Mechanika Kwantowa dla doktorantów zestaw 13 na dzień 25.1.2012 środa godz. 9:00
 (w pok. 438, sala do ustalenia)

1. Calculate energy levels for the particle in the potential

$$
V(x)=-\frac{V_{0}}{\cosh ^{2} \frac{x}{a}}
$$

for arbitary V_{0} and a. Next, calculate energy levels in the semiclassical (WKB) approximation. Compare with the exact result.
2. Using results from the lecture that in semiclassical approximation

$$
\begin{equation*}
\oint \sum_{r} p_{r} d q_{r}=2 \pi \hbar\left(n+\frac{m}{4}\right) \tag{1}
\end{equation*}
$$

where m is a number of focal points pased with each circling of one closed orbit, find energy levels of a particle moving in Coulomb potential. Use the fact that $m=4$ (Euler 1744).
HINT:
To calculate the inegral in (1) consider motion in $x-y$ plane and introduce polar coordinates (r, φ). Rewrite the Lagrangian, calculate generalized momenta, calculate the Hamiltonian. Assume classical trajectory with $\dot{r}(t)=0$. Use Hamilton equations to eliminate r and find the energy (the result should coincide with the exact one for the hydrogen atom). Discuss whether restricting onself o the circular trajectory leads to oversimplification.
3. Prove that

$$
\int_{-T / 2}^{T / 2} d \tau_{1} \int_{\tau_{1}}^{T / 2} d \tau_{2} \ldots \int_{\tau_{n-1}}^{T / 2} d \tau_{n}=\frac{1}{n!} T^{n} .
$$

This integral was needed to calculate the propagator for many instanton transition from $-a \rightarrow \pm a$.

