DATA SCIENCE WITH
MACHINE LEARNING:
REGRESSION

This lecture is
based on course by E. Fox and C. Guestrin, Univ of Washington



What is Data Science?

Is mainly about extracting knowledge from data (terms “data
mining” or ““Knowledge Discovery in Databases’ are highly
related). It can be about analyzing trends, building predictive
models, ... etc.

Is an agglomerate of data collection, data modeling and analysis,
a decision making, and everything you need to know to accomplish
your goals. Eventually, it boils down to the following fields/skills:

Computer science:

Algorithms, programming (patterns, languages etc.), understanding hardware &
operating systems, high-performance computing’

Mathematical aspects:

Linear algebra, differential equations for optimization problems, statistics
Few others:

Machine learning, domain knowledge, and data visualization & communication skills
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Data Science and Machine Learning?

Machine learning algorithms are algorithms that learn (often predictive)
models from data. l.e., instead of formulating "rules” manually, a machine
learning algorithm will learn the model for you.

Machine learning - at its core - is about the use and development of these
learning algorithms. Data science is more about the extraction of
knowledge from data to answer particular question or solve particular
problems.

Machine learning is often a big part of a "data science” project, e.g., it is
often heavily used for exploratory analysis and discovery (clustering
algorithms) and building predictive models (supervised learning
algorithms). However, in data science, you often also worry about the
collection, wrangling, and cleaning of your data (i.e., data engineering),
and eventually, you want to draw conclusions from your data that helps
you solve a particular problem.
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Deploing inteligence module
.

Case studied are about building, evaluating,
deploying inteligence in data analysis.

=)

f N

Model & Optimization :
: Evaluation
parameters algorithm
Use pre-specified
or develop your own
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Case study
=

Predicting house prices

Regression - Intelligence

+ house

attributes (x) house size
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Prediction: Predicting house prices
N

e Linear regression

Regularization:
Ridge (L2), Lasso (L1)

o (Gradient descent
e Coordinate descent

Algorithms

e Loss functions, bias-variance
Concepts tradeoff, cross-validation, sparsity,
overfitting, model selection
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Input vs output
* vy is quantity of interest

* assume y can be predicted from x

input output
(x1{ sq.ft,y, = 9)
(x; = sO.7t, Yy, = 5)
(x3 = sq.ft, yz=5)
(x4 = sq.ft, y,=95)
(x5 = sq.ft, ys = %)
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Model: assume functional relationship

y A ?6{) »Essentially, all models are

wrong but some are usefull.”
mhp George Box, 1987.
bexween
X ond Y

Regression model.

square feet (sq.ft. X
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Task 1:

e
Which model to fit?
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Task 2:

oy
For a given model f(x) estimate function ﬂx)

from data

ﬁ‘SUﬂ'ﬂ- MOA'—{ 'Fb() iS
a qM{LﬁC‘ Fuﬂ {_,.'EIM

><‘l"

square feet (sq.ft.)
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How it works: baseline flow chart

Feature
extraction

Quality
metric
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SIMPLE LINEAR REGRESSION
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Simple linear regression model
s

y yi — W0+W1 Xi + Ei

_ .-.-.-.:==Il==;--.-1si> ‘;§> :
)

O

=

'\\ :

f(x) = wo+w, X

square feet (sq.ft.) X
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The cost of using a given line

z Residual sum of squares (RSS)

RSS(w,,w,) =
(shouse 1 [W0+W15q-ft-house 1])2
T (shouse 2" [W0+W15q-ft-hou5e 2])2

T (Shouse 3 [WO+W15q'ft'house 3])2
+ ...[linclude all training houses]
’;f—:

—

square feet (sq.ft.) X

price (S)
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Find ,,best” line

V4 Minimize cost over all
possible Wy, W,

\

RSS(w,y=1. 1\%1_0 8)=¥
RSS(w,=0.98,w,=0.87)
——RSS(w(=0.97,w,=0.85}-4

—

square feet (sq.ft.) X

price (S)
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Interpreting the coefficients

_16_|
Y1 y =+ Wy X
& | Predicted $ )
< of house with E Wo,
L:) slq.ft,:o when X=0
5 (Just land)
net very Meaningfu|

square feet (sq.ft.) X
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Interpreting the coefficients

Magnitude of fit parameters

y N y = WO +@X depend on the units of both
° features and observations
%
v dicted @ _
predic
2 }change inS $I""‘f"l-"*- 1000 544,
Q ¢ = (e 010106 3
— (o 01000 3g.K)
A
1sq. ft. zw,
— (IAIL‘E‘A M (2 Iﬂ M om
square feet (sq.ft. X per unik c-lwae n inpuke
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ML algorithm: minimasing the cost

3D plot of RSS with tangent plane at minimum

g ™
[]*
1
2% Minimize function
[2 over all possible wy,w;
e L Tl » ] -
: 2 {500 ' - ’
5 o min Z(yi [Wo+w,xi])
FiE o [y Wo Wiji=1
| =200 ' '
~1500004000000% y o RSS(wg,wy) Is a function
o WQJJD 00001060tt” of 2 variables = g (Wo,w,)
; ,
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Convergence criteria
I

For convex functions,
optimum occurs when

3:33‘1)-.-.0

. Algorithm:
In practice, stop when ’
4 bﬂ\ .
1S while not converged
" &g);: wittl) & with - N dg
That will be ,,go0d enough” dW
value of ¢ depends on the data we are looking at wit
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Moving to multiple dimensions
B

30 plot of RSS with tangent plane at minimum

2 4 (?.'H) -dimentional
' Vettor

o defvatwe
= s like a OFrivate
| [c[ 200 With fespect 0
=15000QQ0030®500000 . 53@@“‘*4@{) 'l:(mﬁn ﬂ." 0‘&\&‘
WO 1000 Varlagol« ag Congtant
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Contour plots

