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Chapter 1

Trajectories in quantum
mechanics

1.1 Introduction

Paul A. M. Dirac starts “The Principles of Quantum Mechanics” as follows:

“Classical mechanics has been developed continuously from the time of New-
ton and applied to an ever-widening range of dynamical systems, including the
electromagnetic field in interaction with matter. The underlying ideas and the
laws governing their application form a simple and elegant scheme, which one
would be inclined to think could not be seriously modified without having all its
attractive features spoilt. Nevertheless it has been found possible to set up a new
scheme, called quantum mechanics, which is more suitable for the description of
phenomena on the atomic scale and which is in some respect more elegant and
satisfying than the classical scheme. This possibility is due to the changes which
the new scheme involves being of a very profound character and not clashing
with the features of the classical theory that make it so attractive, as a result of
which all these features can be incorporated in the new scheme.”

In one of his early papers [1.1] Dirac outlined an attractive possibility of a
generalization of the classical mechanics to quantum mechanics, and this idea
was many years later implemented and worked out in detail by Richard P.
Feynman [1.2]. Indeed, Dirac was fully aware of this new possibility of looking
at quantum mechanics as the following quotation from his early Review of
Modern Physics article [1.3] tells us:

“We have here the mathematical foundation of the analogy between the classical
and quantum equations of motion, and can develop it to bring out the quantum
analogue of all the main features of the classical theory of dynamics”.

This is how Feynman sees the relation of Dirac’s idea with the “standard”
quantum mechanics:

“It is a curious historical fact that modern quantum mechanics began with two
quite different mathematical formulations: the differential equation of Schrö-
dinger, and the matrix algebra of Heisenberg. The two, apparently dissimilar
approaches, were proved to be mathematically equivalent. These two points of
view were destined to complement one another and to be ultimately synthesizeed
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in Dirac’s transformation theory.
This paper will describe what is essentially a third formulation of non-

relativistic quantum theory. This formulation was suggested by some of Dirac’s
[1.1], [1.3] remarks concerning the relation of classical action to quantum me-
chanics. A probability amplitude is associated with an entire motion of a par-
ticle as a function of time, rather than simply with a position of the particle at
a particular time.”

In fact it appears that quantum mechanics quickly distanced itself from
classical physics, and had even some overtones of an axiomatic formulation.
From the preface to the first edition of “The principles of Quantum Mechanics”
by P. A. M. Dirac: “...I have chosen the symbolic method.... This necessitated
a complete break from the historical line of development, but this break is an
advantage through enabling the approach to the new ideas to be made as direct
as possible”. All this in spite of the first steps made by Bohr, Sommerfeld and
Einstein [1.10] (a very important paper largely unknown!) in close touch with
classical mechanics through studying of the multi-periodic trajectories.

In these lectures we will discuss this Dirac–Feynman formulation of quantum
mechanics which gives an intuitively attractive transition from the classical to
quantal description of the evolution in time of physical systems. Quantum
mechanics “saved” classical physics long time ago from nonsensical descriptions
of the microscopic world. Recently, quantum mechanics “saved” again classical
mechanics from the abyss of Chaos. In this last instance understanding of
the intimate relations between classical description and the limit ~ → 0 of
quantum mechanics was of primary importance. We are going to study these
relations on many examples. We shall assume that the reader is familiar with
the “Hamiltonian” formulation of quantum mechanics whose main tools are:
Schrödinger equation and wave functions, operators corresponding to physical
“observables” and their commutation relations.

Let us start with a simple case of one particle of mass m moving in a
potential V (x) in one spatial dimension. In classical mechanics the position, x,
is uniquely given at any time t provided the boundary conditions are specified,
e.g.

x̄(ta) = xa , x̄(tb) = xb (1.1)

The trajectory x̄(t) is obtained from the equations of motion

m
d2x

dt2
= − d

dx
V (x) (1.2)

which follow either from the Hamiltonian, H = p2/2m+V (x), or the Lagrangian
L = m(ẋ)2/2− V (x):

(Hamilton)
d

dt
p = −∂H

∂x
,

d

dt
x =

∂H

∂p
, (1.3)

(Lagrange)
d

dt

(
∂L

∂ẋ

)
=
∂L

∂x
. (1.4)

The boundary conditions (1.1) with the equation of motion (1.2) determine just
one trajectory x̄(t).
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With the help of quantum mechanics we can describe a transition of a
particle from the position xa at time ta to the position xb at a later time tb but
not with just one trajectory. We have to construct an amplitude for a quantal
transition from the state which gives at ta the position of particle exactly at xa,
and at tb exactly at xb (hence the wave functions of the initial and final states
have to be δ(x− xa) and δ(x− xb), respectively).

