Chapter 2

Brownian motion

2.1 Euclidean time and diffusion

When we look at Fig. 1.1 where the quantal trajectories are shown we may
have an impression that we are looking at a schematic picture of the Brownian
motion. As it turns out it is more than just an impression, and that there is an
intimate relation between path integrals and the theory of Brownian motion.
The essential difference between the two is that the mathematical basis of path
integrals is very shaky [2.1], whereas the theory of Brownian motion has a solid
ground and its mathematical tools were created long before the path integral
approach to quantum mechanics was conceived.

Theory of Brownian motion started with the papers of Einstein [2.2] and
Smoluchowski [2.3]. The mathematical basis was constructed by Wiener in a
series of papers published (around the year 1922) in MIT Journal of Mathemat-
ics and Physics where the concepts of Wiener measure and Wiener integral were
introduced. This work was then continued by many, notably by Kac [2.4] who
also took part in development of the so called Euclidean version of Feynman’s
path integrals.

Let us start with the Smoluchowski equation which, in mathematical liter-
ature, is called Chapman—Kolmogoroff equation. This equation is an integral
relation for the probability density p(xy, x4, ty—t,) for finding the Brown particle
at xp at the time tp, when at the time ¢, it was observed at z,. To construct
the equation we assume that the future positions are realized independently
of the past positions: at the time t., t, > t. > t,, let the particle be at z.,
therefore in time t. — t, the particle moved from x, to z. and then, in time
ty —te, moved from x. to xp. But “the future is independent of the past”, hence
the probability of transitiom from z, to x; via x. is the product of probabilities
p(xy, Tey ty — te) p(Tey T, te — ta). Furthermore, . is arbitrary. Therefore we get
the following integral equation for p

+o00
p(xy, Ta, ty — ta) = / dxe p(Tp, ey ty — te) p(Tey Tay te — ta) (2.1)
—00
where t, > t. > t,. Note the isomorphism of (2.1) with (1.31)for the Feynman
propagators K (zp, 4,1ty —ts). Remember, however, that (2.1) is not a quantum
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mechanical relation, whereas (1.31)is. As it is argued in [2.4], when we look for
solutions of eq.(2.1) which depend only on distances, |x; — x|, and give finite
spatial dispersions:

+o0o
/ dxy(zy — 24)2p(|Tp — Tal, ty — ta) < 00,

—0o0

it turns out that there exists only one solution of the Smoluchowski equation
which is a gaussian density

/ 1 ~(zp-7a)?
p(xb — Zg,tp — ta) = m g2 (ty—ta) (22)
a

This last expression we compare with Ky(b,a) given by (??). It turns out
that, apart from different constants, we get (2.2) from (?7?) by replacing the
time variable, ¢, by an imaginary variable —it. Equation (2.2) is the so called
“Euclidean” version of Ky(b,a). So, we have in this case an isomorphy of
probability densities with Euclidean probability amplitudes.

The Euclidean forms of Feynman propagators are of considerable interest
because, as we have already stressed above, they are well defined mathemat-
ical objects, and, as we will see below, contain all information about internal
structures (such as e.g. energy levels) of quantal objects they describe. So, we
will frequently work with them in these lectures. However, they are not able
to describe some important quantal phenomena like e.g. diffraction, and one
has to keep the “real time” version of Feynman propagators described in the
Introduction in spite of their mathematical shortcomings.

In this section we will continue discussing the Euclidean propagators related
to purely classical phenomenon of Brownian motions and random walks in space
and time. Clearly, one can present (2.2) as a sum over paths which evolve in
the Euclidean time:

a:(tb):a:b
t .
p(zy — Tastp — ta) = / [Da(t)] e 202 Jin @4 (2.3)

z(ta)=2q

Also, this p must be a solution of the Euclidean version of the Schrédinger
equation:
dp % 0%p
8tb - 2 01’172 ’

This is the equation of diffusion with the coefficient of diffusion D = ¢2/2. If
we want to use it for quantal processes we have to set 02 = h/m.