Fﬂ'h" &\’L \ﬁw

3D plot of RSS with tangent plane at minimum

:l'_-'-" — Contour plot cormrespending te 3D plot of RES
RS
¢ o N
5RsS :\\ \\\:
: N
2
1
0
800
'600
400
________________ 20051
~13000090000005gap00 o

5000001000005

woO

3 (wo,w,)
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Gradient descent
=N

Cantour pot corresponin gtoanplt fRSS
W‘H“*\.\\ .
\*\\*3:\\\ ~a\ 'f'

. whlle not converged
Y : | ] Converdence
\:: N gﬁ — _ ﬂ_ on 2
cziiu%ﬁm it w;ﬁ 590000 l :‘l [ 1 " Vﬂ(lﬁl] £E
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Compute the gradient
I

N
RSS(Wo,Wy) = ¥ (y-[Wotwix])2
1=1

Putting it together:

VRSS(wy,w, ) =

—

-2 ;[yi — (Wo+w,x))]

-2 i} ly; = (wo+w x))lx;

Taking the derivative w.rt. wy
i (A (‘{au 'Iw.m.’(ﬂ)'- (—-l)

= —'Zi (4 ~Lwotwi ¥;7)
4%\

Taking the derivative w.r.t. w;,
N
2 20y beerwiXidY - (-Xy)
= =7 ‘JZ_ (\’A - [ wetw, KQ} Xs
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Approach 1: set gradient to O

- N
v 2y Y. — (WO +W1X-)' This method is called
— — L) I’ .
RSS(WO,Wl ) = S ,,Closed form solution”
- 1= - '{ﬂ"
3D plot of RSS w_itt.h_tangentl plg@ aj: lrr.ﬂ.rnl.rﬁum o toQ -l:llﬂ; /%ﬁf}#ﬂ/ w’c“:::f‘b
HE g o A g" 5.5
+ 7 R G" - ‘ 4.. - w‘ ;‘¥1 q —
M s ° N ™~ Noke:
L 4 N
1 A A 1 4zl
) ZViXi- w2Xi- W, 2% =0
800 tﬁ ,Z‘X;
600 ) ’___v A i a zy‘_‘ zx{ 421
i T 200y Wi = ZY " L ﬁ)’ix;
Hr 3 ii . 4“1l
Zxd - BHTX 2y

N ity
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Approach 2: gradient descent

25|
-2 21y, = §ilwo w,)

VRSS(w,,w, ) =

2
-22_[y; = Yilwg wilx

wmﬂ. not C"“Wﬁﬁd (—'D'l'n)

MR Y A N
wp&*') ¢ [ %ﬂ [Y{ - y-\. ng : Wllt)J.S
[wf”n < ["’?“\ +ln Lg‘[‘ii" il wswi)ly;

I overall, wndtr Prd?m‘v'ﬂ q; , then f_[\[;-l?.;] Is positive
s : . —> UJD s 30‘109 0 \ncrease
1008000 500000 0 503000 ﬁﬁ:‘ﬁf ihﬂh‘t’fbn be w‘J bw W‘ﬁ("‘l 51 x&
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Comparing the approaches
N

 For most ML problems,
cannot solve gradient = O

 Even if solving gradient = 0O
IS feasible, gradient descent
can be more efficient

« Gradient descent relies on
choosing stepsize and
convergence criteria
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Asymmetric cost functions

N

We can weight differently
y 0 positive and negative errors

different s [ut|on in RSS calculations.
M) mﬂ\ﬂﬂ? I

What if cost of listing house
too high has bigger cost?

Too high = no offers (5=0)
Too low = offers for lower S

square feet (sq.ft.) X
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MULTIPLE REGRESSION
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Multiple regression

Fit more complex
relationships than
just a line

Incorporate

more inputs

— Square feet
x[2] — # bathrooms
— # bedrooms
— Lot size
— Year built
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Polynomial regression

Model:
Vi = Wo + Wy Xi+ W5 X2 + ... + W, XP + g

NL—

treat as different features

feature 1 = 1 (constant) parameter 1 = w,
feature 2 = x parameter 2 = w;
feature 3 = x° parameter 3 = w,

feature p+1 = xP parameter p+1 = w,
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log(Price)

Other functional forms of one input

P
ith

ric
ti

L
me

° ° ° ?f
- Trends in time series
o —~ ©
y. = $ of i house sale &g
u . -
o7 .t ='monthof i house sale . i
= 2 W
o [te}
o \ r ) -
] N’ﬁ,’ANN n 1_1997401 1999-01 2001-01 200{;—01 ‘ 2005-01 2007-01 2009-01 2011-01 2013-01
Month
o AW
o ] NMV'J\'
./") This trend can be modeled with
S polynomial function.
Lr! —
1997-01 1999-01 2001-0 2003-01 2005-01 2007-01 2009-01 2011-01 2013-01

Month €= House sales recorded monthly
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Other functional forms of one input
=R

-1 Seasonality

1 Most houses listed in summer

14.0

13.5
|
[

s00d houses sell quickly

1
{
J

log(Price)

12.5
|

" Few homes listed in N
+

Transactions often leftover i
. or special circumstance

[
1997-01 1999-01 2001-01 2003-01 2005-01 2007-01 2009-01 2011-01 2013-01

Month

OV.