We accomplish it with the help of the operator of evolution in time of
quantum states. From the Schrödinger equation we know the evolution in time
of a state given at ta, Ψ(x, ta). Writing

Ψ(x, tb) = e−
i
~H(tb−ta)Ψ(x, ta) , (1.5)

we see that differentiation with respect to tb gives the Schrödinger equation for
Ψ(x, tb)

i~
∂Ψ(x, tb)

∂tb
= HΨ(x, tb) . (1.6)

So, indeed, the operator exp (−iH(tb − ta)/~) performs the evolution in time
of a state given at ta.

We denote the vector representing particle at x by |x>, and the amplitude
we seek is

K(b, a) =<xb| e−
i
~H(tb−ta) |xa> . (1.7)

We will call K(b, a) a propagator.

1.2 Reminder of Dirac’s notation

In quantum mechanics the quantal states are represented by vectors. The wave
function is a special case of a vector: the x component of a state vector |Ψ> is
Ψ(x). Thus

Ψ(x) =<x|Ψ> . (1.8)

The probability of finding the particle in the vicinity of x is | <x|Ψ> |2dx.

Example: Momentum eigenstates

the state |p> which is the eigenstate of momentum belonging to the eigen-
value p has the following wave function, in other words its representation in the
position space is

<x|p>= Ne
i
~px , (1.9)

with N being a normalization constant. The state < p| is conjugate to |p >,
hence

<p|x>= Ne−
i
~px . (1.10)

End of Example
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We will work with vectors of states which form complete sets of states. That
is to say any state vector can be represented as a superposition of the states
which belong to a complete set, for instance

|Ψ>=
∑
p

cp |p> (1.11)

with

cp =<p|Ψ> . (1.12)

From the above it follows that the unit operator can be represented as the sum

∑
l

|l><l| = 1 (1.13)

where l labels any complete set of states. In particular

∑
p

|p><p| =
∑
x

|x><x| = 1 . (1.14)

1.3 Path integral representation of K(b, a)

Let us continue constructing an analog of the classical evolution in time (tb−ta)
from a given position xa to a given position xb (see Fig.1.1).

We compute (1.7) introducing a discretization of time: tb − ta = Nε where
N is very large, hence ε very small. For the sake of simplicity we set ~ = m = 1.
Since

e−i(tb−tb)H = e−iεNH = e−iεH e−iεH ... e−iεH (1.15)

and

1 =

∫
dxj |xj><xj | , (1.16)

we have

<xb|e−i(tb−ta)H |xa>=

∫
<xb|e−iεH |xN−1> dxN−1 <xN−1|e−iεH |xN−2>

... <x2|e−iεH |x1> dx1 <x1|e−iεH |xa> . (1.17)

Looking at Fig. 1.1 and formula (1.17) we see that the quantal analog of the
classical evolution in time given by just one trajectory going from the initial
spacetime point to the final spacetime point consist of infinitely many trajecto-
ries between the two spacetime points. These trajectories appear with different
weighting factors which we will presently calculate.
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Figure 1.1: Trajectories in discretized time.

We do it for a simple hamiltonian

H =
p2

2m
+ V (x) = K + V . (1.18)

Using the Campbell–Baker–Hausdorff formula, we write

e−iεH = e−iε(K+V ) = e−iεKe−iεV +O(ε2) (1.19)

where O(ε2) = −1
2ε

2[V,K], and [V,K] = V K − KV 6= 0 is the commutator.
The proof of the Campbell-Baker-Hausdorff formula,

eA eB = eC (1.20)

and

C = A+B +
1

2
[A,B] +

1

12
[A, [A,B]] +

1

12
[[A,B], B] + ...

for [A,B] 6= 0, is given in Appendix A.
In our amplitude (1.17) we can replace

lim
ε→0, N→∞
Nε=const.

