1 Schrödinger's Cat ${ }^{1}$

One of the intepretational problems of QM consits in a fact that the system can be in a superposition of two states $|\phi\rangle$ and $|\psi\rangle$ given as

$$
\sqrt{\frac{1}{2}}(|\phi\rangle+|\psi\rangle)
$$

even if being in one of these states excludes the aother one. A typical example is a superposition of two states of a cat being alive or dead. While quantum superposition of microscopic states is not particularly strange, as it is essential for quantum interference effectcs, a superposition of macroscopic, classical states (like a cat) seems to be paradoxical. There is one very important feature that defines a macroscopic state: it is a state that is by itself a superposition of a large number of single microscopic states. We will show that it is possible to construct a superposition of classical antinomic states, however such superpositions are practically not detectable and very fragile.

1.1 Harmonic osillator - remeinder

Consider one-dimensional harmonic oscillator

$$
\begin{equation*}
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2} \tag{1}
\end{equation*}
$$

that we will solve with the help of creation and annihilation operators. It is convenient to define dimensionless operators

$$
\begin{equation*}
\hat{\xi}=\sqrt{\frac{m \omega}{\hbar}} \hat{x}, \hat{\pi}=\frac{1}{\sqrt{m \hbar \omega}} \hat{p} \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\hat{H}=\frac{1}{2} \hbar \omega\left(\hat{\pi}^{2}+\hat{\xi}^{2}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{a}=\sqrt{\frac{1}{2}}(\hat{\xi}+i \hat{\pi}), \hat{a}^{\dagger}=\sqrt{\frac{1}{2}}(\hat{\xi}-i \hat{\pi}) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{x}=\sqrt{\frac{\hbar}{2 m \omega}}\left(\hat{a}^{\dagger}+\hat{a}\right), \hat{p}=i \sqrt{\frac{m \omega \hbar}{2}}\left(\hat{a}^{\dagger}-\hat{a}\right) \tag{5}
\end{equation*}
$$

Note that

$$
\begin{equation*}
[\hat{\xi}, \hat{\pi}]=i,\left[\hat{a}, \hat{a}^{\dagger}\right]=1 \tag{6}
\end{equation*}
$$

[^0]Recall that

$$
\begin{align*}
\hat{a}^{\dagger} \hat{a}|n\rangle & =n|n\rangle, \\
\hat{a}|n\rangle & =\sqrt{n}|n-1\rangle, \\
\hat{a}^{\dagger}|n\rangle & =\sqrt{n+1}|n+1\rangle \tag{7}
\end{align*}
$$

and

$$
\begin{equation*}
\hat{H}=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right) . \tag{8}
\end{equation*}
$$

In configuration representation $\hat{\pi}=-i \partial / \partial \xi$ and in momentum representation $\hat{\xi}=i \partial / \partial \pi$.

1.2 Coherent states

A good model for a classical state is a coherent state, i.e. the normalized eigen state of the annihilation operator \hat{a} :

$$
\begin{equation*}
|z\rangle=e^{-|z|^{2} / 2} \sum_{n=0} \frac{z^{n}}{\sqrt{n!}}|n\rangle \tag{9}
\end{equation*}
$$

where z is a complex number. Indeed

$$
\begin{align*}
\hat{a}|z\rangle & =e^{-|z|^{2} / 2} \sum_{n=1} \frac{z^{n}}{\sqrt{n!}} \sqrt{n}|n-1\rangle \\
& =e^{-|z|^{2} / 2} \sum_{n=0} \frac{z^{n+1}}{\sqrt{n!}} \sqrt{n}|n\rangle \\
& =z|z\rangle . \tag{10}
\end{align*}
$$

This means

$$
\begin{equation*}
\langle z| \hat{a}^{\dagger}=\langle z| z^{*} \tag{11}
\end{equation*}
$$