12.0
|

ry

11.5
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Example of detrending

N e
Model:

Vi =Wy + W, t+ w,sin(2Ttt, /12 - D) + €
\ Unknown phase/shift

Linear trend Seasonal component =
Sinusoid with period 12

(resets annually)

AVAVAVAVA

Trigonometric identity: sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
=2 sin(2ttt; / 12 - @) = sin(2T11t; / 12)cos(®P) - cos(2T1tt; / 12)sin(P)
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Example of detrending
B

Equivalently,

Vi = Wq + w, t+ w,sin(2Ttt, / 12)
+ ws cos(2TTt; / 12) + €

feature 1 = 1 (constant)
feature 2 =t

feature 3 = sin(21tt/12)
feature 4 = cos(2T1tt/12)

Fit polyna
sinusoida

mial tr
seaso

end ar
nal co

h 5t order poly

_|_
sin/c

1d

os basis

mpone

Nt

Lo

nomial
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Other examples of seasonality

Weather modeling
(e.g., temperature, rainfall)

Flu monitoring —

wuuu

US Flu Rate
g

fo,recast‘lnga{ |
t purchases) |

L) 100 200 W:t;oek aio =00 &0
Motion capture data =

S — lrarerDack
> ‘A\‘ ﬁ | —— loweeback y
3 \ ) A ——right arm
— [ P { R | ] =——Ileft arm
S offiiftrs -“l A VAN
2 N7 7 S ST i Sha i o .
v ' V| / [\ o S ] ‘ nght leg
. fM -." ‘ ,~4 \» n T \J i
. — et foot

120 140 160 180 200
s timesteps
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Generic basic expansion
=R

Model:
yi — WOhO(Xi) + Wl hl(Xi) + ... + WD hD(XI)+ S

D
§=0

feature 1 = h,(x)...often 1 (constant)
feature 2 = h(x)... e.g., X
feature 3 = h,(x)... e.g., x? or sin(2T1Tx/12)

feature D+1 = hy(x)... e.g., xP
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More realistic flow chart
2

—— X h)

1(X
— Feature W% y
extraction

—) S
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Incorporating multiple inputs

Only one bathroom,
not same as my
3 bathrooms

square feet (sq.ft.)ﬁ X
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Incorporating multiple inputs
I

f(x) = wy + wy sq.ft.
+ w, #bath

X[2]

Many possible inputs
- Square feet
— # bathrooms
- # bedrooms
- Lot size
- Year built

4/01/2022



General notation
B

Output: y & Scalar

Inputs: x = (x[1],x[2],..., x[d])
d-dim vector

Notational conventions:
x[j] = " input (scalar)
hi(x) = j*" feature (scalar)
X, = input of it" data point (vector)

xi[j] = j*" input of i" data point (scalar)
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Simple hyperplane
N

MOdel: Noiseterm/
V. = Wy + w, x[1] + ... + w,x[d] + €

feature 1 =1
feature 2 = x[1] ... e.q., sq. ft.
feature 3 = x[2] ... e.q., #bath

feature d+1 = x[d] ... e.qg., lot size
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More generally: D-dimensional curve

Model: More on notation
Yi= Vgo ol + W ylx) + ..+ wp gl + & # observations (x,y.) : N
_ Z W hj(xi) te z:cnputs x[j] : d |
i=0 eatures hj(x) D
feature I = hy(x) ... e.g. 1
feature 2 = hy(x) ... e.g., x[1] = sq. ft.
feature 3 = h,(x) ... €.q., x[2] = #bath

or, log(x[7]) x[2] = log(#bed) x #bath

feature D+1 = hp(x) ... some other function of x[1],..., x[d]
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Fitting in D-dimmensions
o

~ v
N h(x y

Look now at

S ! this block
y W
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Rewriting in vector notation
N

For observation |

2)
M ' 0) w
- hby &l = | . W+ | €
) hahiy - hltw) (W
Wy b) , )
. = | 0w + W[ Q) w0y -+ -
' * (ki )wp té
hpb‘a) Wp
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Rewriting in matrix notation

For all observations together
f\U\ |

) €,
Ya ¢,
é
Y"' ’ Here is our
: ) ML algorithm
X
A ey
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Fitting in D-dimmensions

Look now at

this block

ML algorithm

Quality
metric

46 2015 Emily Fox & Carlos Guestrin Machine Learning Specialization
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Cost function in D-dimmension

RSS in vector notation
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Cost function in D-dimmension
e

RSS in matrix notation
N

RSS(W) = Y _ (y:- h(x)Tw)>?
1=1
= (y=Hw)" (y-Hw)

.
Why? (part 1) 1, b .
3 I 5 Ve wa {f.,sﬁ'.‘,q*
= wp (h&"&l
(Y_\.lwb (Y ‘I) —[ﬂ-s le,]
A residuwel
\L

4/01/2022



Regression model for D-dimmension

N
Gradient of RSS

VRSS(w) = VI(y-Hw)T(y-Hw)]
= -2H(y-Hw)

Why? By analogy to 1D case:
d h.,,)(..,_.l-,...-) -
//‘

Sgn.\ﬂr.s
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Regression model for D-dimmension

s J
Approach 1: set gradient to zero

3D plot of RSS with tangent plane at minimum CIOsed fOrm SOIU”O"

VRSS(w) = -2HT(y-Hw) = 0

Solve for w:
Ay /WU =0
HTH:J = HTY
(Ray % - (W7
= (WY Wy
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Closed-form solution
B

This matrix might not be invertible.