(
e−iε(K+V )

)N
=
(
e−iεK e−iεV

)N
. (1.21)

Indeed, since the contents of the brackets in (1.21) differ by O(ε2) ∼ N−2, taking
their N -th power makes that the r.h.s and the l.h.s of relation (1.21) differ by
a term of O(N−1). This relation, known as the Trotter product formula, is
discussed in more detail in ref.[1.5].

So, we write our propagator as follows

K(b, a) = <xb|e−i(tb−ta)H |xa>

=

∫
<xb|e−iεK |xN−1> e−iεV (xN−1) dxN−1 <xN−1|e−iεK |xN−2>

× e−iεV (xN−2)dxN−2 ... dx1 <x1|e−iεK |xa> e−iεV (xa) . (1.22)
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Now we calculate < x| exp (−iεK/~) |y > inserting back ~ and m. Since |p >
is the eigenvector of the operator K = p2/2m, we insert 1 =

∫
dp|p><p| and

have

< x|e−
i
~ εK |y> =

∫
dp <x|e−

i
~ ε

p2

2m |p><p|y>

=

∫
dp <x|p> e

−iεp2
~2m <p|y> . (1.23)

But, inserting the normalization factor, we use

<p|y>=

√
1

2π~
e
i
~py . (1.24)

Indeed, this is the correct normalization factor since

<p|p′>=

∫
dy <p|y><y|p′>=

1

2π~

∫
dye

i
~ (p−p′)y = δ(p− p′) .

So, we have finally

<x|e−
i
~ εK |y>=

1

2π~

∫ +∞

−∞
dp e

−iεp2
~2m e

i
~ (y−x)p =

√
m

2iπ~ε
eim

(y−x)2
2ε~ (1.25)

where we employed the formula∫ +∞

−∞
dx eax

2+bx =

√
π

−a
e−

b2

4a , Re a ≤ 0 , (1.26)

which will be often used in these lectures.
We insert (1.25) into (1.22) and get our final expression for the propagator

K(b, a) = lim
ε→0

√
m

2iε~π

∫ N−1∏
j=1

dxj

√
m

2iε~π
e
i
~ εLj

def
=

∫
[Dx(t)] e

i
~
∫ tb
ta
dtL[x(t),ẋ(t)] =

∫
[Dx(t)] e

i
~S[x(t)] (1.27)

where

Lj = 1
2m

(
xj+1 − xj

ε

)2

− V (xj) .

This is the key formula which gives the propagator in the form of a path integral.
Its discretized form (the first part of (1.27)), which is a product of exponentials,
can also be written as an exponential of the sum

K(b, a) = lim
ε→0

∫
dx1 ... dxN−1

(
m

2iε~π

)1
2N

e
iε
~
∑N−1
j=0 Lj . (1.28)

Clearly

lim
ε→0

N−1∑
j=0

εLj =

∫ tb

ta

dtL(x(t), ẋ(t)) = S[x(t)] (1.29)
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where S[x(t)] is the functional of classical action. Hence from (1.27) and (1.28)
we get an explicit expression forDx(t) for a discretized form of a “path integral”:

[Dx(t)] = dx1 ... dxN−1

(
m

2iε~π

)1
2N

. (1.30)

From (1.7) we obtain going through the same steps as discussed above:

K(xb, xa, tb − ta) = <xb|e−
i
~ (tb−ta)H |xa>=<xb|e−

i
~ (tb−tc)He−

i
~ (tc−ta)H |xa>

= <xb|e−
i
~ (tb−tc)H

∫
dxc|xc><xc|e−

i
~ (tc−ta)H |xa>

=

∫
dxcK(xb, xc, tb − tc)K(xc, xa, tc − ta) . (1.31)

