Advanced Quantum Mechanics

problem set number 15
27.1.2012 at 8:30 (romm 431a).

1. Find in the first order of time-dependent perurbation theory probability of a transition from energy eigenstate $n \rightarrow m$ in a potential $V(x, t)=V(x) f(t)$, where $f(t)$:

$$
f(t)=\left\{\begin{array}{cc}
\frac{1}{2} e^{\gamma t}, & t<0, \\
1-\frac{1}{2} e^{-\gamma t}, & 0<t<\frac{T}{2}, \\
1-\frac{1}{2} e^{-\gamma(T-t)}, & \frac{T}{2}<t<T, \\
\frac{1}{2} e^{-\gamma(t-T)}, & T<t
\end{array}\right.
$$

Result:

$$
P(n \rightarrow m)=\left(\frac{\gamma^{2}}{\gamma^{2}+\left(E_{m}-E_{n}\right)^{2}}\right)^{2}\left|V_{m n}\right|^{2} \frac{4 \sin ^{2} \frac{\left(E_{m}-E_{n}\right) T}{2 \hbar}}{\left(E_{m}-E_{n}\right)^{2}}
$$

Make a plot of function $f(t)$. Compare the result with a situation when the perturbation is momentairly switched on.
2. Under which conditions the transition probability for a harmonic potential (calculated in the first order of perturbation theory)

$$
V(x, t)=2 V(x) \cos (\omega t)
$$

reads:

$$
\frac{d P(n \rightarrow m)}{d t}=\frac{2 \pi}{\hbar}\left|V_{m n}\right|^{2}\left\{\delta\left(E_{m}-E_{n}-\hbar \omega\right)+\delta\left(E_{m}-E_{n}+\hbar \omega\right)\right\}
$$

3. Hamiltonian H_{0} has two eigenstates $|1\rangle$ i $|2\rangle$ corresponding to energies E_{1} i E_{2}. Initially the system was in state $|1\rangle$. At $t=0$ perturbation described by a symmetric potential $V\left(V_{12}=V_{21}\right)$ has been switched on. Calculate probability that at $t>0$ the system is in state $|2\rangle$. Perform calculations exactly and in the first order of perturbation theory. When perturbation theory gives the correct answer? Repeat the calculation for a degenerate system: $E_{1}=E_{2}$ and $V_{11}=V_{22}$.