W = (HTH ) HTy
’L M 1& ""‘“hw.-b-*s
9 R iﬂln:izibiislf}sth
W
N {N A Complexity of inverse:
0(v)

This might not be CPU feasible.
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Regression model for D-dimmension

2 4
Approach 2: gradient descent

Contour plot carrespending to 3D plot of RSS

m"*‘“*--..,__‘_‘. N »Q«‘“ R N
AN

We initialise our solution somewhere

and then ...

while not converged
wtH) & wit - n\/ RSS(w)

|
-2H'(y-Hw)
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Gradient descent
I

N
RSS(W) =) {y;- hix)Tw)2
1=1 1
. > . ophol) -t BC)-- - wph (x))
:.Zﬂ(\"‘ " " Update to j™ feature weight:
v Y T \f ®
Partial with respecttow, Wj(t+1) <w - n(-lé.'"““*“‘!f{‘fﬂf ) )

\ Jilw®
i 2.(YR"WDLJ(K{)-W\LJY{)'*--"‘)PLJ&)) Y )
Az .(_Eigg)

N
=z '2.2_.\ hy ) (Ya- W) w)
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Summary of gradient descent
I

Extremely useful algorithm in several applications

Contour plot corresponding ta 30 plot
R

400

wl

200

~200 5 e ,
~1000000 ~500000 0 300000

“ “\‘ Whlle |VR SW(t | >W

INit W__O. (or randomly, or smartly =1

ln“

forj=0,..D

partialljl =- ZZh y.(w'))
w0 € w r] part|al[J]
t<et+1
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ACCESSING PERFORMANCE
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‘Remember that all models are
wrong; the practical question is

MeCISU I‘ing IOSS how wr'ong do they have to be to

not be useful.” George Box, 1987.

Loss function: Cost of using w at x
L(y,fw(x)) wheny is true
\_'_l

a4
actua ~ . .
value f(x)= predicted value y
Symmetric loss
Examples: functions
(assuming loss for underpredicting = overpredicting)
Absolute error: L(y,f (X)) = |y-f(X)]

Squared error: Ly, f;(x )) = (y-f,(x))?
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Accessing the loss

Use training data

y A
O
%
)]
O
oy 0
W minimizes
RSS of
training data
>

square feet (sq.ft.) X
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Compute training error
I

1. Define a loss function L(y,f;(x))
— E.qg., squared error, absolute error,...

2. Training error
= avg. loss on houses In training set

=% 2= LW )
- AN

fit using training data
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Training error

I
Use squared error loss (y-f (x))?

A
y Convention is to take
O average here X

Training error (W) = 1/N *
[(Stram 1 1:w(sq ft. “train 1))2
+ Stram 2 -fy (Sq ft. “train 2))
+ (Stram 3 fw(sq ft. "train 3))

+ ... Include all
— . .
square feet (sq.ft.) X  training houses]
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Training error vs. model complexity
o

Descrease as you increase
your model complexity.

Error

Very intuitive why it is
like that.

y‘[ .. Model complexity y]; 1
."" X I 4 . y
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Is training error a good measure?

Issue: Training error Is overly optimistic
because W was fit to training data
y A Is there something particularly wrong
N about having x, square feet ???

%

v

5 Small training error #> good predictions

/; unless training data includes everything you
might ever see
Xt
square feet (sq.ft.) X
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Generalisation (true) error
e

Really want estimate of loss
over all possible (#8,5) pairs

Lots of houses
INn neighborhood,
but not In dataset
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Generalisation error vs model

complexit
mb

A However ... in contrast to the training
error, in practice we cannot really compute
true generalisation error. We don’t have
data on all possible houses in the area.

Error

Can't

compute!

S

Y4 . Model complexity y;l; 1
o x X
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Forming a test set
e

We want to approximate

Hold out some (@,S) that are

not used for fitting the model
Test set: proxy for
,»everything you might see”

Training set

hhhHAAA

generalisation error.

Test set
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Compute test error
s

Test error

= avg. loss on houses In test set

1
Niest Z L(yirfﬁ,(xi))

T 7 in test set \
# test points fit US'”

has never seen
test data!
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Training, true and test error vs. model

complexity. Notion of overfitting.
m“

\ Test error: noisy version due
to limited statistics.

Error

Overfitting if:

W thee 2usts a mP 'w'
W A estimote) params w’

/UO such that
@ {:ra.nmo Lol (W)

> £ kraining tiof (w')

Model complexity VY 0) trwe wrvor Lw)
} brwe el LUO.)

X

tranin 5 uror
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Training /test splits

2

Training

Test set

Training set
Too few = w poorly estimated Too few = test error bad approximation
of generalization error

Training set Test set

set

set

Typically, just enough test points to form a
reasonable estimate of generalization error

If this leaves too few for training, other
methods like cross validation (will see later...)
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Three sources of errors

s y
In forming predictions, there

are 3 sources of error:

1. Noise
2. Bias

3. Variance
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Data are inherently noisy

There is some true relatioship
between sq.ft and value of the
house, specific to the given house.

Y4 Yi = fw(true)(xi)_l@/
variance __)‘[ ¢ /

of noise
Irreducible —

error

We cannot reduce it by chosing
better model or procedure,
It is beyond our control.

2
square feet (sq.ft.) X
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Bias contribution

This contribution we can control.

Assume we fit a constant function

N house N other house

sales (#%,9) sales (#,5)

|

w(trainl)

orice ($)

fﬁm(trainZ)

> >
square feet (sqg.ft.) X square feet (sq.ft.) X
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Bias contribution

Over all possible size N training sets,

what do | expect my fit to be?

1:\.If‘s.»'(trair13) f .

orice ($)

Average over all

possible fits square feet (sqg.ft.)
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Bias contribution
2

|s our approach flexible

Bias(x) = f true( X) - fﬁ,( X) «— enough to capture f, e’
If not, error In predictions.

low complexity
9

price ($)

square feet (sq.ft.) X

4/01/2022



Variance contribution

I

How much do specific fits
vary from the expected fit?

fW(traiHB)

L)y \
(«D)]

@]

g

O

f\ﬁ!(traihl)

square feet (sqg.ft.) X
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Variance contribution

How much do specific fits

vary from the expected fit?
Can specific fits

vary widely?
V4 If so, erratic
fW(trainB) f o predictions
& W(trainl,
Q
O '
= low cogplexwy
f. | f_ low variance
Wi(train?2) W
e—
square feet (sq.ft.) X
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Variance of high complexity models

I
Assume we fit a high-order polynomial

For each train remove
few random houses f

A T high
complexity

9

f

W(train2) o _ |
5 \ high variance
8 £
a R w
fv“v(trairpB
V ’
square feet (sq.ft.) X
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Bias of high complexity models

I
Assume we fit a high-order polynomial

For each train remove

few random houses f high
l (tfainl complexity
y¢ ¢ >
R {V(tl’aiHZ) - low bias /fw(true)
U
0]
U —
5 R fw fa
fv“v(trairpB >
S square feet (sq.ft.) X
square feet (sq.ft.) 4 X

High complexity models are very flexible,

pick better average trends.
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Bias —variance tradeoff
225 1

L anee
.\0-‘51 -\'\""r‘m

p V€D MSE = mean square error

Machine Learing
is all about this tradeoff

But....