On the other hand , since |K(xb, xa, tb−ta)|2 is the probability density of finding
the particle around xb at the time tb, K must be a Schrödinger wave function
Ψ(xb, tb). Therefore, K must satisfy the Schrödinger equation

i~
∂K(b, a)

∂tb
= HbK(b, a) . (1.32)

From (1.31) and (1.31) we see that K(b, a) propagates the wave functions in
time and space:

Ψ(xb, tb) =

∫
dxaK(xb, xa; tb − ta) Ψ(xa, ta) . (1.33)

Indeed, one can show [1.7] that the infinitely small transport of the wave func-
tion,

Ψ(x, t+ ε) =
( m

2iπε~

)1
2

+∞∫
−∞

e
i
~ εL[(x−y)/ε,(x+y)/2] Ψ(y, t) dy , (1.34)

implies the Schrödinger equation for Ψ(x, t). This is shown in the Appendix B.
A few comments are in order. First is about the role of the classical trajec-

tories. A classical trajectory lies at the stationary point of the action S[x(t)]:

δS[x̄(t)] = S[x̄(t) + δx(t)]− S[x̄(t)] = 0 . (1.35)

Therefore, around the classical trajectory the value of S[x̄(t)] stays constant.
So, when the dimensionless ratio

S[x̄(t)]

~
� 1 , (1.36)

the contribution of the classical trajectory dominates: the out of phase contri-
butions of the trajectories outside the stationary region of S[x(t)] cancel out in
(1.27) and we can write the propagator K in the semiclassical approximation

K(b, a) = Fe
i
~S[x̄(t)] (1.37)
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where

S[x̄(t)] =

tb∫
ta

dtL(x̄(t), ˙̄x(t)) = Scl(tb, ta) , (1.38)

and F is to be determined (we shall discuss this approximation in detail later
on).

The second point is that in calculations which led us to eq.(1.23) the mag-
nitude of ε was irrelevant. Hence (1.23) is valid for an arbitrary lapse of time.
Since the action in this case is the one of a free particle, equation (1.23) gives
the propagator for a free particle:

K0(b, a) =

√
m

2iπ~(tb − ta)
e
i
1
2m

(xb−xa)
2

~(tb−ta) . (1.39)

When tb → ta, K0(xb, xa, tb − ta) → δ(xb − xa). This is in fact true for all
K(b, a)‘s. We can see it by inserting twice the unity

1 =
∑
n

|En><En| , H|En>= En|En> (1.40)

into (1.7)

K(b, a) =<xb| 1 e−
i
~H(tb−ta) 1 |xa>=

∑
n

φn(xb)φ
∗
n(xa) e

− i
~En(tb−ta) (1.41)

where φn(x) are the eigenfunctions of H. When we let tb → ta the propagator
becomes

K(b, a) →
∑
n

φn(xb)φ
∗
n(xa) = δ(xb − xa) . (1.42)

The interpretation of this result is clear. Without a lapse of time, tb = ta, there
is no change of the state of the system, thus the kernel K(b, a) which performs
the evolution of the wave function Ψ(x, t),

Ψ(xb, tb) =

∫
dxaK(xb, xa, tb − ta) Ψ(xa, ta) , (1.43)

must reduce to δ(xb − xa).
Before closing this Section let us illustrate the path integral formulation

of quantal processes with some intuitive arguments based on diffraction experi-
ments. First the well known two slit experiment. Let us recall that it establishes
the fact that the amplitude for a particle to go from the source (at xa and ta)
to the detector (at xb and tb) has to be the sum of two different amplitudes: the
particle going along the paths through the slit 1, and the particle going along
the paths through the slit 2. This implies that if we increase the numbers of,
both, screens and slits, the amplitude of a prticle going from the source a to
the detector b has to be the sum of all amplitudes whose paths go through all
possible combinations of slits. Now, let us think of the limit of infinitely many
and infinitely densly distributed screens and slits. In this limit we are getting
rid of the screens: between a and b we have an empty space. But, at each step



1.4 Double slit diffraction 11

of this limiting process we have to construct the total amplitude from the sum
of contributions from all possible paths. In the limit of empty space the paths
over which we have to sum cover all space between the source and the detector.
This is the content of the formula (1.27).

