
Chapter 1

Path integrals and
superfluidity

What happens when we go below Tc? The function µ(T ) cannot go positive,
hence we keep it zero. We can keep 〈N〉 fixed (as T → 0) only through con-
densation of particles at the lowest (zero energy) level. For T < Tc, the average
number of particles occupying levels other than the ground level,
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decreases as T 3/2 feeding the ground level to keep 〈N〉 fixed. From (??), (??)
and (1.33) we get for the number of particles at the ground level the following
expression
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So, at T = 0 all particles condense at the lowest level.

1.1 Condensations and critical points

In order to appreciate this “criticality” of behavior of a system of free Bosons
described above let us compare it with a system of mutually noninteracting
Bosons which can reside only on some well defined discrete sequence of states
whose energies are εi > 0, εi+1 > εi, and where 0 ≤ i ≤ M , M being a finite
natural number.

The average number of Bosons, N , which we will keep, as before, fixed is
the discrete version of the continuous distribution (??).
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where, as before, β = 1/kBT . We can write (1.35) as a sum of the occupation
numbers of the states i:

N = N0 +
M∑
i=1

Ni . (1.36)
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Here we set apart the contribution to the fixed average number of particles, N ,
of the ground level (ε0) and and of the remaining levels (εi, i 6= 0).

Now we let T → 0 varying µ(T ) in such a way as to keep N fixed - the same
process we have done for the system of free Bosons. Clearly the specific form
of the function µ(T ) depends on the assumed values for εi, but - in any case -
we have to keep µ(T ) increasing towards ε0. However, unlike in the previous
case, we shall not encounter any special temperature in this process. As the
temperature drops, Bosons will flow from higher levels to the lowest level and,
eventually,

∑M
i=1 will become negligible and only the first term (corresponding

to ε0) will carry all of them.
Note that, without loosing generality of arguments, we can shift the posi-

tions of the levels: εi → εi − ε0, ε0 → 0. Then
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and now we must have µ(T ) ≤ 0.
By letting µ(T ) approach zero (from below) we can keep N fixed. Since

εi > 0 and µ(T ) ≤ 0, the sum
∑M

i=1 equals zero at T = 0. N is then taken care
of by N0, and we have to assume that for T close to zero, µ(T ) = λkBT . Then,
from (1.37) we get
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There is nothing surprising there: when we cool this system all particles end
up at the lowest level.

We have to contrast this behavior with the one of free Bosons: there the
lowest level stays empty until we reach Tc, then it starts taking Bosons and
completes this process at T = 0. This critical temperature depends, for a fixed
density of Bosons, only on their mass and fundamental constants:
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Can we have Tc 6= 0 for a discrete spectrum? The answer is no. Indeed, let
us suppose that we have Tc 6= 0. Then µ(Tc) obtained from the equation:
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which , in turn, would imply
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because Tc 6= 0. But this would make N = 0 ! So, indeed, for a discrete
spectrum we cannot have a well defined onset of condensation.

We can look at this problem of how the spectrum influences Tc working out
the case of Bosons in a harmonic trap: all Bosons are confined by an external
harmonic potential
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We discuss anisotropic traps because they can be realized in experiments and
analysed theoretically [11.5]. In fact some Bosonic condensates have recently
been observed for groups of atoms ranging from a few thousands to several
milions [11.6]. Note that by doing this we give a finite size to the system which
is
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1/3 . (1.41)

Since each Boson moves in the potential (1.40) its energy levels are

εnxnynz = (nx + 1
2)~ωx + (ny + 1

2)~ωy + (nz + 1
2)~ωz . (1.42)

All statements we have formulated earlier on discrete spectra, εi, apply here.
We have
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and, as long as the average distance between levels, ~(ωxωyωz)
1/3, is substan-

tially larger than kBT we have a well defined discrete spectrum, and the critical
temperature for condensation is not well defined.

However, the spectrum (1.42) becomes, for all practical purposes, continuous
when kBT is much larger than the average distance between levels

kBT � ~(ωxωyωz)
1/3 = ~ω0 . (1.44)

As it turns out [11.6], the critical temperatures, Tc, of the observed condensates
do satisfy (1.44). In the available traps one observes kBT ' (20−200)~ω0 with
~ω0 being of the order of a few nK. Therefore, it makes good sense to take
the continuous limit of the oscillator spectrum and find Tc defined by such a
system.

It follows from our earlier discussion that

µ(Tc) = ε000 = 1
2~(ωx + ωy + ωz) , (1.45)

and the ground state should be separated out from the rest of the spectrum
because its contribution to N ,
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in the continuous sum is zero. We follow the same steps as in our earlier
discussion of free Bosons (1.33): we get Tc assuming that N0(Tc) = 0. Thus we
determine Tc from the equation
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∞∫
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Thus the critical temperature is
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So, for T < Tc we get from the above formulae
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Therefore, we have a situation analogous to the one of free Bosons: Tc 6= 0 and
the condensate starts forming at T = Tc and, eventually, contains all Bosons at
T = 0.

Our discussion of condensation of Bosons can summarized as follows: As
long as the temperature, kBT , is much larger than the average distance between
neighbouring levels, ∆ε, of a system of Bosons, and we are reasonably close to
the thermodynamic limit (N → ∞, the size of the system → ∞, the density
kept constant), the onset of the critical temperature, Tc, is well defined. How-
ever, when kBT < ∆ε there is no critical temperature: the dependence of the
condensate on T is smooth. All this is well illustrated by the system of Bosons
confined by a harmonic oscillator potential.