TJust \ikz,tNP*h
Opnecalization eor
WL cannox cmeu_.te,

—
VE _:) Model complexity VI 1E bias and variance
— X X
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Errors vs amount of data

A
fﬂ “g%”"
¢/ “@Q@“?“nﬁ ety eV
\¢ ool
kf//lj//, ¥ ke
5 l eccof
L &
N &)
b‘* nD.i%
, . . N .
# data points in xue (Binsnp £

training set
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The regression/ML workflow
B

1. Model selection
Often, need to choose tuning
parameters A controlling model
com plexity (e.g. degree of polynomial)

2. Model assessment
Having selected a model, assess
the generalization error
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Hypothetical implementation
I

Training set Test set

1. Model selection

For each considered model complexity A :

. Estimate parameters w, on training data
Ii.  Assess performance of w, on test data
. Choose A" to be A with lowest test error

W
2. Model assessment Overly optimistic!

Compute test error of w,. (fitted model for selected
complexity A) to approx. generalization error
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Practical implementation
I

Validation Test
set set

Training set

Jr
fit W, T
test performance
of W, to select A"
assess
generalization
error of w, .
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Typical splits

Validation Test
set set

Tralning set
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K-fold cross validation

Ces [
K-fold cross validation

W, ) errors(A)

For k=1,...,K
1. Estimate W, on the training blocks
2. Compute error on validation block: errork()\)

Compute average error: CV(A) == Z error, (N
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What value of K

Formally, the best approximation OCCUrs
for validation sets of size 1 (

leave-one-out
Cross validation

Computationally intensive

— requires computing N fits of model per A

-fol V
Joically, K5 or 10
10-fold CV
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RIDGE REGRESSION
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Flexibility of high-order polynomials
T

— 2
Yi = Wp + W X;+ Wy Xi© + .0+ Wp)(ip-l— &

<
>
—

price ($)
.

square feet (sq.ft.) X

Symptoms for overfitting: often associated with very large

n

value of estimated parameters W
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How does # of observations influence

overfitting?
_

Few observations (N small)
= rapidly overfit as model complexity increases

Many observations (N very large)
- harder to overfit

f.
Va Va ./w
& f. 3
8 Wy :
& 8

> >
square feet (sq.ft.) \X square feet (sq.ft.) X

4/01/2022



Lets improve quality metric blok

@]TF-1114Y
metric
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Desire total cost format
e J
Want to balance:
. How well function fits data
II. Magnitude of coefficients

want to balance

Total cost = —

measure of fit + measure of magnitude
1 of coefficients

small # = good fit to T
training data small # = not overfit
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Measure of magnitude of regression

coefficients
Teo |

What summary # Is indicative of
size of regression coefficients?

But ... the coefficients
are very large

- SUM?  Wes 4,520,300 w,=-1,605283 e
Wy 4 W, = smal| &

- sumof absolute value? 5 |
el s s twphs Z 1wyl & Hll, - Lomen - disus men s
J*0

neve Module,

- Sum of squares (L, norm)
Wy + W + ...-\-UU":ZW --“W“ L norm .. Vbﬂu:o@’cts |

Wiod e
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Consider specific total cost
I

Total cost =
measure of fit + meas

l_‘__l 0

ure of magnitude

- coefficients

RSS(w) —

2
Iwll;
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Consider resulting objectives
o2 §
What Ifw selected to minimize R|dge regression
(a.k.a L, reqularization)
RSS(W +)\HwH2 2 5

N tuning parameter = balance of fit and magnitude

If A=0:

(edutss 16 MAFIZing RS (W), a8 bekore (sld solution) — W' Neagt squaves

If A=oo

?or w\whfms where w:#o hen okl cosb i¢ o0
£ D20, then bl ok = £300) —> <olwhion is "0

X in between: a0 2 Lol 10
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Ridge regression: bias-variance tradeoff
I

Large A:
high bias, low variance
SORMUBOCESION | essence, A
controls model
Small A: complexity

low Dbias, high variance

(e.g., standard least squares (RSS) fit of
high-order polynomial for A=0)
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Ridge regression: coefficients path

What happens if we refit our high-order
polynomial, but now using ridge regression?

_ )i —o— Beflhrooms
— . —o— bathroomg
= S50 —o— sqft_livin features
S g || o - St
N S —~ floors scaled to
4 | —=— yr_built 1 it
yr _renova unit norm
C 38 sweet spot waterfront
QL 8-
O
J—
A . o -
)
o
O 8
o
O —
(=] I I I I
i »0000 100000 150000 200000
w
N hy A >
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Flow chart

O A
n h(x y :
¥-/ T Model for all N observations together
y W
+

T LT
I

LTI en [T
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Ridge regression: cost in matrix notation

S
In matrix form, ridge regression cost is:

RSS(wW) + Allwlls
= (y-Hw)T(y-Hw) + A\wTw

2
wll, = w2 + w2 + w, 2 + .+ wp?

