
Chapter 3

Random walks and their
descendants

3.1 Differential (and Integral) Equations

In the preceding section we have shown that the random walk in which at each
(discretized) time the particle has to move one step to the right or left with the
same probability, 1/2, and whose probability distribution
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)(
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)N
≈
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x2

4Dt , (3.1)

leads in the continuum limit – on the one hand – to the diffusion equation (or
the Euclidean version Schrödinger equation for a free particle), and – on the
other hand – to the Smoluchowski integral equation. In this section we shall
give examples of some other random walks and the equations they imply.

We start with the case which leads to the telegraph equations and its quan-
tum mechanical descendant: Euclidean version of Dirac equation of free one
dimensional motion [2.4], [3.1], [3.2]. Now the paths are composed of sections
of the x-axis traversed by the particle at a constant velocity which is randomly
reversed according to the following law:

– the probability of reversing the motion during the lapse of time dt is adt,
where a is a constant,

– the probability of maintaining the same direction of motion during dt is
cosequently 1− a dt.

Let P+(x, t) (P−(x, t)) be the probability density of finding a particle movig
to the right (left) at the position x and time t. For a small lapse of time ∆t
and the corresponding change of position ∆x (|∆x/∆t| = v = constant) we can
write the following master equations for P+ and P−:
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– the flow of particles to the right

P+(x, t+ ∆t) = P+(x−∆x, t)(1− a∆t) + P−(x+ ∆x, t) a∆t , (3.2)

– the flow of particles to the left

P−(x, t+ ∆t) = P−(x+ ∆x, t)(1− a∆t) + P+(x−∆x, t) a∆t . (3.3)

Figure 3.1: Probability densities of finding a particle movig to the left (right) at the position

x and time t + ∆t.

To get the differential equations for P+ and P− we expand equations (3.2,3.2)
up to linear terms in ∆x and ∆t:

P±(x∓∆x, t)(1− a∆t) ≈ P±(x, t)− P±(x, t) a∆t ∓ ∆x
∂P±(x, t)

∂x
,

P∓(x±∆x, t) a∆t ≈ P∓(x, t) a∆t , (3.4)

and obtain

∂P±(x, t)

∂t
= a (P∓(x, t)− P±(x, t)) ∓ v

∂P±(x, t)

∂x
. (3.5)

We can reduce these two coupled first order equations to two uncoupled
second order equations, the same for each P

∂2P±
∂t2

− v2
∂2P±
∂x2

= −2a
∂P±
∂t

. (3.6)

This is the so called telegraph equation and gives a differential description of the
random walk defined above. Note the relation between the telegraph equation
and the diffusion equation: when v → ∞, a → ∞ but 2a/v2 is kept constant
and equal to 1/D, we obtain the diffusion equation.

As it turns out its first order version (3.5) is in one-to-one correspondence
with the one dimensional Dirac equation. This equation we obtain following
the routine steps of finding a first order equation(

i~
∂

∂t
+ i~cα ·∇− βmc2

)
ψ = 0 , (3.7)
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whose solutions satify the second order Klein–Gordon (or the so called “rela-
tivistic Schoedinger equation”)(

−~2 ∂
2

∂t2
+ ~2c2∇2 −m2c4

)
ψ = 0 . (3.8)

To find α and β we act on the r.h.s. of eq.(3.7) with the operator i~∂/∂t−
i~cα ·∇ + βmc2, and find conditions which reduce the result to the Klein–
Gordon equation. For 1 + 1 dimensional spacetime with coordinates (t, x), this
condition reads (for a complete four dimensional case see e.g. ref.[3.3]):(

−~2 ∂
2

∂t2
+ ~2c2α2 ∂

2

∂x2
−m2c4β2 −mc3(αβ + βα)

~
i

∂

∂x

)
ψ = 0 . (3.9)

Note that in this case we have only one matrix α. Clearly, α and β have to
satisfy the following relations:

α2 = β2 = 1 , αβ + βα = 0 , (3.10)

hence the choice, α = σz and β = σx, where σz and σx are the standard Pauli
2× 2 matrices will do. So our two dimensional Dirac equation is

i~
∂

∂t
ψ = −ic~σz

∂

∂x
ψ +mc2σxψ (3.11)

Note that ψ is a two component wave function. To compare (3.11) with (3.5)
we write

ψ = e−i
mc2

~ t u , u =

(
u+

u−

)
, (3.12)

and insert it into (3.11). We get

∂

∂t
u± =

imc2

~
(u± − u∓) ∓ c

∂

∂x
u± . (3.13)

Let us now continue (3.5) to the Euclidean time: t → −iτ , v → iv, (or,
equivalently, m → im in eq.(3.13)), and rename a = +mc2/~ and v = c (both
are velocities). We obtain:

∂P±
∂τ

=
mc2

~
(P± − P∓)∓ c∂P±

∂x
. (3.14)

So, our telegraph equations are, after continuation to the Euclidean time, iso-
morfic with the two component, one dimensional, Dirac equation.