1.4 Double slit diffraction

Employing (1.43) we can give an approximate description of diffraction in the
double slit experiment. We do it in three dimensions postulating a form of the
wave function of one particle at the initial time t = 0 when the particle is at the
screen. Let the screen with two slits be identified with the (x, y)-plane. The
two slits are at x = ±a , and the wave function propagates in the (x, y, z) space.
We give its initial (at t = 0) shape in the form (we shall not bother about its
normalization and, for the sake of simplicity, we set ~ = m = 1)

Ψ(x0, y0, z0, 0) = G(x0, y0, z0) (1.44)

= eipz0

[√
1

2πδ
e−

(x0−a)
2

2δ +

√
1

2πδ
e−

(x0+a)
2

2δ

]√
1

2πδ
e−

y20
2δ .

There is no force acting along the z-direction, hence we describe the propagation
of particles in this direction as free (a plane wave) with constant velocity v =
p/m. In the (x, y)-plane the propagation is also free, but it is geometrically
restricted to the two slits whose shapes must be reflected in the form of the
initial wave function (1.44). The most natural form of G would be to make it
zero everywhere along the (x, y)-plane and a constant around the positions of
the two slits x = ±a, y = 0, but this would lead in (1.43) to some cumbersome
expressions and that is why we take G in a form of two Gaussian distributions
centered at the positions of these two slits. The parameter δ gives the size of
the slits. The boundaries of such “gaussian slits” are not sharp but smeared
out but, for a qualitative discussion, they are acceptable (see e.g. ref.[1.7]).

The free propagation from the screen is obtained from (1.43) by taking
G(x0, y0, z0) as given in (1.44) and propagating it with K = K0 given by (1.39).
Elementary calculations of a few Gaussian interals give

Ψ(x, y, z, t) =

∫
dx0dy0dz0

(
1

2πit

) 3
2

e
i[(x−x0)

2+(y−y0)
2+(z−z0)

2]
2t (1.45)

× eipz0
[√

1

2πδ
e−

(x0−a)
2

2δ +

√
1

2πδ
e−

(x0+a)
2

2δ

]√
1

2πδ
e−

y20
2δ

= eipz−i
1
2
p2t

√
1

2π(δ + it)
e
− y2

2(δ+it)

√
1

2π(δ + it)

[
e
− (x−a)2

2(δ+it) + e
− (x+a)2

2(δ+it)

]
.
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Figure 1.2: Time evolution of the two Gaussian probability (1.44). We see that initially

well localized Gaussian packets gradually ”melt away” and develop an interference pattern

manifesting itself as a maximum in the middle.

Thus the intensity at the detector is

|Ψ(x, y, z, t)|2 =
1

4π2(δ2 + t2)
e
− y2

δ2+t2
δ

×
[
e
− (x−a)2

δ2+t2
δ

+ e
− (x+a)2

δ2+t2
δ

+ e
− (x2+a2)

δ2+t2
δ

2 cos

(
2

xat

δ2 + t2

)]
. (1.46)

The diffration pattern is in our approximation regulated by the lapse of time
t, and one may identify the position of the detector as z = vt. Anyway, at
t = 0 we have a superposition of two Gaussians centered at ±a, whereas at
later times (1.46) develops many maxima which die out as we move to lager
and larger distances from the slits.

Note that when δ → 0, hence the two slits become pointlike we get

lim
δ→0
|Ψ|2 =

1

2π2t2

[
1 + cos

(
2
xa

t

)]
=

1

π2t2
cos2 xa

t
. (1.47)

In this limit we still have a pulsation of the probability distribution, however
the fading as we go away from the slits disappears: the diffraction is everywhere.

Although the initial wave function (1.44) is not very realistic, the qualitative
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features of diffraction come out correctly. One can certainly improve the ansatz
(1.44) but then we cannot work out an analytic form of |Ψ|2.

