Mechanika Kwantowa dla doktorantów
 zestaw 12 i 13 na dzień 18.1.2012 środa godz. 10:00

1. Finish the problem of calculating \tilde{K}. We have calculated phase shifts in the large box with the result

$$
T k-\delta_{k}=\pi n
$$

Let's denote solution to this equation by \tilde{k}_{n}. Similarly, for the Euclidean harmonic oscillator analogous solutions read $k_{n}=\pi n / T$.

- The contribution to K^{\prime} coming from the continuous spectrum, $K_{\text {cont }}$, reads:

$$
K_{\text {cont }}=\frac{\prod \tilde{\lambda}_{n}}{\prod \lambda_{n}}=\prod_{n=1}^{\infty} \frac{1+\tilde{k}_{n}^{2}}{1+k_{n}^{2}}=\exp \left(\sum_{n} \ln \frac{1+\tilde{k}_{n}^{2}}{1+k_{n}^{2}}\right) \approx \exp \left(\sum_{n} \frac{2 k_{n}\left(\tilde{k}_{n}-k_{n}\right)}{1+k_{n}^{2}}\right) .
$$

- To calculate last sum under exponent go to the continuum limit $T \rightarrow \infty$ and convert the sum into the integral:

$$
\ldots=\exp \left(\frac{1}{\pi} \int_{0}^{\infty} d k \frac{2 \delta_{k} k}{1+k^{2}}\right)=\frac{1}{9} .
$$

Last equality can be obtained by integration by parts and the explicit form of δ_{k}. Full result for K^{\prime} is obtained by multiplying $K_{\text {cont }}$ by a non-zero λ value from the discrete part.

- Literature:
S. Coleman, Aspects of Symmetry, Cambridge University Press (1988), Section 7, Appendix 1.
A.I. Vainshtein, V.I. Zakharov, V.A. Novikov and M.A. Shifman, $A B C$ of Instantons, Sov. Phys. Usp. 24, 195 (1982) [Usp. Fiz. Nauk 136, 553 (1982)].
T. Schafer and E.V. Shuryak, Instantons in QCD, Rev. Mod. Phys. 70 (1998) 323 [arXiv:hep-ph/9610451].

2. Calculate energy levels for the particle in the potential

$$
V(x)=-\frac{V_{0}}{\cosh ^{2} \frac{x}{a}}
$$

for arbitary V_{0} and a. Next, calculate energy levels in the semiclassical (WKB) approximation. Compare with the exact result.

