Mechanika Kwantowa dla doktorantów zestaw 2 na dzień 26.10.2011 środa

1. Find classical action for the harmonic oscillator with external force $F(t)$. Take limit $\omega \rightarrow 0$ to obtain classical action for a particle moving in external force.
2. One slit diffraction.

Consider one dimensional problem of a particle moving from $x=0$ at $t=0$ to point (x, t) through a screen which the particle reaches at time $t_{1}<t$. The screen has a hole of size $2 b$ centered around x_{0}. (This process can be understood in the following way: at time t_{1} we block all possible trajectories except those passing through a hole). Calculate the propagator for such a motion.
In order to simplify calculactions replace the sharp hole by a "Gaussian hole"

$$
G(x)=\left\{\begin{array}{lcc}
0 & \text { for } & x<x_{0}-b \text { or } x_{0}+b<x \\
1 & \text { for } & x_{0}-b \leq x \leq x_{0}+b
\end{array} \rightarrow G(x)=e^{-\left(x-x_{0}\right)^{2} / 2 b^{2}} .\right.
$$

What is the width of the image of this "Gaussian hole" at time t ? How does it compare with the classical expectation?
Since the propagation before and after the slit is free, we can use the formula for a free particle propagator

$$
K_{0}(b, a)=\sqrt{\frac{m}{2 \pi i \hbar\left(t_{b}-t_{a}\right)}} e^{\frac{i m}{\hbar \frac{m}{2} \frac{\left(x_{b}-x_{a}\right)^{2}}{t_{b}-t_{a}}}}
$$

and the formula for "folding"the propagators

$$
K(b, a)=\int d x_{c} K(b, c) K(c, a) .
$$

Here $a=\left(x_{a}, t_{a}\right)$ etc.
This problem can be found in the book of Feynman and Hibbs "Quantum Mechanics and Path Integrals" chapt. 3.2.
3. Sturm-Liouville operator for the harmonic oscillator is defined as

$$
D(t)=m\left(-\frac{d^{2}}{d t^{2}}-\omega^{2}\right) .
$$

Find eigenfunctions and eigenvalues of this operator

$$
D(t) y_{n}(t)=\lambda_{n} y_{n}(t)
$$

subject to the boundary conditions

$$
y_{n}(0)=y_{n}(T)=0 .
$$

Calculate determinant of D (i.e. $\prod_{n} \lambda_{n}$). Strictly speaking one can calculate ω dependent part of $\operatorname{det} D$ up to an undetermined constant that can be fixed in some other way.