Path integrals have a very extensive literature. First of all there are the
classic papers of Feynman [1.2],[1.6]. Then there are two textbooks by Feynman
and Hibbs [1.7] and by Feynman [1.8] , and very many texts by various authors.
Let us quote only the one by Kleinert [1.9] which is a very comprehensive
and complete account of the method with many applications – a veritable boa
constrictor of a book. We will quote the other texts as we go along with these
lectures.

Appendix A: The Baker-Campbell-Hausdorff for-
mula

In this Appendix we will prove the so called BCH formula which says that for
two non-commuting operators A and B:

eA eB = eC (A.1)

and

C = A+B +
1

2
[A,B] +

1

12
([A, [A,B]] + [B, [B,A]]) + ... .

To prove (A.1) we shall follow ref.[1.11] and introduce an auxiliary patameter t

eC(t) = eAetB, (A.2)

although other choices can be also used: eC(t) = etAeB or eC(t) = etAetB. We
encourage the reader to repeat the proof with on of these alternative choices
for C.

The idea of the proof consists in solving a differential equation for dC/dt
and setting t = 1 in the solution. To this end let us first consider derivative of
the exponent of C:

d

dt
eC(t) =

∫ 1

0
dτ eτC(t)Ċ(t) e(1−τ)C(t) =

∫ 1

0
dτ e(1−τ)C(t)Ċ(t) eτC(t). (A.3)

This equality can be easily verified by expanding in powers of C(t).
Let us now concentrate on the τ dependent part of eq.(A.3). We shall first

define the so called adjoint operator ∆X , where X is some operator and the
action of ∆X on given operator Y is given by:

∆X Y = [X,Y ]. (A.4)

It is convenient to use this notation for the commutator, since it can be easily
(formally) inverted, raised to some power, etc. For example we shall show that:

eAB e−A = e∆A B = B + [A,B] +
1

2!
[A, [A,B]] + ... . (A.5)
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To this end one defines:

B(τ) = eτAB e−τA with B(0) = B , (A.6)

and writes differential equation for B(τ):

d

dτ
B(τ) = [A,B(τ)] = ∆AB(τ) . (A.7)

The first equality in (A.7) comes simply from differentiation of (A.6), whereas
the second equality is merely the definition of ∆A. However, equation (A.7)
can be now formally integrated, yielding:

B(t) = eτ∆AB , (A.8)

which just the result given in (A.5). Here we see another advantage of using
∆X : it is convenient to write nested commutators as powers of ∆X .

We can now use equation (A.8) and perform formally integration over dτ :

d

dt
eC(t) =

∫ 1

0
dτ e(1−τ)C(t)Ċ(t) eτC(t) =

∫ 1

0
dτ eC(t) e−τ∆C(t) Ċ(t)

= eC(t) 1− e−∆C(t)

∆C(t)
Ċ(t) . (A.9)

After these preliminaries we can finally prove (A.1). Let us use the definition
of C(t) as given by Eq.( A.2). By differentiating (A.2) with respect to t we get:

d

dt
eC(t) = eC(t)B . (A.10)

On the other hand we can use (A.9) to derive equation for Ċ(t):

Ċ(t) =
∆C(t)

1− e−∆C(t)
B =

e∆C(t)∆C(t)

e∆C(t) − 1
B . (A.11)

Now we would like to integrate (A.11) over dt from t = 0 to t = 1. To this end
we shall prove that

e∆C(t) = e∆A et∆B . (A.12)

Indeed:

e∆C(t) Y = eC(t) Y e−C(t) = eA
(
etB Y e−tB

)
e−A

= eA
(
et∆B Y

)
e−A = e∆A

(
et∆B Y

)
. (A.13)

Therefore
∆C(t) = ln

(
e∆A et∆B

)
. (A.14)

Finally we arrive at:

C(1) = A+

∫ 1

0
dt
e∆A et∆B ln

(
e∆A et∆B

)
e∆A et∆B − 1

B . (A.15)
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We can integrate (A.15) term by term by expanding in powers of variable
z − 1 = exp(∆A) exp(t∆B)− 1:

z ln(1 + (z − 1))

z − 1
= ln(1 + (z − 1)) +

ln(1 + (z − 1))

z − 1

= 1 +
∑
n=1

(−1)n+1

n(n+ 1)
(z − 1)n,

where z by itself is a power series in t:

z =

(
1 +

∑
k=1

1

k!
∆k
A

)1 +
∑
j=1

tj

j!
∆j
B

 = 1 +
∑
n=1

n∑
m=0

tm

m!(n−m)!
∆

(n−m)
A ∆m

B .

