories going from
(xa, ta) to (xb, tb).
N gives us a time-dependent measure of the size of the fan of trajectories

emerging from the initial position xa. The smaller is N the denser is the fan
of trajectories surrounding x̄. Thus dxbN−1 dxa – if properly normalized –
could measure the probability of going from the neighborhood of xa to the
neighborhood of xb . Since its dimension is that of an action, it is tempting to
convert it into a quantal expression dividing it by 2π~ = h. Then we get

P (tb − ta) =
1

2π~
∂2S(xb, xa, tb − ta)

∂xa∂xb
= |F (tb − ta)|2 . (4.37)

This is indeed consistent with (4.28).
Before closing this section let us point out that the prefactor F (T ), eq.(4.12),

can also be calculated directly from its original form by doing integration over
N variables y1, y2, ..., yN and then taking N →∞. So, we have to calculate

F (tb, ta) = lim
N→∞

∫
dy1dy2... dyN

(
m

2πi~ε

)N+1
2

e
i
~
∑N
j=0

1
2
m [

(yj+1−yj)
2

ε
−εω2y2j ] .

(4.38)
First, we write the exponent of (4.38) in matrix notation:

− m

2i~ε

N∑
j=0

[
(yj+1 − yj)2 − ε2ω2y2

j

]
= −YTΛY (4.39)

where

Λi,k =
m

2i~ε

(
[2δi,k − δi,k−1 − δi,k+1]− ε2ω2δi,k

)
=

m

2i~ε
σi,k (4.40)
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and
YT = (y1, y2, ...yN ) . (4.41)

Thus Y is a column matrix. To see that (4.39) is correct we must remember
that

y0 = yN+1 = y(ta) = y(tb) = 0 . (4.42)

Indeed,

N∑
j=0

yjyj+1 =
N∑
j=0

yjyj−1 and 2
N∑
j=0

y2
j =

N∑
j=0

y2
j +

N∑
j=0

y2
j+1 .

Now, we can write

F (tb, ta) = lim
N→∞

∫
dNY

(
m

2πi~ε

)N+1
2

e−Y
TΛY . (4.43)

Since σ of (4.40) is a real and symmetric matrix we can diagonalise it with
the help of an orthogonal matrix O. Transforming also Y into ν = OY, and
noticing that the Jacobian of this transformation is 1 (because |detO| = 1) we
get ∫

dNY e−YTΛY =
N∏
l=1

+∞∫
−∞

dνl e
−ν2l Λl =

N∏
l=1

√
π

Λl
=

πN/2√
det Λ

(4.44)

where Λl ‘s are the eigevalues of Λ.
Since det Λ = (m/2i~ε)N detσ, it is convenient to introduce the following

object

ÑN = ε

(
2i~ε
m

)N
det Λ = ε detσ . (4.45)

Let us write now

F (tb, ta) = lim
N→∞

√
m

2πi~
1

ÑN
=

√
m

2πi~
1

Ñ
(4.46)

where

Ñ = lim
N→∞

ÑN = lim
N→∞

{
ε

(
2πi~ε
m

)N
det Λ

}
. (4.47)

In order to calculate Ñ we define Ñj as obtained from the first j rows and
columns of Λ (or σ). It is not too difficult to find following recurrence relation
for Ñj

Ñj+1 = (2− ε2ω2)Ñj − Ñj−1 , j = 1, 2, ..., N (4.48)

with the following initial values

Ñ0 = ε and Ñ1 = ε(2− ε2ω2) . (4.49)

eq.(4.48) can also be written as

1

ε2
(Ñj+1 − 2Ñj + Ñj−1) = −ω2Ñj . (4.50)
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In the continuum limit, t = ta + T with T = jε , where j → ∞ and ε → 0
keeping T fixed, we get from (4.50)

d2Ñ
dt2

= −ω2Ñ . (4.51)

The initial conditions we obtain from (4.49):

Ñ (t = 0) = Ñ0 = 0 ,

dÑ
dt

(t = 0) =
Ñ1 − Ñ0

ε
=

ε(2− ε2ω2)− ε
ε

= 1 . (4.52)

So, Ñ (tb) = Ñ (tb, ta) is the solution of (4.51) with the initial conditions

Ñ (0) = 0 ,
∂Ñ
∂t

(t = 0) = 1 , (4.53)

which is

Ñ (tb, ta) =
sinω(tb − ta)

ω
=

sinωT

ω
. (4.54)

Comparing with the previously defined N we find Ñ = mN .
Note that N which measures the spread in space of classical trajectories is,

on the other hand, given by the product of the eigenvalues Λl.