P [ v
W, W, vy - - wp w,
W,
Wy,

ww

I
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Gradient of ridge regresion cost
B

v[RSS(W) + 7\||w||22] =v[(y—Hw)T(y—Hw) + AwTw]

=‘M—HW)T(y— Hw)] +;)\ lWVTW
| Y
-2HT(y-Hw) 2W

Why? By analogy to 1d case...

w'w analogous to w? and derivative of w2=2w
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Ridge regression: closed-form solution
I

3D plot of RSS with tangent plane at minimum

.‘?.
r.ss
+1

Vcostiw) = -ZHT(y-Hw) +2\w= 0
L Solve forfur HTHW 4 A Tw =0
500 H‘HQ*)I\T_;:HTY
M (FHeATY @ = HYy
Ao (T T H’ry

S i e
- - -
-------...
- iy iy

~15000080000005 00
0 0 50000010005t°
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Ridge regression: gradient descent
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Summary of ridge regression algorithm
o]

NIt W(1)=O (or randomly, or smartly), t=1
while || VRSS(w?)[| > €

for |=0,...,.D
partial[j] =-2 @x- (y;- ¥ (w't))
w, & (1-2nN)w, Y — n partial]]

t<t+1
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How to handle the intercept

oo
Recall multiple regression model

Model:

D |
j=0

feature 1 = hy(x)...often 1 (constant)
feature 2 = h,(x)... e.g., x[1]
feature 3 = h,(x)... e.g., x[2]

feature D+1 = hy(x)... e.g., x[d]
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Do we penalize intercept?

I
Standard ridge regression cost:

2
RSS(w) + A [lwl|,

N strength of penalty

Encourages intercept w, to also be small

Do we want a small intercept?
Conceptually, not indicative of overfitting...
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Do we penalize intercept?

Option 1: don’t penalize intercept
Modified ridge regression cost:

2
RSS(Wo W) + Mw, .5

Option 2: Center data first

If data are first centered about O, then
favoring small intercept not so worrisome

Step 1: Transform y to have O mean

Step 2: Run ridge regression as normal

(closed-form or gradient algorithms)
4/01/2022



FEATURES SELECTION

&
LASSO REGRESSION
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Why features selection?

o5
Efficiency:
- If size(w) = 100B, each prediction is expensive
- If W, computation only depends on # of non-zeros

\many Zeros

yi =Z Wj hj(Xi)
w;#0

Interpretability:

- Which features are relevant for prediction?
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Sparcity

Housing application

Lot size

Single Family

Year built

Last sold price

Last sale price/sqft
Finished sqgft
Unfinished sqgft
Finished basement sqft
# floors

Flooring types
Parking type
Parking amount
Cooling

Heating

Exterior materials
Roof type
Structure style

Dishwasher
Garbage disposal
Microwave
Range / Oven
Refrigerator
Washer

Dryer

Laundry location
Heating type
Jetted Tub

Deck

Fenced Yard
Lawn

Garden
Sprinkler System
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Find best model of size: O

A
-
\“.‘d"‘: Wh‘ lﬂ\é\
= ot § s
.‘.L% :‘,’w“" N0 (ealoress # bedroom
@p) ﬂ\ﬂbb\ ‘145 é.:-
ad T
neise

# of features
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Find best model of size: 1

RSS(w)

o g e
i mba m'v’a\ e
N
o

o bese f’:’:‘: '::{”:lm_ fume - # bedrooms
_ -_# bathrooms

- sq.ft. lot
- floors
- year built
5~ Yearrenovated
0 1 - waterfront

# of features
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Find best model of size: 2

Note: not necessarily nested!
moA.J of siee k

A (‘h M‘-L not mn*ﬁlﬂ

© 8

- | - # bedrooms

- # bathrooms

€ - sq.ft. living

- sq.ft. lot

- floors

- year built
> - year renovated

0 1 2 - waterfront

)

<

oo @

RSS(

# of features
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Find best model of size: N
Sl

RSS(wW)

Which model complexity to choose?

. Certainly not that with the smalest training error!

# bedrooms

# bathrooms
sq.ft. living
sg.ft. lot

floors

year built

- year renovated
- waterfront

# of features
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Choosing model complexity
B

Option 1: Assess on validation set
Option 2: Cross validation

Option 3+: Other metrics for penalizing
model complexity like BIC...
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Complexity of ,,all subsets”

EEE L
How many models were evaluated?

m!l

ey
- each indexed by features included r:°~“~‘ * 5
Pl ...
A 28 = 256
Yi=§ 000..000] 2% = 1,073,741,824
Y = Wohglx) + & 100..000] 21000 =1,071509 x 10%0
| . 21008 = HUGE!!!
Yi = wihy(x) + € 010..000] 2D‘H
: : -
Y, = Wohg(x) + Wi hy(x) + € 110..000] _
e Typically,
Y, = Woholk) + i hyl) o+ Wohole+ g 1111 111] computationally
1202~ Infeasible
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Greedy algorithm

B
Forward stepwise algorithm

1. Pick a dictionary of features {h,(x),....n )}
— e.g., polynomials for linear regression

2. Greedy heuristic:

I.  Start with empty set of features F, = &
(or simple set, like just hy(x)=1 =2 y.= w,+&)

ii. Fit model using current feature set F, to get w¥

. Select next best feature hj*(x)

- e.g. hx) resulting in lowest training error
when learning with F, + {h,(x)}

v. Setf,., €& F + {hj*(x)}
V. Recurse
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Visualizing greedy algorithm

)

S # bedrooms

# bathrooms
sq.ft. living
sq.ft. lot

- floors

- year built

- year renovated

- waterfront

RSS(

# of features
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Visualizing greedy algorithm

RSS(W)

# bedrooms
# bathrooms

¢ 2
P
to
2 "
disoan @ o
oL@ O
i 00
Qi
©

o sq.ft. living
I sq.ft. lot
\ floors
WAS o \ - year built
v - year renovated
E ‘ 5 4 > 6 78 - waterfront

# of features
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Visualizing greedy algorithm

® Nofice... if is suboptimal .
i Adding next best thing, fit is nested now.

g.

| - sq.ft. living ]

- sqg.ft. lot
- floors

RSS(W)
X 0

o 1 2 3 4 5 6 /7 8 - waterfront
# of features
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117

Visualizing greedy algorithm

<

RSS(

error never increases

_I_
solutions eventually meet

# of features

# bedrooms

# bathrooms
sq.ft. living
sq.ft. lot

floors

year built

year renovated
waterfront
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Complexity of forward stepwise

How many models were evaluated?

