
1 Schrödinger’s Cat1

One of the intepretational problems of QM consits in a fact that the system can be in a
superposition of two states |φ〉 and |ψ〉given as√

1

2
(|φ〉+ |ψ〉)

even if being in one of these states excludes the aother one. A typical example is a su-
perposition of two states of a cat being alive or dead. While quantum superposition of
microscopic states is not particularly strange, as it is essential for quantum interference
effectcs, a superposition of macroscopic, classical states (like a cat) seems to be paradox-
ical. There is one very important feature that defines a macroscopic state: it is a state
that is by itself a superposition of a large number of single microscopic states. We will
show that it is possible to construct a superposition of classical antinomic states, however
such superpositions are practically not detectable and very fragile.

1.1 Harmonic osillator - remeinder

Consider one-dimensional harmonic oscillator

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 (1)

that we will solve with the help of creation and annihilation operators. It is convenient
to define dimensionless operators

ξ̂ =

√
mω

h̄
x̂, π̂ =

1√
mh̄ω

p̂. (2)

Then
Ĥ =

1

2
h̄ω
(
π̂2 + ξ̂

2
)

(3)

and

â =

√
1

2

(
ξ̂ + iπ̂

)
, â† =

√
1

2

(
ξ̂ − iπ̂

)
(4)

and

x̂ =

√
h̄

2mω

(
â† + â

)
, p̂ = i

√
mωh̄

2

(
â† − â

)
(5)

Note that [
ξ̂, π̂
]

= i,
[
â, â†

]
= 1. (6)
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Recall that

â†â |n〉 = n |n〉 ,
â |n〉 =

√
n |n− 1〉 ,

â† |n〉 =
√
n+ 1 |n+ 1〉 (7)

and
Ĥ = h̄ω

(
â†â +

1

2

)
. (8)

In configuration representation π̂ = −i∂/∂ξ and in momentum representation ξ̂ = i∂/∂π.

1.2 Coherent states

A good model for a classical state is a coherent state, i.e. the normalized eigen state of
the annihilation operator â:

|z〉 = e−|z|
2/2
∑
n=0

zn√
n!
|n〉 (9)

where z is a complex number. Indeed

â |z〉 = e−|z|
2/2
∑
n=1

zn√
n!

√
n |n− 1〉

= e−|z|
2/2
∑
n=0

zn+1

√
n!

√
n |n〉

= z |z〉 . (10)

This means
〈z| â† = 〈z| z∗ (11)

Let’s calculate some properties of the coherent states.
Mean energy:

〈z| Ĥ |z〉 = h̄ω 〈z|
(
â†â +

1

2

)
|z〉 = h̄ω

(
|z|2 +

1

2

)
, (12)

mean position and momentum:

x̄ = 〈z| x̂ |z〉 =

√
h̄

2mω
(z∗ + z) , p̄ = 〈z| p̂ |z〉 = i

√
mωh̄

2
(z∗ − z) . (13)

Mean square deviations:

∆x2 = 〈z| (x̂− x̄)2 |z〉 = 〈z| x̂2 − 2x̄x̂+ x̄2 |z〉 = 〈z| x̂2 |z〉 − x̄2. (14)



Note that

x̂2 =
h̄

2mω

(
â†â† + â†â+ ââ† + ââ

)
=

h̄

2mω

(
â†â† + 2â†â+ ââ+ 1

)
. (15)

Hence

∆x2 =
h̄

2mω

[
(z∗ + z)2 + 1− (z∗ + z)2]

=
h̄

2mω
. (16)

Similarly
∆p2 = 〈z| p̂2 |z〉 − p2 (17)

with

p̂2 = −mωh̄
2

(
â†â† − â†â− ââ† + ââ

)
= −mωh̄

2

(
â†â† − 2â†â+ ââ− 1

)
(18)

and

∆p2 = −mωh̄
2

[
(z∗ − z)2 − 1− (z∗ − z)2]

=
mωh̄

2
. (19)

Note that coherent states for any z saturate uncertainty principle (like the ground state
of the harmonic oscillator)

∆x2∆p2 =
h̄2

4
. (20)