Let us look now at the process of diffusion as a random walk over a dis-
cretized lattice in (z,t) space. One step in space we call A. We call € one step
in time. Therefore the position in space and time of the particle which starts
at (x =0,t=0) is

(2.4)

z=jA, t = Ne, j=0,4+1,42, ..., N=0,1,2,..
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At every z(j) the particle has equal probability (= 1/2) of moving one step to
the right or to the left. Let the probability of finding the paricle at (j) in time
t(N) be P(j,N). To reach the position (j, N), the particle executes p steps to
the right and v steps to the left

p—v=7, uw+v=N, N —-j=2v, hence N —j iseven.

The position (j, N) can be reached through (]Z ) different paths. Therefore

P(j,N) is a sum over these paths weighted by a probability of executing N

steps:

(N) (%)N foreven N —j

P(j,N) = (2.5)
0 forodd N —j.

For very large j and N we can approximate the binomial distribution by the
normal distribution (for details see [2.5]) and obtain

2 2
P(JvN) ~ e 2

.

z

(2.6)
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Figure 2.1: Brownian trajectory on a lattice of discretized space and time.

Now we construct the probability density per unit length:

P(j,N) € _1 e 2
Plet) = o8 =\ amaz ¢ T

Note that we divided P by 2A because the spatial resolution of particle positions
is 2A (not A since P(j, N) = 0 when N — j is odd).

In order to obtain a continuous Brownian motion we let A — 0 and ¢ — 0
for fixed x and t. This can sensibly be done only if we keep

A2

D=
2€



2.2 Diffusion and the Smoluchowski equation 23

constant in this limiting process. D is the constant (coefficient) of diffusion.
So, our probability density takes the form we already know:

[ 1 a2
plx,t) = D € T (2.7)

2.2 Diffusion and the Smoluchowski equation

It is amusing and interesting to note that having (2.5) we can obtain the dif-
fusion equation (2.4) and the Smoluchowski equation (2.1) as continuum limits
of some identities of the binomial coefficients. The identity which leads to the
diffusion equation is this

(N: 1) - @) " <ﬂ1> | (2.8)

Let us remind ourselves the translation of the discretized probability (2.5)

- () e

into the continuum probability density p(zx,t):

P(j,N) — ple=Aj=A2u—N),t=¢eN). (2.9)
Relation (2.8) comes out as
p(z,t+e€) = %p(m + A1) + %p(l‘ —At) .

Indeed, identification goes as follows.

In
N+j+1
plzt+e): z—j, ttems N+1, u:#
1/N+1\ /1\"
thus plx,t+¢€) — 2( : ><2) .
In
N+j7+1
plx+At): xr—j+1, t—> N, MZ%—{_
N\ /1\"
th At -] .
o sornn s ()
In
N+j-1
plx —At): r—A—j—1, t— N, ,u/:%:u—l

thus  p(z — A1) — (,/L) (;)N
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Subtracting from both sides p(z,t)/e and inserting A? we get

plx,t+e€) — p(x,t) _A72 (x + A t) — 2p(x,t) + p(z — A, t)

= 2.1
€ 2¢ A2 (2.10)
In the continuum limit (2.10) becomes the diffusion equation
p(a,t) 0%p(a,t) A?
= D=—. 2.11
ot oz? 7 2¢ (2.11)

Now, the Smoluchowski equation follows from the identity

,,;,}w <u ]—V u’) (u’ T;M) - (J,\jj 3:) : (2.12)
(20) (;>N —
’ N’
<M Jjﬂ > <; o= 1),
N

(RN e

Finally, with the help of (2.12) we get the Smoluchowski equation

Indeed, we have

/dx’p(x 2 t)pla' — 2" ) =pla — 2"t +1). (2.13)

We have to stress that one must not think that these two identities of the bi-
nomial coefficients contain physics of the diffusion and the Smoluchowski equa-
tions. Physics sits in the random walk process and is contained in the formula
for the transition probability (2.5).

2.3 Euclidean form of the Schrodinger equation

As we have already seen p(z, t) is a solution of the diffusion equation (2.4) which,
in turn, is the Euclidean form of the Schrédinger equation of a free particle.
One may ask whether the Euclidean version of the Schrodinger equation for a
particle moving in a potential V' (z),

op(x,t h 02%p(x,t V(x
At _ 10Tt VD, (2.14)

has also an interpretation in terms of the Brownian motions? The answer, in
the affirmative, was given by Kac [2.4]. Indeed, let us set the particle in motion
from x = 0 at t = 0 and assume that our particle at each x has a probability
V(z)dt/h (we assume V(z) > 0) of being supressed (annihilated). Kac calls it
a random walk with holes: at = there is the probability, V(z)dt/h, of falling
into a hole and disappearing from existence.
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The consequences of this ansatz are as follows. The particle following the
path x(t) has the probability of survival until ¢ + dt equal to