One can make the following comments. The wave function of the Dirac
equation (3.11) can be obtained as a sum over trajectories constructed from
random walks leading to the telegraph equation. To construct the paths we may,
for instance, write the final P+(x, t) in terms of the initial P+(x−k∆x, t−n∆t) =
1 (where k is the number of steps to the right) going backwards n steps in time,
with the help of (3.2, 3.3). When n� 1 there are many paths to do it, and we
can write P+(x, t) as a sum over all these paths:

P+(x, t) =
∑
paths

(1− a∆t)n−r(a∆t)r (3.15)
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where r is the number of reversals of the directions along the path. When the
time steps are very small, we can set 1− a∆t ≈ 1. Going back to the real time,
a∆t = iε, we write the Feynman propagator for a free relativistic particle in
one space and one time dimension

K(b, a) ≈
∑
r

N(r)(iε)r (3.16)

where N(r) is the number of paths with r reversals. This is the formula given
in ref.[1.7], Problem 2-6.

All this was written in a discretized form. What about the continuous
limit, which was so easy for the Brownian random walk? In the case of the
Poisson process we are dealing with now, finding the probability distribution
for positions x, P (x(t)), is more complicated. By definition a Poisson process
in time, t, is the one in which the probability of its occurence (in our case:
of the “reverse”) in (t, t + dt) is adt , and the probability of no occurence (no
“reverse”) is 1−adt. Thus (see e.g. ref.[2.5]) the probability of N(t) “reverses”
in time (0, t) is given by the Poisson formula

Prob(N(t) = r) = e−at
(at)r

r!
, r = 0, 1, 2, 3, ... (3.17)

and, for the sequence of ordered times t1 < t2 < t3 < ... < tn, the increments
N(t2)−N(t1), N(t3)−N(t2), ... , N(tn)−N(tn−1) are statistically independent.
Thus e.g. N(t2)−N(t1) is the stochastic variable of the number of reverses in
time t2 − t1 governed by the Poisson formula.

In order to find a probability distribution in x ,P (x), we first define G(k),
the generating function for the moments

G(k) =

+∞∫
−∞

dx eikxP (x) =

∞∑
m=0

(ik)m

m!
µm (3.18)

where

µm =

+∞∫
−∞

dxxmP (x) (3.19)

are the moments of the position random variable. Having the moments we have
G(k), and inverting (3.18) we get the distribution P (x):

P (x) =
1

2π

+∞∫
−∞

dk G(k) e−ikx . (3.20)

So, let us work out the moments of the random variable x(t). The velocity as
a function of time is expressed through the random variable N(t)

v(t) = v (−1)N(t) (3.21)
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where v is the constant which appeared in eq.(3.5). Let ∆x = x2−x1 where x1
and x2 are the initial and final positions of the particle. The distance travelled
in time t is

∆x(t) =

t∫
0

dτ v(τ) = v

t∫
0

dτ(−1)N(τ) . (3.22)

Note that P+ = P (∆x(t)), because Prob(N(t) = r) of (3.17) starts with being
1 for at� 1 and r = 0, hence ∆x(t) increases and the particle is moving to the
right. Similarly, P− = P (−∆x(t)) because now the particle is moving to the
left.

Since we know the probability distribution of N(t), we can compute the
average distance travelled in time t (hence the first moment of the random
variable ∆x(t))

〈∆x(t)〉 = µ1(t) = v

〈 t∫
0

dτ(−1)N(τ)

〉
= v

t∫
0

dτ
〈

(−1)N(τ)
〉

= v

t∫
0

∞∑
r=0

(−1)re−aτ
(aτ)r

r!
dτ = v

t∫
0

dτ e−aτe−aτ = v

t∫
0

dτ e−2aτ . (3.23)

In order to see how the higher moments can be evaluated let us calculate
the second (and higher) moments.

µ2(t) =
〈
∆x2(t)

〉
= v2

〈 t∫
0

dτ (−1)N(τ))

2〉

= v2

〈 t∫
0

dτ1

t∫
0

dτ2 (−1)N(τ1)(−1)N(τ2)

〉
. (3.24)

Figure 3.2: Change of integration described in the text.