To calcuate explicit form of the wave functions we shall use (10):√
1

2

(
ξ +

d

dξ

)
ψz(ξ) = zψz(ξ). (21)

The solution reads:
ψz(ξ) = C exp

(
−1

2
(ξ −

√
2z)2

)
. (22)

Similarly in the momentum space:

i

√
1

2

(
π +

d

dπ

)
ψ̃z(π) = zψ̃z(π). (23)



And the solution corresponds to ψz(ξ) with z → −iz:

ψ̃z(π) = C̃ exp

(
−1

2
(π + i

√
2z)2

)
. (24)

Time dependence of coherent states:

|z, t〉 = e−|z|
2/2
∑
n=0

zn√
n!
e−Ent/h̄ |n〉

= e−|z|
2/2e−iωt/2

∑
n=0

zn√
n!

(
e−ωt

)n |n〉
= e−iωt/2 |z(t)〉 (25)

with
z(t) = ze−iωt. (26)

Assume
z = ρeiϕ (27)

then

〈z, t| x̂ |z, t〉 =

√
2h̄

mω
ρ cos(ωt− ϕ) = x0 cos(ωt− ϕ),

〈z, t| p̂ |z, t〉 = −
√

2h̄mωρ sin(ωt− ϕ) = −p0 sin(ωt− ϕ) (28)

with

x0 =

√
2h̄

mω
ρ, p0 =

√
2h̄mωρ. (29)

Note that this is motion of a classical oscillator. For semiclassical approximation we shall
assume ρ� 1. Using (16) and (19) we have

∆x

x0

=
1

2ρ
� 1,

∆p

p0

=
1

2ρ
� 1. (30)

Relative uncertainties are time independent and very small for a semiclassical state.

1.3 Construction of a Schrödinger’s cat

In time interval [0, T ] we switch "perturbation"

Ŵ = h̄g
(
â†â
)2
. (31)

Assume g � ω and ωT � 1. This means

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 + Ŵ ' Ŵ . (32)



Assume initial condition at time t = 0:

|ψ(0)〉 = |z〉 . (33)

Since
Ŵ |n〉 = h̄gn2 |n〉 (34)

time dependence takes the following form

|ψ(t)〉 = e−|z|
2/2
∑
n=0

zn√
n!
e−ign

2t |n〉 . (35)

Tis is rather complicated time dependence, but it simplifies for some particular values of
T .

• T = 2π/g

e−ign
2T = 1

and
|ψ(T )〉 = |z〉 . (36)

• T = π/g

e−ign
2T = (−1)n

since it is 1 for even n and −1 for odd n. Therefore

|ψ(T )〉 = |−z〉 . (37)

• T = π/2g

e−ign
2T = e−in

2π/2 =

{
1 for n - even
−i for n - odd

=
1

2
[1− i+ (−)n(1 + i)]

=
1√
2

(
e−iπ/4 + (−)neiπ/4

)
. (38)

In this case

|ψ(T )〉 = e−|z|
2/2 1√

2

∑
n=0

(
e−iπ/4 + (−)neiπ/4

) zn√
n!
|n〉

=
1√
2

(
e−iπ/4 |z〉+ eiπ/4 |−z〉

)
. (39)



Note that states |z〉 and |−z〉 are classically distinguishable for z = ρ since average
positions differ by a sign and for large ρ are therefore antinomic. They are therefore
good models for Schrödinger’s cat being live or dead . For z = iρ mean position is x̄ = 0,
however two states |z〉 and |−z〉 have opposite velocities.

We shall calculate probability P (ξ) and P (π). In configuration space

P (ξ) ∼
∣∣e−iπ/4ψz(ξ) + eiπ/4ψ−z(ξ)

∣∣2
= |ψz(ξ)|

2 +
∣∣ψ−z(ξ)∣∣2 + eiπ/2ψ∗z(ξ)ψ−z(ξ) + e−iπ/2ψ∗−z(ξ)ψz(ξ) (40)

where

|ψz(ξ)|
2 = |C|2 exp

(
−1

2
(ξ −

√
2z∗)2 − 1

2
(ξ −

√
2z)2

)
= |C|2 exp

(
−1

2
(ξ2 − 2

√
2ξz∗ + 2z∗2)− 1

2
(ξ2 − 2

√
2ξz + 2z2)