1-— V(ﬁ;t))dt R exp <_V(a;i(t)) dt) . (2.15)

But, in consequtive sections of time, dt, survivals are independent hence, the
probability of survival in time from zero up to t is

exp <—i11 /0 tV(a;(T))dT> . (2.16)

Therefore, to get the complete expression for p(z,t), which satisfies (2.14),
in terms of the integral over paths we have to combine the above with the
contribution of the free motion (2.3) and obtain

z(t)=x

p(l‘,t) _ / [D:L,(t)]e—%fg[%mz'Q—&—V(x)]dT _ <€—%fg V(;r(T))dT> ) (217)
So
z(0)=0

Here Sy is the free particle action. The last part of (2.17) tells us that we may
interpret p(z,t) for a Brown particle moving under influence of the potential
V(xz) > 0 as an averaged probability of its survival during the lapse of time
[0, ¢].

In fact, equation (2.17) is a special case of the following object: the paths
are Brownian and we sum over them any well defined functional of paths, e.g.
exp(— fot drV(z(7)/h) in the above case. Sometimes one calls it a path inegral
over the conditional Wiener measure, du[z(7)], and writes

<ale HH|0>= / dula(r)] e+ I dr Vi) (2.18)

Operationally this might be done through introduction of the Euclidean time,
t — —i7 into “regular” path integrals.

Now we shall discuss some important applications of the Euclidean forms
of the quantum path integral amplitudes (not the probability densities we are
dealing with in the case of classical Brownian motions). Note that already the
random walks with holes just discussed give not only probability densities but
also quantal (non-conserving probability) amplitudes.

To avoid confusion we will change the notation, the lapse of the Euclidean
time we will denote by 7, and instead of p we will write K (xy, x4, —i7). Let us
employ the Euclidean analog of (??). It reads

K (2, Tq, —iT) = <mple” 57 |z4>

- Z <xb|En><En‘ 6_%T’En’ ><En"xa >

n,n’

= Ze Tn(xp)0r (T4) - (2.19)
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This formula implies that the lowest energy term in the sum dominates when
T — oo. Therefore, having K (xy, z,, —i7) we can extract the lowest energy of
the system, Fy, through the following limiting procedure:

O Ly | N

This is the Feynman—Kac formula. One can write it in many other forms, e.g.

Ey = — lim {h In (K (xp, zq, —iT))} , (2.21)
T—00 T

because the dependences on zy, and x, are irrelevant, as long as the In operation

does not hit one of the zeros of the eigenfunctions ¢,.

Kac tells us in ref.[2.4] that already in 1949 he tried to estimate Ey for
a few simple potentials randomly choosing a hundred of trajectories, 60 steps
each (taking 7 as large as possible), and numerically performing the sum over
trajectories and taking logarithm of this sum. These were, probably, the first
computer simulations of this kind.

Let us sketch a more modern technique for performing the sum over paths
due to Metropolis [2.6] (see also [2.7]). In order to obtain Ey and |¢o(z)[? we
identify x, = 2, = = in (2.10), and for the sake of simplicity set h = m = 1.
Let the stretch of Euclidean time be: [0,7]. We discretize 7 into n + 1 very
small bits € = 7/(n + 1), and set z9 = z,+1 = =. Hence our trajectory, &, is
represented by a sequence of intermediate positions

& = (xo=2,21,%9, ... T, Tpy1 = ).

The object to simulate is

1
*(TL+1) n 1,25 —x;
Ky (x,z,—it) = /dxldazg ...dxn<1> ? e_ezj:°{2( e ])2+V(xj)} .

27e
(2.22)
In what follows we shall also use the following expressions

" 1 CL‘jJrl—l’j 2
E(&e) =) 2< > +V(zj) s, S e =cE(e). (223)

€
3=0

Selection of a set of trajectories important in supporting (2.22) is to be
decided (clearly, there must be host of them whose contribution to (2.22) is
irrelevant: they contribute very little). Here is how we generate a reasonable
set.

