1 Schrodinger’s Cat!

One of the intepretational problems of QM consits in a fact that the system can be in a
superposition of two states |¢) and |¢))given as

1
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even if being in one of these states excludes the aother one. A typical example is a su-
perposition of two states of a cat being alive or dead. While quantum superposition of
microscopic states is not particularly strange, as it is essential for quantum interference
effectes, a superposition of macroscopic, classical states (like a cat) seems to be paradox-
ical. There is one very important feature that defines a macroscopic state: it is a state
that is by itself a superposition of a large number of single microscopic states. We will
show that it is possible to construct a superposition of classical antinomic states, however
such superpositions are practically not detectable and very fragile.

1.1 Harmonic osillator - remeinder
Consider one-dimensional harmonic oscillator
H ="+ —muw?i’ (1)

that we will solve with the help of creation and annihilation operators. It is convenient
to define dimensionless operators

mw 1

s fmw N 9
Then
H==n (ﬁh?) (3)
and
X Liys o . s
a:\/;(f—i-m),cﬁ:\/j(f—m) (4)
and
N ooy . fmwho
= QmW(QT a),p=1 %(cﬁ—) (5)
Note that

[7?} =i, [a,a] = 1. (6)
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Recall that

ata n) = nln),
i) = Va1,
a'ln)y = Vn+1ljn+1) (7)

and

- 1
H = hw (&Ta + 5) : (8)
In configuration representation 7 = —id/0¢ and in momentum representation é =140/0m.

1.2 Coherent states

A good model for a classical state is a coherent state, i.e. the normalized eigen state of
the annihilation operator a:

152 Z"
|Z>:€H/2Eﬁ|”> (9)
n=0 :
where z is a complex number. Indeed
i) = Y a1
n=1 \/m
P2 S 0 In)
n=0 m
= z|z2). (10)

This means
(z|a’ = (2] 2* (11)

Let’s calculate some properties of the coherent states.
Mean energy:

(z| H|z) = hw (z] (a*a + %) |2) = hw (|z|2 + %) , (12)

mean position and momentum:

T=(z[2]z) = (2" +2), p=(z[pl2) =1 (2" = 2). (13)

Mean square deviations:



Note that

h
= (a'a’ + a'a + aa’ + aa)
mw
h
= 3 (a'a' +2a'a+aa+1). (15)
mw
Hence
2 h * 2 * 2
Az® = %[(2 +2)"+1— (2" +2)°]
h
= 5 (16)
Similarly
Ap?* = (2] p* |2) — p? (17)
with
52 MW tot  ate aat o g
pro= — 5 (aa —a'a—aa +aa)
h
_ _m‘; (ata' —2ata + aa — 1) (18)
and
Ap? — mwh 2_ 4 * 2
Po= SR - -1 (- )]
mwh
= —5 (19)

Note that coherent states for any z saturate uncertainty principle (like the ground state
of the harmonic oscillator)

2
Ax?Ap? = hz (20)

To calcuate explicit form of the wave functions we shall use (10):

1 d
5 (64 5) v =200 21)
The solution reads: .
0.6) = Cexp (~ 36 - VE22) 2

i/2 (w n i) §.(m) = 2 (). (23)



And the solution corresponds to 1, () with z — —iz:
Y, (m) = Cexp (_%(w + z'\/iz)Q) . (24)
Time dependence of coherent states:
|z, t) = el /2 ; \j—%e_E"t/h |n)
ol 2 piwt/2 ;% % (e—wt)” In)

e 12 [2(1)) (25)
with ‘
2(t) = ze ™" (26)
Assume A
z = pe'? (27)
then
Cotldlant) = (/2 peostut — o) = o coslt — )
2, t| T |z = 1/ —pcos(wt — p) = xgcos(wt —
) ) mwp ‘2 0 ¥)
(z,t|plz,t) = —V2hmwpsin(wt — ¢) = —pgsin(wt — @) (28)
with
2h f——
To = @Pa po =V 2hmwp. (29)

Note that this is motion of a classical oscillator. For semiclassical approximation we shall
assume p > 1. Using (16) and (19) we have

Ax 1 Ap 1
ekl =k 30
ro  2p Po 2p (30)

Relative uncertainties are time independent and very small for a semiclassical state.

