Mechanika Kwantowa dla doktorantów
 zestaw 24 - 18.4.2012

1. Suppose we have solved the radial part of the Schrödinger equation for some central potential $V(r)$ of a finite range r_{0}. This solution for positive energy $E=\hbar^{2} k^{2} / 2 m>$ 0 can be decomposed in terms of partial waves

$$
\begin{equation*}
\psi(\vec{r})=\sum_{l}(2 l+1) i^{l} A_{l}(r) P_{l}(\cos \vartheta) \tag{1}
\end{equation*}
$$

where $A_{l}(r)$ are in principle known functions of r (why we decompose this solution into Legendre polynomials rather than in spherical harmonics Y_{l}^{m} ?). Show that the phase shift is given as

$$
\tan \delta_{l}=\frac{k R j_{l}^{\prime}(k R)-\beta_{l} j_{l}(k R)}{k R y_{l}^{\prime}(k R)-\beta_{l} y_{l}(k R)}
$$

where j_{l} and y_{l} are spherical Bessel functions.
HINT
For the scattering problem the wave function should have the following asymptotic form:

$$
\psi \rightarrow e^{i k z}+f(\theta) \frac{e^{i k r}}{r}
$$

Decomposing (prove it!)

$$
e^{i k z}=\sum_{l}(2 l+1) i^{l} j_{l}(k r) P_{l}(\cos \theta)
$$

and

$$
f(\theta)=\sum_{l}(2 l+1) f_{l}(\theta) P_{l}(\cos \theta)
$$

one can find asymptotic form of the wave function applying known asymptotic forms of the Bessel functions. Denote a coefficient in front of the outgoing spherical wave $e^{i k r}$ as

$$
S_{l}=e^{2 i \delta_{l}}
$$

This is a definition of the phase shift. Find relation befween f_{l} and S_{l}.
Since we know A_{l} in (1) we can decompose it in terms of Hankel functions (which is the same as decomposing A_{l} in terms of a Bessel functions. Bessel functions are like sin and cos, while Hankel functions are like exponents):

$$
A_{l}=c_{l}^{(+)} h_{l}^{(+)}+c_{l}^{(-)} h_{l}^{(-)}
$$

where

$$
h_{l}^{(\pm)}=j_{l} \pm i y_{l} .
$$

Find asymptotics of Hankel functions.
At $r=R \gg r_{0}$ we can glue ψ with its asymptotic form. This allows to find $c_{l}^{(\pm)}$. Going back to the decomposition in terms of Bessel functions show that

$$
\begin{equation*}
A_{l}(r)=e^{i \delta_{l}(k)}\left[j_{l}(k r) \cos \delta_{l}(k)-y_{l}(k r) \sin \delta_{l}(k)\right] . \tag{2}
\end{equation*}
$$

Since A_{l} is known, eq. (2) is in fact an equation for δ_{l}. In practice (2) is difficult to solve, therefore one applies a trick constructing a quantity β

$$
\begin{equation*}
\beta_{l}=\left.\frac{r}{A_{l}} \frac{d A_{l}}{d r}\right|_{r=R} . \tag{3}
\end{equation*}
$$

Note that β is known. Solve (3) for $\tan \delta_{l}$:

$$
\tan \delta_{l}=\frac{k R j_{l}^{\prime}(k r)-\beta_{l} j_{l}(k r)}{k R y_{l}^{\prime}(k r)-\beta_{l} y_{l}(k r)} .
$$

2. The situation dramatically simplifies for an infinte "hard ball":

$$
V(r)=\left\{\begin{array}{ccc}
0 & \text { dla } & R<r \\
\infty & \text { dla } & r<R
\end{array}\right.
$$

since then the phase shifts can be calculated from the conditon $A_{l}(R)=0(2)$. Find low energy behaviour of δ_{l}. Calculate the cross-section for the lowest partial wave $l=0$. As you will see the cross-section is not geometrical i.e $\sigma \neq \pi R^{2}$.
3. Sum up higher partial waves

$$
\sigma_{\mathrm{tot}}=\frac{4 \pi}{k^{2}} \sum_{l}(2 l+1) \sin ^{2} \delta_{l}(k)
$$

up to a maximal clasically allowed $l_{\max } \sim k R$. To this end use

$$
\sin ^{2} \delta_{l}(k)=\frac{\tan ^{2} \delta_{l}(k)}{1+\tan ^{2} \delta_{l}(k)}
$$

and the formula for $\tan \delta_{l}(k)$ in terms of spherical Bessel functions. Then use asymptotic form of Bessel functions. The resulting cross-section is still not geometrical $\left(\sigma_{\text {tot }}=2 \pi R^{2}\right)$. Try to interpret this result (Sakurai, Advanced Quantum Mechanics, Chapt.7.6).

