
Chapter 1

Path integrals and
superfluidity

1.1 Density matrix for many identical Bosons

For the sake of simplicity we start with two free particles. Let us suppose first
that they are distinguishable. Then, since

H = − ~2

2m

(
∇2

1 +∇2
2

)
, (1.1)

and ρ(x1x2; x′1x
′
2;β) satisfies the equation

∂ρ

∂β
= − ~2

2m

(
∇2

1 +∇2
2

)
ρ , (1.2)

we have (in three dimensions)

ρ(x1x2; x′1x
′
2;β) =

(
m

2π~2β

) 3
2
∗2
e
− m

2~2β [(x1−x′
1)2+(x2−x′

2)2]
. (1.3)

On the other hand we have (from the general principles)

ρ(x1x2; x′1x
′
2;β) =

∑
i

e−βEi ψi(x1x2)ψ∗i (x
′
1x
′
2) (1.4)

where Ei is the energy of the i’th eigenstate of H:

− ~2

2m

(
∇2

1 +∇2
2

)
ψi(x1x2) = Ei ψi(x1x2) . (1.5)

Let us spell out in detail (1.4) for noninteracting two particle wavefunctions,
which we take in the form of plane waves satisfying this last equation. So the
energy of the system is determined by the two wave vectors of these two plane
waves, (i = (lk)),

ψ(lk)(x1x2) =
1√

(2π)3
eil·x1

1√
(2π)3

eik·x2 , E(lk) =
~2l2

2m
+

~2k2

2m
. (1.6)
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So, we can write (1.4) in the following form

ρ(x1x2; x′1x
′
2) =

∫
d3l

∫
d3k exp

{
−β
2m

(l2 + k2)

}
ψ(lk)(x1x2)ψ∗(lk)(x

′
1x
′
2)

(1.7)
where

ψ(lk)(x1x2) =
1

(2π)3
ei(l·x1+k·x2) ,

and an analogous expression for ψ∗. Note that performing integration over
d3l d3k we get back (1.3).

But ρ given in (1.3) cannot describe two identical Bose particles. This is
seen from (1.7) and (1.8) because the wavefunctions ψ(lk)(x1x2) do not have
the right symmetry for Bosons, i.e. they are not symmetric under exchange of
x1 and x2 .

We introduce the correct symmetry into ρ through the simple device of
performing all permutations of the primed variables and multiplying this sum
by the inverse factorial of the number of particles (just two of them in our
simple example):

1

2!

∑
P
Pψ∗i (x′1x′2) =

1

2!

∑
P
ψ∗i (Px′1Px′2) . (1.8)

This somewhat strange notation for a permutation: keeping the symbol P in
front of each variable of a set which undergoes a permutation turns out to be
quite handy (see [11.1] and the text below).

Let us check explicitly how it works on our simple example. Indeed, applying
the operation (1.8) to the wavefunction ψ∗(lk)(x

′
1x
′
2) and substituting the result

into ρ given in (1.7) we obtain a result which is identical to the one obtained
when both wavefunctions in (1.7) are symmetrized according to (1.8). Note
that this identity is evident when we exchange the integration variables l and
k in some terms, and the integral d3l d3k is taken. Note also that the factor
1/2! is uniquely detrmined through this operation. Exercise: show it! In other
words: the operation (1.8) performed on one of the wavefunctions appearing in
ρ does effectively the same as symmetrization of both wavefunctions.

Our simple example is - as one may suspect - a special case of a general
formula for an arbitrary number, N , of interacting Bosons. Thus to obtain a
Bosonic density matrix one follows this prescription:

ρB(x1x2...xN ; x′1x
′
2...x

′
N ;β) =

1

N !

∑
P
ρ(x1x2...xN ;Px′1Px′2...Px′N ;β)

=

(
1

N !

)2 ∑
sym i

e−βEi
∑
P
ψi(Px1Px2...PxN )

∑
P ′

ψ∗i (P ′x′1P ′x′2...P ′x′N ) (1.9)

where the summation over symmetric states i is performed. In order to prove
this general formula one has to employ some group-theoretic arguments. The
interested reader is referred to [...]. The last equation in (1.9) stresses the
point discussed above on our simple example: symmetrization of just one set
of variables leads to symmetrization of both wavefunctions.
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So, we have now a well defined procedure of constructing a Bosonic density
matrix from any density matrix obtained for N distinguishable particles.