1.3 Construction of a Schréodinger’s cat

In time interval [0, 7] we switch "perturbation”
W = ng (ata)”. (31)

Assume g > w and wT < 1. This means

. 2 1 . .
H= 2p—m + me + W W (32)



Assume initial condition at time ¢ = 0:

[¥(0)) = [2) - (33)
Since )
W |n) = hgn® |n) (34)
time dependence takes the following form

(t)) = e P23 T n). (35)

!
n—o V1

Tis is rather complicated time dependence, but it simplifies for some particular values of

T.

o I'=27/g
e~ T — 1
and
(1)) = |z) - (36)
e I'=7/g

efign2T — (_1)n

since it is 1 for even n and —1 for odd n. Therefore

o I'=17/2g

—ign®T  _ e—m%/Q _ 1‘ for n - even
—i for n-odd
1
= 3 [1—i+4 (—=)"(1+414)]

Sl

(e—iﬂ/4 + (_)neiﬂ-/4) ) (38)
In this case

(D) = S (g (e

n=0

(e7™/*|2) + €™/ |=2)) . (39)

5l



Note that states |z) and |—z) are classically distinguishable for z = p since average
positions differ by a sign and for large p are therefore antinomic. They are therefore
good models for Schrédinger’s cat being live or dead. For z = ip mean position is z = 0,
however two states |z) and |—z) have opposite velocities.

We shall calculate probability P(¢) and P(w). In configuration space

PE) ~ e, (€) + e (6)]
= [0, () + [0 (O + e 2E(E)_(€) + et (), (€)  (40)

2

where
0AOF = ICFexp (5l - VB - 56 - VEP)
= |C|exp <—%(§2 — 2V/262" +227%) — %(52 — V22 + 222))

— O exp (=€ + V(" + 2) = (22 + %)) (41)

In momentum space z — —iz and £ — T
2

C

. 2
b.(m)
Interference term in configuration space can be obtained from (41) by replacing z — —z:
YLOY_(6) = ICP exp (=€ + V(" — 2) — (2 + )
Now we shall use z = ip:

04, (O] = 1O exp (—€2 + 2p?) (43)

exp <—7r2 +iV2m(2* — 2) + (22 + 22)> (42)

and
YEEW_(€) = IO exp (€2 + 20 — 12v/2%p) (44)

Hence
PUe) ~ exp (=€ +20%) [2 exp iz (vato - §) ) oo (i2 (Ve - ) )]
= 2exp (_52 + 2p2) [1 + cos (2 (\/ifp — %))}
= dexp (=€ +2/?) cos? <\/§£p - %) . (45)

In momentum space

{bip(”)

2 2
‘ = |C] exp (—7T2 +2v2mp — 2p2>

= |C 2exp (— <7r - \/§p>2> :
— ] exp (— (n+ \/§p)2) . (46)

'(L—ip(ﬂ-)
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Figure 1: Probability in configuration space.

Interference term

~ % ~ ‘~2

v (—5r = VER ) exp (5 vER) )

is almost zero because two Gausses have small overlap for large p. Therefore

P(r) ~ exp (— (w - \/§p>2) +exp (— (w + \/§p>2) . (48)
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Figure 2: Probability in momentum space.

1.4 Schrodinger’s cat vs. statistical superposition

Can one distinguish superposition (39) from a statistical mixture of states |z) and |—z)?
In order to measure momenta we have to have resolution dp such that

Vmhw < 6p < po. (49)

Consider simple pendulum of m =1 g and 1 m length. Then

g 1
=4/ =313 -. 50
W \/; S (50)



Let’s assume that at time ¢ = 0 pendulum is 1 gm from equlibrium:

| 2h [mw [ 3.13 [g/s
To=A\[ P P 57, o o 1.05410 75 3.85 x 10°. (51)