The integration is over the square (0 < τ1 < t, 0 < τ2 < t). Since the inte-
grand is symmetric in τ1 and τ2, it is convenient to replace it by the interaction
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over the triangle: 0 ≤ τ1 ≤ τ2 ≤ t. Thus we have

µ2(t) =
〈
∆x2(t)

〉
= 2! v2

〈∫ ∫
0≤τ1≤τ2≤t

dτ1dτ2 (−1)N(τ1)+N(τ2)

〉

= 2! v2
〈∫ ∫

0≤τ1≤τ2≤t
dτ1dτ2 (−1)N(τ2)−N(τ1)

〉
(3.25)

where we employed the identities: N(τ2) = N(τ1) + [N(τ2) − N(τ1], and
(−1)2N(τ1) = 1. Since N(τ2) − N(τ1) is the random variable for the num-
ber of reverses in the lapse of time τ2 − τ1 we can again take the average as in
(3.23) and have

〈
(−1)N(τ2)−N(τ1)

〉
=

∞∑
r=0

(−1)re−a(τ2−τ1)
a(τ2 − τ1)r

r!
= e−2a(τ2−τ1) . (3.26)

Thus µ2 can be presented as a convolution

µ2(t) = 2! v2
t∫

0

dτ2

τ2∫
0

dτ1 e
−2a(τ2−τ1)

= 2! v2
t∫

0

dτ2 θ(t− τ2)
τ2∫
0

dτ1 θ(τ2 − τ1) e−2aτ1 (3.27)

where θ functions are not redundant, because they make possible an explicit
presentation of µ2(t) as a double convolution.

Note that to write the first moment as a single convolution we also need θ
function:

µ1(t) = v

t∫
0

dτ e−2aτ = v

∞∫
0

dτ θ(t− τ) e−2aτ . (3.28)

In fact, with the help of θ functions we can present any moment µm(t) as a
m-fold convolution. The exercise below of working out µ3(t) and µ4(t) will tell
us all we need to know about the moments (there is a difference between m-odd
and m-even moments).



3.1 Differential (and Integral) Equations 37

Exercise

First µ3(t). We follow similar steps as in the case of µ2(t)

µ3(t) = v3

〈 t∫
0

t∫
0

t∫
0

(−1)N(τ1)(−1)N(τ2)(−1)N(τ3) dτ1dτ2dτ3

〉

= 3! v3
∫

0<τ1<τ2<τ3<t

dτ1dτ2dτ3

〈
(−1)N(τ1)+N(τ2)+N(τ3)

〉
.

To introduce independent random variables we use the identity

N(τ1) +N(τ2) +N(τ3) = 2N(τ2) + [N(τ3)−N(τ2)] + [N(τ1)−N(0)] .

(Remember that N(0) = 0). Thus

µ3(t)

3! v3
=

∫
0<τ1<τ2<τ3<t

dτ1dτ2dτ3

〈
(−1)[N(τ3)−N(τ2)]

〉〈
(−1)[N(τ1)−N(0)]

〉

=

∫ ∞
0

θ(t− τ3) dτ3 θ(τ3 − τ2) e−2a(τ3−τ2)dτ2 θ(τ2 − τ1) dτ1 e−2aτ1

where we inserted dτ ’ s to bring out the structure of the triple convolution.

Now µ4(t),

µ4(t) = v4

〈 t∫
0

t∫
0

t∫
0

(−1)N(τ1)(−1)N(τ2)(−1)N(τ3)(−1)N(τ4)dτ1dτ2dτ3dτ4

〉

= 4! v4
∫

0<τ1<τ2<τ3<τ4<t

dτ1dτ2dτ3dτ4

〈
(−1)N(τ1)+N(τ2)+N(τ3)+N(τ4)

〉
.

Now we introduce the independent random variables

N(τ1) +N(τ2) +N(τ3) +N(τ4) =

= 2N(τ3) + [N(τ4)−N(τ3)] + 2N(τ1) + [N(τ2)−N(τ1)] .

Thus

µ4(t)

4! v4
=

∫
0<τ1< ...<τ4<t

dτ1dτ2dτ3dτ4

〈
(−1)[N(τ4)−N(τ3)]

〉〈
(−1)[N(τ2)−N(τ1)]

〉

=

∞∫
0

θ(t− τ4) dτ4 θ(τ4 − τ3) e−2a(τ4−τ3)

× dτ3 θ(τ3 − τ2) dτ2 θ(τ2 − τ1) e−2a(τ2−τ1) dτ1 θ(τ1)
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where again, we inserted dτ ’s to bring out the structure of the quadruple con-
volution.