)
= |C|2 exp

(
−ξ2 +

√
2ξ(z∗ + z)− (z∗2 + z2)

)
. (41)

In momentum space z → −iz and ξ → π:∣∣∣ψ̃z(π)
∣∣∣2 =

∣∣∣C̃∣∣∣2 exp
(
−π2 + i

√
2π(z∗ − z) + (z∗2 + z2)

)
(42)

Interference term in configuration space can be obtained from (41) by replacing z → −z:

ψ∗z(ξ)ψ−z(ξ) = |C|2 exp
(
−ξ2 +

√
2ξ(z∗ − z)− (z∗2 + z2)

)
Now we shall use z = iρ:∣∣ψ±iρ(ξ)∣∣2 = |C|2 exp

(
−ξ2 + 2ρ2

)
(43)

and
ψ∗z(ξ)ψ−z(ξ) = |C|2 exp

(
−ξ2 + 2ρ2 − i2

√
2ξρ
)

(44)

Hence

P (ξ) ∼ exp
(
−ξ2 + 2ρ2

) [
2 + exp

(
−i2

(√
2ξρ− π

4

))
+ exp

(
i2
(√

2ξρ− π

4

))]
= 2 exp

(
−ξ2 + 2ρ2

) [
1 + cos

(
2
(√

2ξρ− π

4

))]
= 4 exp

(
−ξ2 + 2ρ2

)
cos2

(√
2ξρ− π

4

)
. (45)

In momentum space∣∣∣ψ̃iρ(π)
∣∣∣2 =

∣∣∣C̃∣∣∣2 exp
(
−π2 + 2

√
2πρ− 2ρ2

)
=

∣∣∣C̃∣∣∣2 exp

(
−
(
π −
√

2ρ
)2
)
,∣∣∣ψ̃−iρ(π)

∣∣∣2 =
∣∣∣C̃∣∣∣2 exp

(
−
(
π +
√

2ρ
)2
)
. (46)
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Figure 1: Probability in configuration space.

Interference term

ψ̃
∗
z(π)ψ̃−z(π) =

∣∣∣C̃∣∣∣2 exp

(
−1

2
(π −

√
2ρ)2

)
exp

(
−1

2
(π +

√
2ρ)2

)
(47)

is almost zero because two Gausses have small overlap for large ρ. Therefore

P (π) ∼ exp

(
−
(
π −
√

2ρ
)2
)

+ exp

(
−
(
π +
√

2ρ
)2
)
. (48)
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Figure 2: Probability in momentum space.

1.4 Schrödinger’s cat vs. statistical superposition

Can one distinguish superposition (39) from a statistical mixture of states |z〉 and |−z〉?
In order to measure momenta we have to have resolution δp such that

√
mh̄ω � δp� p0. (49)

Consider simple pendulum of m = 1 g and 1 m length. Then

ω =

√
g

l
= 3.13

1

s
. (50)



Let’s assume that at time t = 0 pendulum is 1 µm from equlibrium:

x0 =

√
2h̄

mω
ρ → ρ =

√
mω

2h̄
x0 =

√
3.13

2× 1.054
1034

√
g/s
J s

µm = 3.85× 109. (51)

Remember that J=kg m2/s2 = 1015g µm2/s2 and h̄ = 1.054× 10−34J s. Fom this we have
that uncertainty is

∆x

x0

=
1

2ρ
× 10−10. (52)

For the momentum distribution

p0 =
√

2h̄mωρ =
√

2× 1.054× 10−34×10 × 3.13
√

103g m2/s× 1/s× 3.85× 109

= 3.13× 10−6g m
s
.

This requires spacial resolution better than 1 µm, which is reasonable, given the initial
condition. In order to resolve spacial oscillation one needs ξ resolution better than

δξ � π√
2ρ

(53)

which translates for x

δx�
√

h̄

mω

π√
2ρ

=

√
1.054× 10−34

10−33.13

√
kg m2/s
kg/s

π√
23.85× 109

= 10−25 m. (54)

Such resolution is impossible to attain in practice.
Theoretically, however, a statistical ensemble of states |z〉 and |−z〉 would give the

same momentum distribution as (39), however a competely different spacial distribution.
In the first case the distribution is simply a Gaussian, and in the latter a Gaussian
enveloping the oscillations.