Let's calculate some properties of the coherent states.
Mean energy:

$$
\begin{equation*}
\langle z| \hat{H}|z\rangle=\hbar \omega\langle z|\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)|z\rangle=\hbar \omega\left(|z|^{2}+\frac{1}{2}\right), \tag{12}
\end{equation*}
$$

mean position and momentum:

$$
\begin{equation*}
\bar{x}=\langle z| \hat{x}|z\rangle=\sqrt{\frac{\hbar}{2 m \omega}}\left(z^{*}+z\right), \bar{p}=\langle z| \hat{p}|z\rangle=i \sqrt{\frac{m \omega \hbar}{2}}\left(z^{*}-z\right) . \tag{13}
\end{equation*}
$$

Mean square deviations:

$$
\begin{equation*}
\Delta x^{2}=\langle z|(\hat{x}-\bar{x})^{2}|z\rangle=\langle z| \hat{x}^{2}-2 \bar{x} \hat{x}+\bar{x}^{2}|z\rangle=\langle z| \hat{x}^{2}|z\rangle-\bar{x}^{2} . \tag{14}
\end{equation*}
$$

Note that

$$
\begin{align*}
\hat{x}^{2} & =\frac{\hbar}{2 m \omega}\left(\hat{a}^{\dagger} \hat{a}^{\dagger}+\hat{a}^{\dagger} \hat{a}+\hat{a} \hat{a}^{\dagger}+\hat{a} \hat{a}\right) \\
& =\frac{\hbar}{2 m \omega}\left(\hat{a}^{\dagger} \hat{a}^{\dagger}+2 \hat{a}^{\dagger} \hat{a}+\hat{a} \hat{a}+1\right) . \tag{15}
\end{align*}
$$

Hence

$$
\begin{align*}
\Delta x^{2} & =\frac{\hbar}{2 m \omega}\left[\left(z^{*}+z\right)^{2}+1-\left(z^{*}+z\right)^{2}\right] \\
& =\frac{\hbar}{2 m \omega} \tag{16}
\end{align*}
$$

Similarly

$$
\begin{equation*}
\Delta p^{2}=\langle z| \hat{p}^{2}|z\rangle-p^{2} \tag{17}
\end{equation*}
$$

with

$$
\begin{align*}
\hat{p}^{2} & =-\frac{m \omega \hbar}{2}\left(\hat{a}^{\dagger} \hat{a}^{\dagger}-\hat{a}^{\dagger} \hat{a}-\hat{a} \hat{a}^{\dagger}+\hat{a} \hat{a}\right) \\
& =-\frac{m \omega \hbar}{2}\left(\hat{a}^{\dagger} \hat{a}^{\dagger}-2 \hat{a}^{\dagger} \hat{a}+\hat{a} \hat{a}-1\right) \tag{18}
\end{align*}
$$

and

$$
\begin{align*}
\Delta p^{2} & =-\frac{m \omega \hbar}{2}\left[\left(z^{*}-z\right)^{2}-1-\left(z^{*}-z\right)^{2}\right] \\
& =\frac{m \omega \hbar}{2} \tag{19}
\end{align*}
$$

Note that coherent states for any z saturate uncertainty principle (like the ground state of the harmonic oscillator)

$$
\begin{equation*}
\Delta x^{2} \Delta p^{2}=\frac{\hbar^{2}}{4} \tag{20}
\end{equation*}
$$

To calcuate explicit form of the wave functions we shall use (10):

$$
\begin{equation*}
\sqrt{\frac{1}{2}}\left(\xi+\frac{d}{d \xi}\right) \psi_{z}(\xi)=z \psi_{z}(\xi) \tag{21}
\end{equation*}
$$

The solution reads:

$$
\begin{equation*}
\psi_{z}(\xi)=C \exp \left(-\frac{1}{2}(\xi-\sqrt{2} z)^{2}\right) \tag{22}
\end{equation*}
$$

Similarly in the momentum space:

$$
\begin{equation*}
i \sqrt{\frac{1}{2}}\left(\pi+\frac{d}{d \pi}\right) \tilde{\psi}_{z}(\pi)=z \tilde{\psi}_{z}(\pi) \tag{23}
\end{equation*}
$$

