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1. Consider Euclidean motion (in an inverted potential) of a given energy E < 0,
leading from x1 → x2 (x1 < x2) in time T . As a potential take V (x) = κ(x2 − a2)2
with κ = 1/8a2. For one instanton-like motion (without turning) it is clear that as
T →∞ then x1 → −a, x2 → a and E → 0. Show that in this limit

E = −8a2e−T .

HINT. Use classical formula for T . In the limit E → 0 the integral will contain a
singular part that can be divided into a �nite and still singular part by subtracting
and adding ((x− a)2 + 2E)−1/2. In the �nite part one can immediately set E = 0.
The other part can be calculated exactly for �nite, but small E.

2. Instanton determinant. In this problem we will calculate explicitly the ratio of
determinants

K ′ =
det′

(
− d2

dτ2
+ V ′′(x̄(τ))

)
det
(
− d2

dτ2
+ 1
) ,

where a double well potential V (x) reads: V (x) = κ(a2 − x2)2 with κ = 1/ (8a2).
Prime at the determinant means that the zero eigenvalue (zero mode) is not included,
by x̄(τ) we denote classical trajectory.

• The eigenequation for quantum �uctuations around the classical trajectory
(with τ 1 = 0, where τ 1 is the time when the classical trajectory passes through
zero): [

− d2

dτ 2
+ V ′′(x(τ))

]
yn(τ) = λnyn(τ) (1)

corresponds to the Schrödinger equation for a potential U(τ) = −3/(2cosh2(τ/2))
and energy En = λn − 1, which is discussed in the "Quantum Mechanics" of
Landau and Li�schitz (probl. 5 page. 81 and probl. 4 page 88, Polish edition
PWN 1979).

Transform equation (1) into a hypergeometric equation for function wn de�ned
below:

yn(τ) = eατwn(τ),

where
α = ±

√
−En, En = λn − 1.

Show that the solution reads:

yn(τ) = N
(

3 tanh2
(τ

2

)
− 6α tanh

(τ
2

)
+
(
4α2 − 1

))
eατ .



• Find spectrum of the bound states (E < 0) for (1). Conditions that solutions
vanish at τ = ±∞ give quantization of α.

• To �nd contribution from the continous spectrum we show �rst that there is
no re�ection for the particles scattering over the potential U(τ). To this end
�nd asymptotics for two types of the solutions: α = ik and α = −ik in the
limit τ → ±∞.

• If there is no re�ection then the wave function yk(τ) that asymptotically be-
haves as eikτ for τ →∞, in the limit of τ → −∞ behaves as eikτ+iδk , where δk
is a phase shift. Show that

eiδk =
1 + ik

1− ik
1 + 2ik

1− 2ik
.

Identical argument applies to the wave function, that asymptotically behaves
as e−ikτ .

• Close the system in a box −T/2 < τ < T/2. Then the wave function inside
the box is a superposition of two linearly independent solutions

yn(τ) = Ayα=ik(τ) +Byα=−ik(τ)

which vanishes at the boundaries

yn(±T/2) = 0. (2)

If the box is large, it is enough to use asymptotic forms of yα=±ik(τ). Show
that condition (2) leads to

Tk − δk = πn.

Let's denote solution to this equation by k̃n. Similarly, for the Euclidean har-
monic oscillator analogous solutions read kn = πn/T .

• The contribution to K ′ coming from the continuous spectrum, Kcont, reads:

Kcont =

∏
λ̃n∏
λn

=
∞∏
n=1

1 + k̃2n
1 + k2n

= exp

(∑
n

ln
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)
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)
.

• To calculate last sum under exponent go to the continuum limit T → ∞ and
convert the sum into the integral:

. . . = exp

 1

π

∞∫
0

dk
2δk k

1 + k2

 =
1

9
.

Last equality can be obtained by integration by parts and the explicit form of
δk. Full result for K ′ is obtained by multiplying Kcont by a non-zero λ value
from the discrete part.
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