1.5 Fragility of a quantum superposition

Assume that the oscillator is in some way coupled with an (non-thermal) environement,
whose quantum state will be denoted as |χ〉 .We shall try to estimate how long the system
will stay in a superposition state (39). Let us first consider coupling of a coherent state.
Initially at t = 0 the sytem is in a state |Φ(0)〉

|Φ(0)〉 = |z(0)〉 |χ(0)〉 , (55)

Assume that time evolution is now modified:

z(t)→ zγ(t) = z(t)e−γt (56)

where z(t) corresponds to (26). So in time t the state is now

|Φ(t)〉 =
∣∣z(t)e−γt

〉
|χ(t)〉 . (57)



This means that the energy of an oscillator part of such a state is now

Eosc = h̄ω

(
|z|2 e−2γt +

1

2

)
. (58)

After time much longer than 1/γ the system goes to a ground state. The energy gained
by environement is therefore

∆E(t) = |z|2 (1− e−2γt) ' 2γt |z|2 , (59)

where the last equality holds for short times 2γt � 1. Let us now couple Schrödinger’s
cat state with the environement

|Φ(t)〉 =
1√
2

(
e−iπ/4 |zγ(t)〉

∣∣χ(+)(t)
〉

+ eiπ/4 |−zγ(t)〉
∣∣χ(−)(t)

〉)
, (60)

where
∣∣χ(±)(t)

〉
are two normalized states of the environement that are a priori different

(but not orthogonal). Let’s choose again z = iρ with ρ being large. Then

P (x) =
1

2

[∣∣∣ψzγ (x)
∣∣∣2 +

∣∣∣ψ−zγ (x)
∣∣∣2 + 2Re

(
iψ∗zγ (x)ψ−zγ (x)

) 〈
χ(+)(t)

∣∣χ(−)(t)
〉]
, (61)

where we assume that 〈
χ(+)(t)

∣∣χ(−)(t)
〉

= η ∈ R, 0 < η < 1. (62)

Going back to the dimensionless variables we see that the probability distribution in the
confifuration space

P (ξ) = 2 exp
(
2(ρe−γt)2

)
exp

(
−ξ2

) [
1 + η cos

(
2
(√

2ξ(ρe−γt)− π

4

))]
(63)

has still the Gaussian envelope, but the oscillatory term is suppressed by η. One can in
principle still see the quantum wiggles in a position distribution if η is not too small.

Momentum space distribution does not change much, because the interference term
did not contribute. One recovers two peaks centered at ±ρe−γt

√
2mh̄w.

Assume now that the environement is represented by a harmonic oscillator of the same
mass and frequency. Assume that initially the environement is in a ground state

|χ (0)〉 = |0〉 .

If the coupling between the two oscillators is quadratic (as in Ŵ ) we will assume that in
the course of time

•
∣∣χ(±)(t)

〉
are coherent states

∣∣χ(±)(t)
〉

= |±y〉

• and for short times |y|2 = 2γt |z|2



Then
η =

〈
χ(+)(t)

∣∣χ(−)(t)
〉

= e−|y|
2∑

n

1

n!
y∗n(−y)n = e−2|y|2 (64)

If we want η not too small |y|2 < 1. For short times the energy of the first oscillator

E(t) = E(0)− 2h̄ωγt |z|2 (65)

and of the second
E ′(t) = h̄ω

(
2γt |z|2 +

1

2

)
. (66)

Total energy is conserved. Once the energy is transferred from the first oscillator to the
second, the first oscillator becomes less and less semiclassical. Suppose that 1/2γ = 1
year = 3× 107s, the time to reach |y|2 = 1

t =
1

2γ

1

ρ2
=

3× 107

(3.85× 109)2 s = 2× 10−12s. (67)

To conclude:

• Even for a system protected from the environement the quantum superpositions of
macroscopic states are not observable,

• Interaction with environement will very quickly destroy superposition;

• Attempts on small systems with a limitted number of degrees of freedom have been
undertaken, but are inconclusive