In terms of powers of (z − 1) formula (A.15) takes the following form:

C(1) = A+

∫ 1

0
dt

(
1 +

1

2
(z − 1)− 1

6
(z − 1)2 +

1

12
(z − 1)3 + ...

)
B . (A.16)

Since we want to expand C up to some number n of nested commutators (that
is up to some power n in ∆n−m

A ∆m
B ), we shall confine ourselves only to a few

terms in z − 1. Here we shall perform calculations up to n = 3:

z − 1 = ∆A + t∆B (A.17)

+
1

2
∆2
A + t∆A∆B +

1

2
t2 ∆2

B

+
1

6
∆3
A +

1

2
t∆2

A∆B +
1

2
t2∆A∆2

B +
1

6
t3∆3

B + ... .

Note that ∆BB = 0. This simplifies the action on B of the first factor of z− 1:

(z − 1)B =

(
∆A +

1

2
∆2
A +

1

6
∆3
A

)
B . (A.18)

Next we have:

(z − 1) 2B = (∆2
A + t∆B∆A)B (A.19)

+ (∆3
A +

1

2
t∆B∆2

A + t∆A∆B∆A +
1

2
t2 ∆2

B∆A)B,

(z − 1)3B = (∆3
A + t∆A∆B∆A + t∆B∆2

A + t 2∆2
B∆A)B .

Inserting eqs. (A.18, A.19) into (A.16) and integrating over t we get finally:

C = A+B +
1

2
[A,B] +

1

12
{[A, [A,B]]− [B, [A,B]]} − 1

24
[A, [B, [A,B]]] + ...

(A.20)
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Appendix B: Schrödinger equation

In this Appendix we shall derive the Schrödinger equation by performing an
infinitely small transport of the wave function Ψ(x, t) → Ψ(x, t + ε). This
derivation can be found in ref.[1.7], however we shall go one step further to
see whether this method gives consistent results up the order ε2. According to
eq.(1.34)

Ψ(x, t+ ε) =

∞∫
−∞

dη exp
(
− m

2i~ε
η2
)

exp

(
− iε
~
V (x+

η

2
)

)
Ψ(x+ η, t). (B.1)

where y = η + x. Let us note, however, that other ways of discretizing the
Lagrangian are possible. For example instead of V ((x + y)/2) we could have
taken (V (x) + V (y))/2.

The trick is to expand both sides of eq.(B.1) in ε. Expansion of the left
hand side is trivial

L = Ψ(x, t+ ε) = Ψ(x, t) + ε
d

dt
ψ(x, t) +

1

2
ε2
d2

dt2
Ψ(x, t) + . . . . (B.2)

Care must be taken, however, while expanding the right hand side of eq.(B.1).
Certainly we cannot expand the first exponent, since its argument is singular
for ε → 0. Mathematically correct procedure would consist in rotating the
integral over η in such a way, that the exponential would turn into a Gaussian
of a width proportional to

√
ε. It is clear then that, for a narrow Gaussian, only

contributions from η ∼ 0 are of importance and the remainder can be safely
expanded in η. We shall expand up to ε2, which means η4.The potential has to
be expanded up to η2 (since it is already multiplied by ε). For the two possible
ways in which the potential can be disctretized one obtains two different results:

U = V

(
x+ (x+ η)

2

)
= V

(
x+

η

2

)
= V (x) +

1

2
ηV ′(x) +

1

8
η2V ′′(x) + . . .

or

U =
1

2
(V (x) + V (x+ η)) = V (x) +

1

2
ηV ′(x) +

1

4
η2V ′′(x) . . . .

We see that both choices differ by a numerical factor in front of V ′′. Therefore
we shall use

U = V +
1

2
ηV ′ +

α

4
η2V ′′ . . . (B.3)

with α = 1/2 for the first choice and α = 1 for the second. In what follows we
omit arguments if they refer to the point (x, t).

