Mechanika Kwantowa dla doktorantów
 zestaw 5 na dzień 12.11.2013 godz. 13:45
 sala 431a

1. (Complete the problem fom Nov. 5) Find a classical action for the harmonic oscillator with an external force $F(t)$. Take limit $\omega \rightarrow 0$ to obtain classical action for a particle moving in an external force. Finally take limit $F \rightarrow 0$ to obtain an action of a free particle.
2. For a classical action derived in 1 . take constant force $F(t)=F$ and calculate all integrals over time. For a constant force one can derive an action in a different way by observing that the lagrangian can be rewritten in a new variable y as a free oscillator plus a constant. Variable y corresponds to a suitably shifted variable x. Derive an action in that way and compare with the previous result.
3. One slit diffraction.

Consider one dimensional problem of a particle moving from $x=0$ at $t=0$ to point (x, t) through a screen which the particle reaches at time $t_{1}<t$. The screen has a hole of size $2 b$ centered around x_{0}. (This process can be understood in the following way: at time t_{1} we block all possible trajectories except those passing through a hole). Calculate the propagator for such a motion.
In order to simplify calculactions replace the sharp hole by a "Gaussian hole"

$$
G(x)=\left\{\begin{array}{lcc}
0 & \text { for } & x<x_{0}-b \text { or } x_{0}+b<x \\
1 & \text { for } & x_{0}-b \leq x \leq x_{0}+b
\end{array} \rightarrow G(x)=e^{-\left(x-x_{0}\right)^{2} / 2 b^{2}} .\right.
$$

What is the width of the image of this "Gaussian hole" at time t ? How does it compare with the classical expectation?
Since the propagation before and after the slit is free, we can use the formula for a free particle propagator

$$
K_{0}(b, a)=\sqrt{\frac{m}{2 \pi i \hbar\left(t_{b}-t_{a}\right)}} e^{\frac{i m}{\hbar} \frac{\left(x_{b}-x_{a}\right)^{2}}{t_{b}-t_{a}}}
$$

and the formula for "folding"the propagators

$$
K(b, a)=\int d x_{c} K(b, c) K(c, a) .
$$

Here $a=\left(x_{a}, t_{a}\right)$ etc.
This problem can be found in the book of Feynman and Hibbs "Quantum Mechanics and Path Integrals" chapt. 3.2.