End of Exercise

The reason for representing µm(t) as m-fold convolutions is to find an ana-
lytic form of the probability density P (∆x(t)) through its Laplace transform

Π(x2 − x1, s) =

∞∫
0

dt e−stP (x2 − x1, t) (3.29)

where P (x2 − x1, t) = P (∆x(t)), with ∆x(t) given by (3.22).
Indeed, as is well known, the Laplace transform of an m-fold convolution is

simply a product of the Laplace transforms of its m components. Since only
two functions appear in the convolutions, we need only two Laplace transforms

∞∫
0

dτ θ(τ) e−τs =
1

s
and

∞∫
0

dτ θ(τ) e−τ(s+2a) =
1

s+ 2a
, (3.30)

and from the special cases worked out above we can deduce

∞∫
0

dt e−st
µm(t)

m! vm
=


1

s(m+1)/2
1

(s+2a)(m+1)/2 for odd m

1
sm/2+1

1
(s+2a)m/2 for even m.

(3.31)

So, from (3.20), (3.29) and (3.31) we can write down the complete expression
for the Laplace transform of P (x2 − x1, t):

Π(x2 − x1, s) =
1

2π

+∞∫
−∞

dk e−ik(x2−x1)
∞∑
m=0

(ikv)m

×


1

s(m+1)/2
1

(s+2a)(m+1)/2 for odd m

1
sm/2+1

1
(s+2a)m/2 for even m.

(3.32)

The sum in (3.32) can be evaluated:∑
modd

(ikv)m
1

[s(s+ 2a)](m+1)/2
+
∑
meven

(ikv)m
1

s

1

[s(s+ 2a)]m/2

=

∞∑
l=0

(
ikv

s(s+ 2a)

(ikv)2l

[s(s+ 2a)]l
+

1

s

(ikv)2l

[s(s+ 2a)]l

)
=

(
1

s
+

ikv

s(s+ 2a)

)
1

1− (ikv)2

s(s+2a)

where we performed (formally) the sum of a geometric series. Thus we get an
analytic expression for Π:

Π(x2 − x1, s) =
1

2π

+∞∫
−∞

dk e−k(x2−x1)
(

1

s
+

ikv

s(s+ 2a)

)
1

1− (ikv)2

s(s+2a)

. (3.33)
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We can also write down P (x2 − x1, t) as an inverse Laplace transform of
(3.33): when there exists a real constant a0 such that the integral∫ ∞

0
dt e−a0t |P (x2 − x1, t)|

exists, then

P (x2 − x1, t) =
1

2π

+∞∫
−∞

dk e−k(x2−x1)

× 1

2πi

a+i∞∫
a−i∞

ds est
(

1

s
+

ikv

s(s+ 2a)

)
1

1− (ikv)2

s(s+2a)

(3.34)

where a ≥ a0, otherwise arbitrary.
Several comments are now in order. We have discussed a random walk

in one spatial dimension assuming it to be a Poissonian process. It turned
out that the corresponding probability densities satisfy the telegraph equations
(3.5) which turn out to be an Euclidean form of the Dirac equation for a free
particle (of a finite mass) moving in one spatial dimension (3.13). We also
performed the sum over all paths and obtained a (formal) expression for the
probability densities (hence the Euclidean propagators for the Dirac equation).
The essential ingredient in this equivalence is a different from zero mass of the
Dirac particle: for a massless Dirac particle there is no Poisson process.

An obvious (and important) question one may ask is whether all these pro-
cedures can be generalized to 3+1 dimensions. This problem was addressed in
ref.[3.1]. It turns out that

(a) one can define a Poissonian process in 3+1 dimensions and have telegraph-
like equations for the Dirac amplitudes u+, u−

∂u±
∂t

=
imc2

~
(u± − u∓)∓ cσ ·∇u± (3.35)

where, as before, a = mc2/~. Note that the one dimensional operator
c∂/∂x is replaced by the three dimensional one cσ ·∇, where σ are the
three Pauli matrices. Therefore both u+ and u− become two component
spinors.

(b) The trouble is however in presenting the spinors u± as sums over paths.
The procedure described above for the case of 1+1 dimensions can be,
in principle, generalized into a “spinor chain path integral” for the Dirac
equation, but its relation to the underlying stochastic process (related by
the analytic continuation) is not clear.

(c) In fact, it is very likely that this intuitive approach to the propagation
of the Dirac particles described here is – strictly speaking – untenable
and one has to recourse to such horrors as the Grassman algebra and an
adaptation of the spinor calculus to the Euclidean metric.
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(d) There is an interesting appendage to the above (see ref.[3.2]). The authors
introduce four, instead of two, probability distributions: the probabilities
of moving left or right in space while moving forwards or backwards in
time. One can, similarly as above, construct a set of master equations
which result in the Dirac equation without recourse to the continuation
from the Euclidean to the real time. So [3.2] shows that the random
motion of a particle in one space- and one time dimension leads directly
to the Dirac equation provided backward in time motions are introduced.
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