The problem of a discretization of the continuous actions is of particular
importance for the so called lattice field theories. Here we just content ourselves
with an observation that two different discretizations of potential V (x) give the
same result up to terms linear in ε but differ at the level of ε2.

We shall also need U2 with accuracy η0:

U2 = V 2 + . . . .
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Finally

Ψ(x+ η, t) = Ψ + ηΨ′ +
1

2
η2Ψ′′ +

1

6
η3Ψ′′′ +

1

24
η4Ψ(4) + . . . .

Now, the integrand in the right hand side of eq.(B.1) reads:

exp

(
− iε
~
U

)
Ψ(x+ η, t) =

(
1− iε

~
U − ε2

2~2
U2

)
Ψ(x+ η, t)

= Ψ + ηΨ′ +
1

2
η2Ψ′′ +

1

6
η3Ψ′′′ +

1

24
η4Ψ(4)

− iε
~
U Ψ(x+ η, t)− ε2

2~2
U2Ψ(x+ η, t).

Consider U Ψ(x+ η, t) with accuracy η2:

UΨ(x+ η, t) =

(
V +

1

2
ηV ′ +

α

4
η2V ′′

)(
Ψ + ηΨ′ +

1

2
η2Ψ′′

)
= VΨ + η

(
1

2
V ′Ψ + VΨ′

)
+

1

2
η2
(
VΨ′′ + V ′Ψ′ +

α

2
V ′′Ψ

)
and U2Ψ(x+ η, t) with accuracy η0:

U2Ψ(x+ η, t) = V 2Ψ.

Therefore

exp

(
− iε
~
U

)
Ψ(x+ η, t) = Ψ− iε

~
VΨ +

1

2
η2Ψ′′ − ε2

2~2
V 2Ψ +

1

24
η4Ψ(4)

− iε
2~
η2
(
VΨ′′ + V ′Ψ′ +

α

2
V ′′Ψ

)
+ηΨ′ +

1

6
η3Ψ′′′ − iε

~
η

(
1

2
V ′Ψ + VΨ′

)
. (B.4)

Note that terms odd in η in the last line of eq.(B.4) will vanish under integration
over η. Using

∞∫
−∞

dη

A
e−βx

2 {
1, η2, η4

}
=

{
1,

1

2β
,

3

4β2

}
for β = m

2i~ε and A =
√
β/π we get upon integration:

{
1, η2, η4,

}
→
{

1,
i~ε
m
,−3~2ε2

m2

}
.

Let us compare both sides of eq.(B.1) power by power:

• ε0:
Ψ = Ψ, (B.5)

• ε1:
d

dt
Ψ =

[
1

2

i~
m

d2

dx2
− i

~
V

]
Ψ, (B.6)
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• ε2:

1

2

d2

dt2
Ψ = − ~2

8m2
Ψ(4) +

1

2m

(
VΨ′′ + V ′Ψ′ +

α

2
V ′′Ψ

)
− 1

2~2
V 2Ψ (B.7)

The first equation shows that we have used proper normalization. The
second is the Schrödinger equation. Indeed multiplying by i~ we get

i~
d

dt
Ψ = − ~2

2m
Ψ′′ + VΨ.

As far as the third equation is concerned, let us calculate the left hand side
using (B.6):

1

2

d2

dt2
Ψ =

1

2

[
1

2

i~
m

d2

dx2
− i

~
V

] [
1

2

i~
m

Ψ′′ − i

~
VΨ

]
= − ~2

8m2
Ψ(4) +

1

2m

(
VΨ′′ + V ′Ψ′ +

1

2
V ′′Ψ

)
− 1

2~2
V 2Ψ (B.8)

which is identical to (B.7) only if α = 1. We see, as already remarked in
the beginning of this example, that at the order ε2 only one way of discretizing
the potential reproduces the ”square” of the Schrödinger equation. This tiny
difference may improve the numerical simulations of quantum mechanical sys-
tems where one is forced to work in discrete steps in space. It is of even larger
importance in quantum field theories.
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