And the solution corresponds to $\psi_{z}(\xi)$ with $z \rightarrow-i z$:

$$
\begin{equation*}
\tilde{\psi}_{z}(\pi)=\tilde{C} \exp \left(-\frac{1}{2}(\pi+i \sqrt{2} z)^{2}\right) \tag{24}
\end{equation*}
$$

Time dependence of coherent states:

$$
\begin{align*}
|z, t\rangle & =e^{-|z|^{2} / 2} \sum_{n=0} \frac{z^{n}}{\sqrt{n!}} e^{-E_{n} t / \hbar}|n\rangle \\
& =e^{-|z|^{2} / 2} e^{-i \omega t / 2} \sum_{n=0} \frac{z^{n}}{\sqrt{n!}}\left(e^{-\omega t}\right)^{n}|n\rangle \\
& =e^{-i \omega t / 2}|z(t)\rangle \tag{25}
\end{align*}
$$

with

$$
\begin{equation*}
z(t)=z e^{-i \omega t} . \tag{26}
\end{equation*}
$$

Assume

$$
\begin{equation*}
z=\rho e^{i \varphi} \tag{27}
\end{equation*}
$$

then

$$
\begin{align*}
\langle z, t| \hat{x}|z, t\rangle & =\sqrt{\frac{2 \hbar}{m \omega}} \rho \cos (\omega t-\varphi)=x_{0} \cos (\omega t-\varphi) \\
\langle z, t| \hat{p}|z, t\rangle & =-\sqrt{2 \hbar m \omega} \rho \sin (\omega t-\varphi)=-p_{0} \sin (\omega t-\varphi) \tag{28}
\end{align*}
$$

with

$$
\begin{equation*}
x_{0}=\sqrt{\frac{2 \hbar}{m \omega}} \rho, p_{0}=\sqrt{2 \hbar m \omega} \rho \tag{29}
\end{equation*}
$$

Note that this is motion of a classical oscillator. For semiclassical approximation we shall assume $\rho \gg 1$. Using (16) and (19) we have

$$
\begin{equation*}
\frac{\Delta x}{x_{0}}=\frac{1}{2 \rho} \ll 1, \frac{\Delta p}{p_{0}}=\frac{1}{2 \rho} \ll 1 . \tag{30}
\end{equation*}
$$

Relative uncertainties are time independent and very small for a semiclassical state.

1.3 Construction of a Schrödinger's cat

In time interval $[0, T]$ we switch "perturbation"

$$
\begin{equation*}
\hat{W}=\hbar g\left(\hat{a}^{\dagger} \hat{a}\right)^{2} \tag{31}
\end{equation*}
$$

Assume $g \gg \omega$ and $\omega T \ll 1$. This means

$$
\begin{equation*}
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2}+\hat{W} \simeq \hat{W} \tag{32}
\end{equation*}
$$

Assume initial condition at time $t=0$:

$$
\begin{equation*}
|\psi(0)\rangle=|z\rangle . \tag{33}
\end{equation*}
$$

Since

$$
\begin{equation*}
\hat{W}|n\rangle=\hbar g n^{2}|n\rangle \tag{34}
\end{equation*}
$$

time dependence takes the following form

$$
\begin{equation*}
|\psi(t)\rangle=e^{-|z|^{2} / 2} \sum_{n=0} \frac{z^{n}}{\sqrt{n!}} e^{-i g n^{2} t}|n\rangle . \tag{35}
\end{equation*}
$$

Tis is rather complicated time dependence, but it simplifies for some particular values of T.