Note that ρB constructed above can be used to define the well known mea-
surable objects: one- and two-particle distribution functions. We have

n1(x1) = N

∫
ρB(x1x2...xN ; x1x2...xN ;β) d3x2...d

3xN∫
ρB(x1x2...xN ; x1x2...xN ;β) d3x1...d3xN

,

and

n2(x1x2) = N(N − 1)

∫
ρB(x1x2x3...xN ; x1x2x3...xN ;β) d3x3...d

3xN∫
ρB(x1x2...xN ; x1x2...xN ;β) d3x1...d3xN

.

1.2 The system of N noninteracting Bosons

It is instructive to discuss the role of the Bose - Einstein symmetry for N identi-
cal (noninteracting - to start with) particles as a function of temperature. What
we intend to argue about is that on the one hand the identity of Bose particles
leads to their very lengthy paths (e.g. in the functional representation of the
partition function) and, on the other hand, that only the very low tempera-
tures can accomodate (i.e. keep their contributions important) such lenghty
paths. In other words the very low temperatures emphasize the characteristics
of bosonic systems, whereas the high temperatures tend to smear them out.

Let us continue discussing a system of noninteracting Bosons which exhibits
most simply the role of the symmetrization. So, our starting point is the density
matrix for N distinguishable particles (in three spatial dimensions)

ρ(x1x2...xN ; x′1x
′
2...x

′
N ;β) =

(
m

2π~2β

) 3
2
N

e
− m

2~2β
∑N
i=1(xi−x′

i)
2

. (1.10)

Following the prescription for construction of a bosonic density matrix dis-
cussed earlier, we write down the partition function for noninteracting Bosons

ZB = e−βFB =
1

N !

∑
P

∫
ρ(x1x2...xN ;Px1Px2...PxN ;β) d3x1d

3x2...d
3xN

=
1

N !

(
m

2π~2β

) 3
2
N∑
P

∫
e
− m

2~2β
∑N
i=1(xi−Pxi)2 d3x1d

3x2...d
3xN . (1.11)

We can now see that symmetrization makes ZB a nontrivial multidimen-
sional integral (without it we get after a trivially simple integration: Z =(
m/2π~2β

) 3
2
N
V N ). From (1.11) we see that, in the Euclidean time ~β, the tra-

jectories run between well separated initial and final positions of particles, and
that, as long as β = 1/kBT is large (hence the temperature low), the spatial
extension of these paths can be considerable and still their contributions to ZB
may be significant. Relation (1.11) suggests also that it is sensible to decompose
permutations into cycles which classify quantal trajectories in (1.11).
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One can evaluate ZB analytically (compare [11.1]). First, we decompose
each permutation into cycles. For instance

P
(

12345

32451

)
=

(
1345

3451

)(
2

2

)
(1.12)

has two cycles of length 4 and 1, and

P
(

12345

21435

)
=

(
12

21

)(
34

43

)(
5

5

)
(1.13)

has three cycles of length 2, 2 and 1.
Denoting by Cν the number of cycles, in a given permutation, of length ν

we have: in the case (1.12) C4 = 1, C1 = 1, in the case (1.13) C2 = 2, C1 = 1.
Note that for each permutation we have∑

ν

Cν ν = N (1.14)

where N is the number of particles. The cycles factorize the integral in (1.11),
and we introduce the following factor for a cycle of length ν

hν =

(
m

2π~2β

) 3
2
ν ∫

d3x1d
3x2...d

3xν e
− m

2~2β [(x1−x2)2+(x2−x3)2+...+(xν−x1)2]
,

(1.15)
for a cycle of length 1

h1 =

(
m

2π~2β

) 3
2
∫
d3x1 = V

(
m

2π~2β

) 3
2

. (1.16)

Therefore, the partition function is

ZB = e−βFB =
1

N !

∑
P

(∏
ν

(hν)Cν
)
. (1.17)

All these integrals are Gaussian, and can be evaluated with the help of

+∞∫
−∞

dy e−a(x−y)2−b(y−z)2 =

(
π

a+ b

) 3
2

e−
ab
a+b

(x−z)2 , (1.18)

and we obtain

hν = V

(
m

2π~2βν

) 3
2

(1.19)

which reproduces (1.16) as a special case.
In order to compute (1.17) we must know how to handle permutations. We

count permutations through performing a bookkeeping of cycles [11.1]. Let
Cν be the numbers of cycles of length ν. They have to satisfy the constraint
(1.14). To a given set of Cν satisfying the above condition we generate all
possible permutations through:
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– interchanging cycles of the same length (in
∏
ν Cν ! ways)

– making cyclic permutations within cycles (in
∏
ν ν

Cν ways) .