1. We choose the first trajectory £, This choice is left entirely to the
industry of the person who does the simulation.

2. We choose randomly an entire number 1 < j < n and and a real, small,
number 0 < 7 < 1 and we define ¢ whose only difference with £° is the
7-th component.
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3. Let the j-th component of £’ be
=z + (2n—1)a,

where « is of order € and is a fixed numerical parameter defining numerical
integration and discretization.

4. We calculate
AE =E(¢,e) — E(&,¢) .

— If AE < 0 we choose as the new trajetory

¢ =¢
— If AE > 0 we choose £€1) = ¢ with the probability
efGAE — efAS ’

and €1 = £ with the probability

1 _ e—&AE

5. Choosing with a prescribed probability is accomplished as follws: first we
randomly generate 0 < ' < 1, and

—if 1 < e=*AE we choose £V = ¢’
—if gt > e A we choose 1) = ¢(0)

6. We choose £€?) from () the same way we have just chosen ¢V from £(0),
and continue this procedure.

7. This procedure results in a set of [£()] which tends to become a set
of dominant trajectories in a functional integral. Note: the rule which
allows acceptance of AE > 0 prevents this procedure to get stuck in a
local minimum of F.

8. Taking the sum ), e=SEM.9 [DEM] we get K, (z,z,t) , where [DEM)] is
the coefficient in front of the exponential in (2.22). In practice (see below)
we do not have to deal with [DE(™)], as it cancels out in evaluations of
e.g. Ey.

Note: If the classical Hamiltonian implies a minimum of energy at = = 0,
the trajectories dominating the ground state fluctuate around x =0 . In
this case it is natural to start the Monte Carlo procedure close to x = 0.

9. The process of generating trajectories gives us the square of the absolute
value of the ground state wave function |¢(x)|?. Indeed, we divide the
x-axis into bins

(mA, (m + 1)A), m=0,+1,+2,+3, ...

Let us consider the k-th step in our stochastic procedure: z; is allowed
to acquire a new value x; + o(2n — 1). Hence the variable x; in the k£ +1
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step either stays the same, x;, or becomes x; + a(2n — 1). At each step
the j-th component hits a bin (mA, (m+1)A). Every time a bin gets hit
we give it a point. While the stochastic process develops the bins collect
points. |1/ (x)|? is proportional to the number of points the bin containing
x collects. We only have to normalize the distribution to have [1g(x)|?.
(Note: the factor e~ Eo7/I does not appear in this procedure, but 7 must
be very large).

As it turns out extracting Ey directly from K (z,z,7) (or from K, (x,z,T)
is not effective, and it is better to work out the following expression

b JP2E e Hd)  <ale i He>
0: pr—

T [[Da(r)] e n St <zle wHT|z>
_lEk H 9
i Za¢ 1 <HHR> (0@ .
T—00 Zke R k|¢k(l’)‘2

In terms of the discretized quantities defined above we write (2.24) as fol-
lows. First, we have to generate a set of M trajectories [£,] where M > 1 and
7 is very large. The probability of realizing the v’th trajectory is

P e Slerd 2.95
(&) = W ) (2.25)

and we have
M

Ey =~ Z P(fV)E(fl,, 6) : (2‘26)

v=0

We can remove (a cumbersome to deal with) & appearing in F or H em-
ploying the virial theorem which equates these two averages

(gmi®) = 5 (aV'(2)) , (2.27)

hence the practical formula for evaluating Ey reads
M
Eo =) P&) 36V (&) + V(&) - (2.28)
v=0

Appendix C: Virial theorem

We prove virial theorem for a set of massive point particles having positions r;
and moving under influence of forces F;. The equations of motion are

pi=F;. (C.1)

We define
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thus
Cig:;pi‘ri+;f’i‘pi- (C.3)
We rewrite the second term:
> tipi=» myti- b =2T (C.4)
i i

which is twice the total kinetic energy. The first term, on the other hand is
Zpi‘ri:ZFi'ri7 (C.5)
i i

Hence

aG

Now take its average over time (0, 7):

i/igdt =2(T) + <Z F;- ri> = %[G(T) — G(0)]. (C.7)
0 (2

When the motion is bounded (e.g. periodic) the bracket [...] stays finite. There-
fore, when 7 — oo, we obtain the virial theorem:

(T) = —;<ZF1~> (C.8)
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