- $T=2 \pi / g$

$$
e^{-i g n^{2} T}=1
$$

and

$$
\begin{equation*}
|\psi(T)\rangle=|z\rangle \tag{36}
\end{equation*}
$$

- $T=\pi / g$

$$
e^{-i g n^{2} T}=(-1)^{n}
$$

since it is 1 for even n and -1 for odd n. Therefore

$$
\begin{equation*}
|\psi(T)\rangle=|-z\rangle . \tag{37}
\end{equation*}
$$

- $T=\pi / 2 g$

$$
\begin{align*}
e^{-i g n^{2} T} & =e^{-i n^{2} \pi / 2}=\left\{\begin{array}{ccc}
1 & \text { for } n-\text { even } \\
-i & \text { for } & n \text { - odd }
\end{array}\right. \\
& =\frac{1}{2}\left[1-i+(-)^{n}(1+i)\right] \\
& =\frac{1}{\sqrt{2}}\left(e^{-i \pi / 4}+(-)^{n} e^{i \pi / 4}\right) . \tag{38}
\end{align*}
$$

In this case

$$
\begin{align*}
|\psi(T)\rangle & =e^{-|z|^{2} / 2} \frac{1}{\sqrt{2}} \sum_{n=0}\left(e^{-i \pi / 4}+(-)^{n} e^{i \pi / 4}\right) \frac{z^{n}}{\sqrt{n!}}|n\rangle \\
& =\frac{1}{\sqrt{2}}\left(e^{-i \pi / 4}|z\rangle+e^{i \pi / 4}|-z\rangle\right) . \tag{39}
\end{align*}
$$

Note that states $|z\rangle$ and $|-z\rangle$ are classically distinguishable for $z=\rho$ since average positions differ by a sign and for large ρ are therefore antinomic. They are therefore good models for Schrödinger's cat being live or dead. For $z=i \rho$ mean position is $\bar{x}=0$, however two states $|z\rangle$ and $|-z\rangle$ have opposite velocities.

We shall calculate probability $P(\xi)$ and $P(\pi)$. In configuration space

$$
\begin{align*}
P(\xi) & \sim\left|e^{-i \pi / 4} \psi_{z}(\xi)+e^{i \pi / 4} \psi_{-z}(\xi)\right|^{2} \\
& =\left|\psi_{z}(\xi)\right|^{2}+\left|\psi_{-z}(\xi)\right|^{2}+e^{i \pi / 2} \psi_{z}^{*}(\xi) \psi_{-z}(\xi)+e^{-i \pi / 2} \psi_{-z}^{*}(\xi) \psi_{z}(\xi) \tag{40}
\end{align*}
$$

where

$$
\begin{align*}
\left|\psi_{z}(\xi)\right|^{2} & =|C|^{2} \exp \left(-\frac{1}{2}\left(\xi-\sqrt{2} z^{*}\right)^{2}-\frac{1}{2}(\xi-\sqrt{2} z)^{2}\right) \\
& =|C|^{2} \exp \left(-\frac{1}{2}\left(\xi^{2}-2 \sqrt{2} \xi z^{*}+2 z^{* 2}\right)-\frac{1}{2}\left(\xi^{2}-2 \sqrt{2} \xi z+2 z^{2}\right)\right) \\
& =|C|^{2} \exp \left(-\xi^{2}+\sqrt{2} \xi\left(z^{*}+z\right)-\left(z^{* 2}+z^{2}\right)\right) \tag{41}
\end{align*}
$$

In momentum space $z \rightarrow-i z$ and $\xi \rightarrow \pi$:

$$
\begin{equation*}
\left|\tilde{\psi}_{z}(\pi)\right|^{2}=|\tilde{C}|^{2} \exp \left(-\pi^{2}+i \sqrt{2} \pi\left(z^{*}-z\right)+\left(z^{* 2}+z^{2}\right)\right) \tag{42}
\end{equation*}
$$

Interference term in configuration space can be obtained from (41) by replacing $z \rightarrow-z$:

$$
\psi_{z}^{*}(\xi) \psi_{-z}(\xi)=|C|^{2} \exp \left(-\xi^{2}+\sqrt{2} \xi\left(z^{*}-z\right)-\left(z^{* 2}+z^{2}\right)\right)
$$

Now we shall use $z=i \rho$:

$$
\begin{equation*}
\left|\psi_{ \pm i \rho}(\xi)\right|^{2}=|C|^{2} \exp \left(-\xi^{2}+2 \rho^{2}\right) \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{z}^{*}(\xi) \psi_{-z}(\xi)=|C|^{2} \exp \left(-\xi^{2}+2 \rho^{2}-i 2 \sqrt{2} \xi \rho\right) \tag{44}
\end{equation*}
$$