Since there are N ! possible permutations, the number of permutations corre-
sponding to a set C1C2...Cq is

L(C1C2...Cq) =
N !∏

ν Cν ! νCν
. (1.20)

Thus the final expression for ZB is

ZB = e−βFB =
∑

C1C2...Cq

∏
ν

hCνν
Cν ! νCν

, (1.21)

with the constraint (1.14) imposed on C1C2...Cq (otherwise they are arbitrary).
Evaluation of (1.21) for a fixed N is not easy and, to simplify matters and

to recover contact with the textbook formulae, we will evaluate (1.21) with a
variable N whose average value, 〈N〉, is fixed by a chemical potential µ (thus
we employ the grand canonical ensemble formulation).

The new partition function is a superposition of partition functions (1.21)
for various N ’s:

Z = e−βF =

∞∑
N=1

e−βFB(N) eβµN . (1.22)

By fixing µ we fix the average number of particles, 〈N〉, the system has at a fixed
temperature kBT = 1/β. Indeed, from the general thermodynamic relation we
have

〈N〉 = −∂F
∂µ

=

∞∑
N=1

N p(N,µ) (1.23)

where p(N,µ) is the probability of occurence of N particles in our system

p(N,µ) =
1

Z
e−βFB+βµN ,

∞∑
N=1

p(N,µ) = 1 . (1.24)

Denoting eµβ = α, hence eµβN =
∏
ν α

νCν , we get from (1.21) and (1.22)

e−βF =
∑

C1...Cq

∏
ν

hCνν
Cν ! νCν

ανCν =
∑

C1...Cq

∏
ν

[hνα
ν/ν]Cν

Cν !
. (1.25)

Since N is not fixed Cq’s are not restricted: 0 ≤ Cq ≤ ∞. Therefore,

e−βF =
∏
ν

∞∑
Cν=0

[hνα
ν/ν]Cν

Cν !
=
∏
ν

ehνα
ν/ν = eΣνhναν/ν , (1.26)

and introducing hν from (1.19) we get

βF = −
∞∑
ν=1

hνα
ν

ν
= −

(
m

2π~2β

) 3
2

V
∞∑
ν=1

αν

ν5/2
= −

(
m

2π~2β

) 3
2

V ζ5/2(α) .

(1.27)
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Note that for α > 1 we have ζ5/2 =∞.
To make a contact with the texbook formulae let us calculate 〈N〉 from F

given in (1.27)

〈N〉 = −∂F
∂µ

=

(
m

2π~2β

) 3
2

V ζ3/2(α) (1.28)

where we introduced another ζ function:

∂

∂µ

( ∞∑
ν=1

αν

ν5/2

)
= β

∞∑
ν=1

αν

ν3/2
= β ζ3/2(α) . (1.29)

But (1.28) can be resolved into a sum over the energies of the system. One
finds [11.1]

〈N〉 = V

(
mkBT

2π~2

)3/2

ζ3/2(α) = V

∫
d3p

(2π~)3

(
eβ( p

2

2m
−µ) − 1

)−1

(1.30)

where the last expression is the well known sum over the average numbers of
Bosons at each energy p2/2m. To prove it, it is easier to go from the right to
the left in (1.30) doing an infinite series of Gaussian integrals.

Note that (1.30) tells us that for Bosons we must have µ ≤ 0 to keep the
partial averages of particles positive and finite. For µ > 0, (1.30) becomes
singular. However, for µ = 0, hence α = 1, our zeta functions

ζ3/2(1) = ζ(3/2) = 2.612 , ζ5/2(1) = ζ(5/2) = 1.341 (1.31)

become the Riemannn ζ-functions taken at the values when their arguments
equal 3/2 and 5/2, respectively.

The temperature at which µ(Tc) = 0 (hence α = 1) is the critical temper-
ature for Bose - Einstein condensation. The formula (1.30) is well suited to
discuss the onset and the evolution of condensation as the temperature falls
below Tc.

We fix the average number of particles, 〈N〉, and the volume, V (thus we fix
the density of particles). The critical temperature Tc is therefore determined
from (1.30):

〈N〉 = V

(
mkBTc
2π~2

) 3
2

2.612 . (1.32)

Formula (1.30) makes sense only for T ≥ Tc. Indeed, as we lower the temper-
ature towards Tc we have to increase ζ3/2(α = exp{µ/kBT}) in order to keep
〈N〉 constant. Since ζ3/2(α) is an increasing function of α, and is well defined
only for α ≤ 1, we have to have µ(T ) increasing and ≤ 0 as T drops. So, we
can keep 〈N〉 constant increasing µ(T ) until it reaches µ(Tc) = 0.