- Iststep, D models

- 2"dstep, D-1 models (add 1 feature out of D-1 possible)
- 3dstep, D-2 models (add 1 feature out of D-2 possible)

How many steps?
- Depends
- At most D steps (to full model)

O(D?) << 2P

for large D
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Other greedy algorithms
N

Instead of starting from simple model
and always growing...

Backward stepwise:

Start with full model and iteratively remove
features least useful to fit

Combining forward and backward steps:

In forward algorithm, insert steps to remove
features no longer as important

Lots of other variants, too.
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Using regularisation for features selection
B

Instead of searching over a discrete set of
solutions, can we use reqularization?

- Start with full model (all possible features)

- "Shrink” some coefficients exactly to O
* |.e., knock out certain features

- Non-zero coefficients indicate “selected” features
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Thresholding ridge coefficients?
B

Why don't we just set small ridge coefficients to 07

®® ) o o \3‘\& ’@’b 006 QS& !Q,'(\Q' e O{\K
X SN\ G CHE\ PSRN R P S S A
& x\ \ & C;O" @,’bi o \6‘3 Qe} ’{\e’ c;'\\o ,&‘@'
% \\]@’b \%CJ C
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Thresholding ridge coefficients?
I

Selected features for a given threshold value

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

A\ N\ 32 2 KL
6&0 7T o o o° \e,aQ Qeﬁ W %@*
X% ﬂ?ﬁ 2° ¢!
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Thresholding ridge coefficients?
I

Let's look at two related features...

B T

Nothing measuring bathrooms was included!
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Thresholding ridge coefficients?
N

If only one of the features had been included...

S S X S N o (e X
q‘O © A b\ :a". o cJQ X % e_‘(.
O & B SR AN KX
% \se' \'E}C’ ¢
Remember.

this is Iinear model If we assume thart #showers = #bathrooms and remove one of them
from the model, coefficients will sum up.
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Thresholding ridge coefficients?
N

Would have included bathrooms in selected model

Can reqgularization lead directly to sparsity?
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Try this cost instead of ridge ...
B

Total cost =
measure of fit + A measure of magnitude

V— of coefficients

RSS(w) ‘ Y '
wif =[wp|+...+|wp
\
: Leads to
Lasso regression sparse

(a.k.a. L, reqularized regression) gEeUsN
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Lasso regression

Just like ridge regression, solution is
governed by a continuous parameter A

RSS(w) + Allwl],
N tuning parameter = balance of fit and sEarsitx
|f A=O: ﬁﬂoﬂ a’“ (umz.aulo.f‘i%-eg\ Solwl:‘;on) |
fA=oo; ™20

f\in between: ¢ 2]l £ W°],

4/01/2022



Coefficient path: ridge

4 9 —&—Ee%noms
— o —=— bathroomg
S —= sqft_livin
‘B g 4 — ﬁgﬁ_lot J
\ —— floors
_ltg &~ @ —=— yr_built
o yr_renovat
- o . — waterfront
S W
L 8 t R
p— | ~o \ .
O 7 ey e ¥
N O—aa -~ o e s &
| - o A -" = - —
S
O 8
o
S | «
o | | | | |
T 0 50000 100000 150000 200000

A
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Coefficient path: lasso
Sz

| —— bedrooms
‘— o —e— ba]:[_thrloomc
o —=— sqft_living
‘; S — —— sqft_lot
o — floors
w s TS —= yr_built
N TS Ir_renoval
C 8 e —e— uyvaterfront
L S
= S
O |
J—
g o
O
O 8
o
18_ a I | ]
| 100000 150000 200000

A
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NONPARAMETRIC

REGRESSION
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Fit globaly vs fit locally

ey
Parametric models
Below ...
y4 1(x) is not really
a polynomial function

price ($)

<

finear constant

4

=<V

sq.ft.

<V

sq.ft.

@
@
@
g '\
Y4 a i
quadratic
sq.ft. :X

price ($)

<V

sq.ft.

sq.ft. X
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What alternative do we have?
B

If we:

- Want to allow flexibility in f(x) having
local structure

— Don't want to infer “structural breaks”

What's a simple option we have?
- Assuming we have plenty of data...
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Nearest Neighbor & Kernel Regression

(honparametric approach)

]
YA

price (S)

Simple implementation, flexibility increases as we have more data)

@
L
‘;{9
X
Se& (-
é‘ﬁfgfﬂ S
O AR
O
o
Here, this is the
closest datapoint

[]
GE -
Qg:,_c‘z‘é? :
: - >
house size X
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Fit locally to each data point

134
Predicted value = "closest” v,
1 nearest neighbor
Y (1-NN)
regression
Uy A 5 o
- @fb O e,&
O X ".\‘*—
O & Lo [
— hEd O y Here, this is
Q. k ‘\ & — 6 the c’losest
q‘ﬂ? §§ datapoint
Lo 88
(RN
2 >
sq.ft. X
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What people do naturally...
Ciss

Real estate agent assesses value by
finding sale of most similar house

S = 850k

'\
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1-NN regression more formally