Hence

$$
\begin{align*}
P(\xi) & \sim \exp \left(-\xi^{2}+2 \rho^{2}\right)\left[2+\exp \left(-i 2\left(\sqrt{2} \xi \rho-\frac{\pi}{4}\right)\right)+\exp \left(i 2\left(\sqrt{2} \xi \rho-\frac{\pi}{4}\right)\right)\right] \\
& =2 \exp \left(-\xi^{2}+2 \rho^{2}\right)\left[1+\cos \left(2\left(\sqrt{2} \xi \rho-\frac{\pi}{4}\right)\right)\right] \\
& =4 \exp \left(-\xi^{2}+2 \rho^{2}\right) \cos ^{2}\left(\sqrt{2} \xi \rho-\frac{\pi}{4}\right) \tag{45}
\end{align*}
$$

In momentum space

$$
\begin{align*}
\left|\tilde{\psi}_{i \rho}(\pi)\right|^{2} & =|\tilde{C}|^{2} \exp \left(-\pi^{2}+2 \sqrt{2} \pi \rho-2 \rho^{2}\right) \\
& =|\tilde{C}|^{2} \exp \left(-(\pi-\sqrt{2} \rho)^{2}\right) \\
\left|\tilde{\psi}_{-i \rho}(\pi)\right|^{2} & =|\tilde{C}|^{2} \exp \left(-(\pi+\sqrt{2} \rho)^{2}\right) \tag{46}
\end{align*}
$$

Figure 1: Probability in configuration space.

Interference term

$$
\begin{equation*}
\tilde{\psi}_{z}^{*}(\pi) \tilde{\psi}_{-z}(\pi)=|\tilde{C}|^{2} \exp \left(-\frac{1}{2}(\pi-\sqrt{2} \rho)^{2}\right) \exp \left(-\frac{1}{2}(\pi+\sqrt{2} \rho)^{2}\right) \tag{47}
\end{equation*}
$$

is almost zero because two Gausses have small overlap for large ρ. Therefore

$$
\begin{equation*}
P(\pi) \sim \exp \left(-(\pi-\sqrt{2} \rho)^{2}\right)+\exp \left(-(\pi+\sqrt{2} \rho)^{2}\right) \tag{48}
\end{equation*}
$$

Figure 2: Probability in momentum space.

1.4 Schrödinger's cat vs. statistical superposition

Can one distinguish superposition (39) from a statistical mixture of states $|z\rangle$ and $|-z\rangle$? In order to measure momenta we have to have resolution δp such that

$$
\begin{equation*}
\sqrt{m \hbar \omega} \ll \delta p \ll p_{0} \tag{49}
\end{equation*}
$$

Consider simple pendulum of $m=1 \mathrm{~g}$ and 1 m length. Then

$$
\begin{equation*}
\omega=\sqrt{\frac{g}{l}}=3.13 \frac{1}{\mathrm{~s}} . \tag{50}
\end{equation*}
$$

Let's assume that at time $t=0$ pendulum is $1 \mu \mathrm{~m}$ from equlibrium:

$$
\begin{equation*}
x_{0}=\sqrt{\frac{2 \hbar}{m \omega}} \rho \quad \rightarrow \quad \rho=\sqrt{\frac{m \omega}{2 \hbar}} x_{0}=\sqrt{\frac{3.13}{2 \times 1.054} 10^{34}} \sqrt{\frac{\mathrm{~g} / \mathrm{s}}{\mathrm{~J} \mathrm{~s}}} \mu \mathrm{~m}=3.85 \times 10^{9} . \tag{51}
\end{equation*}
$$

