Mechanika Kwantowa dla doktorantów
 zestaw 11 na dzien 11.1.2012 sroda godx. 10:00

1. Instanton determinant. In this problem we will calculate explicitly the ratio of determinants

$$
K^{\prime}=\frac{\operatorname{det}^{\prime}\left(-\frac{d^{2}}{d \tau^{2}}+V^{\prime \prime}(\bar{x}(\tau))\right)}{\operatorname{det}\left(-\frac{d^{2}}{d \tau^{2}}+1\right)}
$$

where a double well potential $V(x)$ reads: $V(x)=\kappa\left(a^{2}-x^{2}\right)^{2}$ with $\kappa=1 /\left(8 a^{2}\right)$. Prime at the determinant means that the zero eigenvalue (zero mode) is not included, by $\bar{x}(\tau)$ we denote classical trajectory.

- The eigenequation for quantum fluctuations around the classical trajectory (with $\tau_{1}=0$, where τ_{1} is the time when the classical trajectory passes through zero):

$$
\begin{equation*}
\left[-\frac{d^{2}}{d \tau^{2}}+V^{\prime \prime}(\bar{x}(\tau))\right] y_{n}(\tau)=\lambda_{n} y_{n}(\tau) \tag{1}
\end{equation*}
$$

corresponds to the Schrödinger equation for a potential $U(\tau)=-3 /\left(2 \cosh ^{2}(\tau / 2)\right)$ and energy $E_{n}=\lambda_{n}-1$, which is discussed in the "Quantum Mechanics" of Landau and Lifischitz (probl. 5 page. 81 and probl. 4 page 88, Polish edition PWN 1979).
Transform equation (1) into a hypergeometric equation for function w_{n} defined below:

$$
y_{n}(\tau)=e^{\alpha \tau} w_{n}(\tau),
$$

where

$$
\alpha= \pm \sqrt{-E_{n}}, \quad E_{n}=\lambda_{n}-1 .
$$

Show that the solution reads:

$$
y_{n}(\tau)=\mathcal{N}\left(3 \tanh ^{2}\left(\frac{\tau}{2}\right)-6 \alpha \tanh \left(\frac{\tau}{2}\right)+\left(4 \alpha^{2}-1\right)\right) e^{\alpha \tau}
$$

- Find spectrum of the bound states $(E<0)$ for (1). Conditions that solutions vanish at $\tau= \pm \infty$ give quantization of α.
- To find contribution from the continous spectrum we show first that there is no reflection for the particles scattering over the potential $U(\tau)$. To this end find asymptotics for two types of the solutions: $\alpha=i k$ and $\alpha=-i k$ in the limit $\tau \rightarrow \pm \infty$.
- If there is no reflection then the wave function $y_{k}(\tau)$ that asymptotically behaves as $e^{i k \tau}$ for $\tau \rightarrow \infty$, in the limit of $\tau \rightarrow-\infty$ behaves as $e^{i k \tau+i \delta_{k}}$, where δ_{k} is a phase shift. Show that

$$
e^{i \delta_{k}}=\frac{1+i k}{1-i k} \frac{1+2 i k}{1-2 i k} .
$$

Identical argument applies to the wave function, that asymptotically behaves as $e^{-i k \tau}$.

- Close the system in a box $-T / 2<\tau<T / 2$. Then the wave function inside the box is a superposition of two linearly independent solutions

$$
y_{n}(\tau)=A y_{\alpha=i k}(\tau)+B y_{\alpha=-i k}(\tau)
$$

which vanishes at the boundaries

$$
\begin{equation*}
y_{n}(\pm T / 2)=0 . \tag{2}
\end{equation*}
$$

If the box is large, it is enough to use asymptotic forms of $y_{\alpha= \pm i k}(\tau)$. Show that condition (2) leads to

$$
T k-\delta_{k}=\pi n
$$

Let's denote solution to this equation by \tilde{k}_{n}. Similarly, for the Euclidean harmonic oscillator analogous solutions read $k_{n}=\pi n / T$.

- The contribution to K^{\prime} coming from the continuous spectrum, $K_{\text {cont }}$, reads:

$$
K_{\text {cont }}=\frac{\prod \tilde{\lambda}_{n}}{\prod \lambda_{n}}=\prod_{n=1}^{\infty} \frac{1+\tilde{k}_{n}^{2}}{1+k_{n}^{2}}=\exp \left(\sum_{n} \ln \frac{1+\tilde{k}_{n}^{2}}{1+k_{n}^{2}}\right) \approx \exp \left(\sum_{n} \frac{2 k_{n}\left(\tilde{k}_{n}-k_{n}\right)}{1+k_{n}^{2}}\right) .
$$

- To calculate last sum under exponent go to the continuum limit $T \rightarrow \infty$ and convert the sum into the integral:

$$
\ldots=\exp \left(\frac{1}{\pi} \int_{0}^{\infty} d k \frac{2 \delta_{k} k}{1+k^{2}}\right)=\frac{1}{9} .
$$

Last equality can be obtained by integration by parts and the explicit form of δ_{k}. Full result for K^{\prime} is obtained by multiplying $K_{\text {cont }}$ by a non-zero λ value from the discrete part.

- Literature:
S. Coleman, Aspects of Symmetry, Cambridge University Press (1988), Section 7, Appendix 1.
A.I. Vainshtein, V.I. Zakharov, V.A. Novikov and M.A. Shifman, $A B C$ of Instantons, Sov. Phys. Usp. 24, 195 (1982) [Usp. Fiz. Nauk 136, 553 (1982)].
T. Schafer and E.V. Shuryak, Instantons in QCD, Rev. Mod. Phys. 70 (1998) 323 [arXiv:hep-ph/9610451].