Remember that J=kg m?/s* = 10%g um?/s? and i = 1.054 x 10734J s. Fom this we have

that uncertainty is

ar_ 1 g (52)
0 2p

For the momentum distribution

po = V2hmwp =2 x 1.054 x 10-34x10 % 3.13,/103g m?/s x 1/s x 3.85 x 10°

m
= 313 x 10782
s
This requires spacial resolution better than 1 pum, which is reasonable, given the initial
condition. In order to resolve spacial oscillation one needs & resolution better than

™

V2p

06 < (53)

which translates for z

h 1.054 x 1034 |kg m?
Sr< ] T . gm’/s T =10"% m. (54)
mw \/2p 10-33.13 kg/s 1/23.85 x 109

Such resolution is impossible to attain in practice.

Theoretically, however, a statistical ensemble of states |z) and |—z) would give the
same momentum distribution as (39), however a competely different spacial distribution.
In the first case the distribution is simply a Gaussian, and in the latter a Gaussian
enveloping the oscillations.

1.5 Fragility of a quantum superposition

Assume that the oscillator is in some way coupled with an (non-thermal) environement,
whose quantum state will be denoted as |y) . We shall try to estimate how long the system
will stay in a superposition state (39). Let us first consider coupling of a coherent state.
Initially at ¢t = 0 the sytem is in a state |®(0))

[2(0)) = [2(0)) [x(0)), (55)
Assume that time evolution is now modified:

2(t) = 2,(t) = z(t)e " (56)
where z(t) corresponds to (26). So in time ¢ the state is now

(1)) = [=(t)e™™") [x(1)) - (57)



This means that the energy of an oscillator part of such a state is now

1
Eose = hw (\z|2 e 4 5) : (58)

After time much longer than 1/ the system goes to a ground state. The energy gained
by environement is therefore

AE(t) = |2 (1 — 7)) = 29t |2, (59)
where the last equality holds for short times 27t < 1. Let us now couple Schrédinger’s
cat state with the environement

1

|©(1)) = 7 (e ™ () (X @) + ™ [=2,()) X (1)), (60)

where | X(i)(t)> are two normalized states of the environement that are a priori different
(but not orthogonal). Let’s choose again z = ip with p being large. Then

o @)+ 2Re (2 @0 @) (O@ KO, (61)

1
Plo) = [[o- )
where we assume that
@) X @®)y=neR, 0<n<l. (62)

Going back to the dimensionless variables we see that the probability distribution in the
confifuration space

P(&) = 2exp (2(pe)?) exp (—&7) [1 + 1 cos <2 (\/if(peﬂt) - %))] (63)

has still the Gaussian envelope, but the oscillatory term is suppressed by 7. One can in
principle still see the quantum wiggles in a position distribution if 7 is not too small.
Momentum space distribution does not change much, because the interference term
did not contribute. One recovers two peaks centered at +pe~7'v/2mhuw.
Assume now that the environement is represented by a harmonic oscillator of the same
mass and frequency. Assume that initially the environement is in a ground state

X (0)) = 0).

If the coupling between the two oscillators is quadratic (as in W) we will assume that in
the course of time

o |xF)(t)) are coherent states |x*)(t)) = |+y)

e and for short times |y|> = 2+t |2|°



Then ]
=0 )W) =MD Sy (-t = e (64)

If we want 7 not too small |y|> < 1. For short times the energy of the first oscillator

E(t) = E(0) — 2hwyt |2|? (65)
and of the second .
E'(t) = hw (2715 |2 + 5) : (66)

Total energy is conserved. Once the energy is transferred from the first oscillator to the
second, the first oscillator becomes less and less semiclassical. Suppose that 1/2y = 1
year = 3 x 107s, the time to reach |y|2 =1

11 3 x 107
- = X—Qs — 2% 10 2. (67)
2y % (3.85 x 109)

To conclude:

e Even for a system protected from the environement the quantum superpositions of
macroscopic states are not observable,

e Interaction with environement will very quickly destroy superposition;

e Attempts on small systems with a limitted number of degrees of freedom have been
undertaken, but are inconclusive