Remember that $\mathrm{J}=\mathrm{kg} \mathrm{m}^{2} / \mathrm{s}^{2}=10^{15} \mathrm{~g} \mu \mathrm{~m}^{2} / \mathrm{s}^{2}$ and $\hbar=1.054 \times 10^{-34} \mathrm{~J} \mathrm{~s}$. Fom this we have that uncertainty is

$$
\begin{equation*}
\frac{\Delta x}{x_{0}}=\frac{1}{2 \rho} \times 10^{-10} . \tag{52}
\end{equation*}
$$

For the momentum distribution

$$
\begin{aligned}
p_{0} & =\sqrt{2 \hbar m \omega} \rho=\sqrt{2 \times 1.054 \times 10^{-34 \times 10} \times 3.13} \sqrt{10^{3} \mathrm{~g} \mathrm{~m}}{ }^{2} / \mathrm{s} \times 1 / \mathrm{s}
\end{aligned} 3.85 \times 10^{9} .
$$

This requires spacial resolution better than $1 \mu \mathrm{~m}$, which is reasonable, given the initial condition. In order to resolve spacial oscillation one needs ξ resolution better than

$$
\begin{equation*}
\delta \xi \ll \frac{\pi}{\sqrt{2} \rho} \tag{53}
\end{equation*}
$$

which translates for x

$$
\begin{equation*}
\delta x \ll \sqrt{\frac{\hbar}{m \omega}} \frac{\pi}{\sqrt{2} \rho}=\sqrt{\frac{1.054 \times 10^{-34}}{10^{-3} 3.13}} \sqrt{\frac{\mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}}{\mathrm{~kg} / \mathrm{s}}} \frac{\pi}{\sqrt{2} 3.85 \times 10^{9}}=10^{-25} \mathrm{~m} \tag{54}
\end{equation*}
$$

Such resolution is impossible to attain in practice.
Theoretically, however, a statistical ensemble of states $|z\rangle$ and $|-z\rangle$ would give the same momentum distribution as (39), however a competely different spacial distribution. In the first case the distribution is simply a Gaussian, and in the latter a Gaussian enveloping the oscillations.

1.5 Fragility of a quantum superposition

Assume that the oscillator is in some way coupled with an (non-thermal) environement, whose quantum state will be denoted as $|\chi\rangle$. We shall try to estimate how long the system will stay in a superposition state (39). Let us first consider coupling of a coherent state. Initially at $t=0$ the sytem is in a state $|\Phi(0)\rangle$

$$
\begin{equation*}
|\Phi(0)\rangle=|z(0)\rangle|\chi(0)\rangle, \tag{55}
\end{equation*}
$$

Assume that time evolution is now modified:

$$
\begin{equation*}
z(t) \rightarrow z_{\gamma}(t)=z(t) e^{-\gamma t} \tag{56}
\end{equation*}
$$

where $z(t)$ corresponds to (26). So in time t the state is now

$$
\begin{equation*}
|\Phi(t)\rangle=\left|z(t) e^{-\gamma t}\right\rangle|\chi(t)\rangle . \tag{57}
\end{equation*}
$$

This means that the energy of an oscillator part of such a state is now

$$
\begin{equation*}
E_{\mathrm{osc}}=\hbar \omega\left(|z|^{2} e^{-2 \gamma t}+\frac{1}{2}\right) . \tag{58}
\end{equation*}
$$

After time much longer than $1 / \gamma$ the system goes to a ground state. The energy gained by environement is therefore

$$
\begin{equation*}
\Delta E(t)=|z|^{2}\left(1-e^{-2 \gamma t}\right) \simeq 2 \gamma t|z|^{2} \tag{59}
\end{equation*}
$$

where the last equality holds for short times $2 \gamma t \ll 1$. Let us now couple Schrödinger's cat state with the environement

$$
\begin{equation*}
|\Phi(t)\rangle=\frac{1}{\sqrt{2}}\left(e^{-i \pi / 4}\left|z_{\gamma}(t)\right\rangle\left|\chi^{(+)}(t)\right\rangle+e^{i \pi / 4}\left|-z_{\gamma}(t)\right\rangle\left|\chi^{(-)}(t)\right\rangle\right) \tag{60}
\end{equation*}
$$

where $\left|\chi^{(\pm)}(t)\right\rangle$ are two normalized states of the environement that are a priori different (but not orthogonal). Let's choose again $z=i \rho$ with ρ being large. Then

$$
\begin{equation*}
P(x)=\frac{1}{2}\left[\left|\psi_{z_{\gamma}}(x)\right|^{2}+\left|\psi_{-z_{\gamma}}(x)\right|^{2}+2 \boldsymbol{R e}\left(i \psi_{z_{\gamma}}^{*}(x) \psi_{-z_{\gamma}}(x)\right)\left\langle\chi^{(+)}(t) \mid \chi^{(-)}(t)\right\rangle\right] \tag{61}
\end{equation*}
$$

where we assume that

$$
\begin{equation*}
\left\langle\chi^{(+)}(t) \mid \chi^{(-)}(t)\right\rangle=\eta \in \mathcal{R}, \quad 0<\eta<1 . \tag{62}
\end{equation*}
$$

Going back to the dimensionless variables we see that the probability distribution in the confifuration space

$$
\begin{equation*}
P(\xi)=2 \exp \left(2\left(\rho e^{-\gamma t}\right)^{2}\right) \exp \left(-\xi^{2}\right)\left[1+\eta \cos \left(2\left(\sqrt{2} \xi\left(\rho e^{-\gamma t}\right)-\frac{\pi}{4}\right)\right)\right] \tag{63}
\end{equation*}
$$

has still the Gaussian envelope, but the oscillatory term is suppressed by η. One can in principle still see the quantum wiggles in a position distribution if η is not too small.

Momentum space distribution does not change much, because the interference term did not contribute. One recovers two peaks centered at $\pm \rho e^{-\gamma t} \sqrt{2 m \hbar w}$.

Assume now that the environement is represented by a harmonic oscillator of the same mass and frequency. Assume that initially the environement is in a ground state

$$
|\chi(0)\rangle=|0\rangle
$$

If the coupling between the two oscillators is quadratic (as in \hat{W}) we will assume that in the course of time

- $\left|\chi^{(\pm)}(t)\right\rangle$ are coherent states $\left|\chi^{(\pm)}(t)\right\rangle=| \pm y\rangle$
- and for short times $|y|^{2}=2 \gamma t|z|^{2}$

Then

$$
\begin{equation*}
\eta=\left\langle\chi^{(+)}(t) \mid \chi^{(-)}(t)\right\rangle=e^{-|y|^{2}} \sum_{n} \frac{1}{n!} y^{* n}(-y)^{n}=e^{-2|y|^{2}} \tag{64}
\end{equation*}
$$

If we want η not too small $|y|^{2}<1$. For short times the energy of the first oscillator

$$
\begin{equation*}
E(t)=E(0)-2 \hbar \omega \gamma t|z|^{2} \tag{65}
\end{equation*}
$$

and of the second

$$
\begin{equation*}
E^{\prime}(t)=\hbar \omega\left(2 \gamma t|z|^{2}+\frac{1}{2}\right) . \tag{66}
\end{equation*}
$$

Total energy is conserved. Once the energy is transferred from the first oscillator to the second, the first oscillator becomes less and less semiclassical. Suppose that $1 / 2 \gamma=1$ year $=3 \times 10^{7} \mathrm{~s}$, the time to reach $|y|^{2}=1$

$$
\begin{equation*}
t=\frac{1}{2 \gamma} \frac{1}{\rho^{2}}=\frac{3 \times 10^{7}}{\left(3.85 \times 10^{9}\right)^{2}} \mathrm{~s}=2 \times 10^{-12} \mathrm{~s} . \tag{67}
\end{equation*}
$$

To conclude:

- Even for a system protected from the environement the quantum superpositions of macroscopic states are not observable,
- Interaction with environement will very quickly destroy superposition;
- Attempts on small systems with a limitted number of degrees of freedom have been undertaken, but are inconclusive

[^0]: ${ }^{1}$ J.-L. Basdevant, L. Dalibard The Quantum Mechanics Solver