136
Dataset of (1,5) pairs: (X Y1), (%5,Y5)... (XY

e ————————

Query point: X, « 4= §7

wih }:ﬁ;\ howst

1. Find "closest” x, in dataset

datapoint

XNN — M J‘Wﬂf&( X A ,xq) yA Transition point
S -
(A
2. Pred ICt 8 \bia‘ﬁi&%o‘(\ \?‘i@iq & (‘
| % gl gﬂk S Qﬁ, Here. this
Q < ere, this is
Y1 \’ N A UC w \qﬁg’ §§' the closest
u \Z\ < uQ
ne -
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Visualizing 1-NN in multiple dimensions

A
, . SR

U “1 Voronoi tesselation
(or diagram):

; N - X clser +o X,
O e
. Afr e N ’ X, fr it
N, 0“""‘Emontainingldatapoint ’
| - Defined such that any
X inregion is “closest’

to region’s datapoint

Don't explicitly form!
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Distance metrics: Notion of ,,closest”
N

In 1D, just Euclidean distance:

distance(x,x,) = [x-X,|

In multiple dimensions:
- can define many interesting distance functions

- most straightforwardly, might want to weight
different dimensions differently
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Weighting housing inputs
NER

Some inputs are more relevant than others

# bedrooms
# bathrooms
sq.ft. living
sq.ft. lot

floors

year built

year renovated
waterfront
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Scaled Euclidan distance

T
Formally, this is achieved via

distance(x; x,) =
Vaig[l-x,[1)2 + .. + a(x[d]-x,[d])?

welight on each input
(defining relative importance)

Other example distance metrics:

— Mahalanobis, rank-based, correlation-based,
cosine similarity, Manhattan, Hamming, ...
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Different distance metrics
B

Euclidean distance Manhattan distance

- L]
‘ ‘
L] L]
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Performing 1-NN search

* Query house:

e Dataset:

» Specify: Distance metric
* Output: Most similar house
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1-NN algorithm
s [ e

closest house

Initialize Dist2NN = oo, & = @
Fori=1,2,..,N /qg
Compute: d = distanc:c:—z(ﬁi ,ﬁq)
If O < Dist2ZNN

set  #%

set Dist2ZNN = 0
Return most similar house @/

closest house
to query house

i
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1-NN in practice
N

Nearest Neighbors Kernel (K = 1)
T T T

Nearest Neighbors Kernel (K= 1) 14
14 T T T
121 B
1.2+ -
| I-NN fit i
08
06
Fit looks good for data Not great at interpolating
04} o
. - ; over large regions...
function dense in x and low noise
02r
0 ) ) ) ) ) ) ) ) ) 0 01 02 03 0.4 05 06 0.7 0.8 09 1
0 01 0z 03 04 05 06 07 08 09 1

Nearest Neighbors Kemel (K = 1)
T T T

Fits can look quite wild...
Overfitting?

1-NN sensitive to noise in the data

oo ez e  os w06 o7 o5 o5 1 4/01/2022



Get more ,,comps”

More reliable estimate if you base estimate

off of a larger set of comparable

gﬁ $ = 850k
|

NOomes
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K-NN regression more formally
N

Query point: x,

1. Find k closest x: in dataset
(xmﬂux'lﬂ; XNNk') ‘Su.bl'\ -Hf\ﬁ-* -For a..ny xi néx N nearest hﬂﬁl\w S&

diStW\Cl'( x‘l-; ﬂD Z d S*'MMCXNN;, xq,)

2. Predict
1y’ l;fvw Fusne+ Yy

¥
- |
gt
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K-NN more formally

(74

 Query house:

e Dataset:

* Output: Most similar houses

- Specify: Distance metric g;‘ ‘

L em—

4/01,/2022



K-NN algorithm
N

sort first k houses
by distance to query house

Initialize Dist2KNN = sort(5,,...,8,) < list of sorted distances
= SO@ _____ @1 @ <— list of sorted houses
For i= |'(+1 N «— Query house

Compute 0= dlstance(@,,@ ﬁ

If & < Dist2kNN|K]
find j such that O > Dist2kNNIJj-1] but d < Dist2kNN{j]
remove furthest house and shift queue:
G+ = ki
,s‘.,{",é Dist2kNN[j+1:k] = Dist2kKNN|[j:k-1]
et Dist2kNNJj] = & and

. . closest houses 4
Return k most similar houses @*“ to query house 5-1-& &-
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K-NN in practice
N

Nearest Neighbors Kernel (K = 30)

Much more reasonable fit
INn the presence of noise

Boundary & sparse region
Issues
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K-NN in practice
e [ e

Mearest Neighbors Kernel (K = 30)

Discontinuities!
Neighbor either in or out
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Issues with discontinuities
B

Overall predictive accuracy might be okay,
but...

For example, in housing application:

- |If you are a buyer or seller, this matters

- Can be a jJump In estimated value of house going just
from 2640 sqg.ft. to 2641 sq.ft.

- Don't really believe this type of fit
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Weighted k-NN

Weigh more similar houses more than
those less similar in list of k-NN

_ weights on NN
Predict:

CanNtYNNL T CannzYNn2 T ConnzYnng T ConnkY NNk

k
ZCqNNj
j=1

N

Yq
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How to define weights
N

Want weight c; to be small when
distance(Xyy;. X,) large

and C,; to be large when
distance(Xy;, X,) small

'Sim?\e. rnu’dnoa .
\

Ca ww: = =
4 N% dis-l-nnce.(xj,"o
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Kernel weights for d=1

1.0

o.8r

0.6

0.4

0.2

0.0

. _ . B simple
Define: cquy; = Kernel(Ixyy-xgl)

— Uniform

- Triangle

—— Epanechnikov
= Quartic

— Triweight

—— Gaussian
Cosine

Gaussian kernel:
Kernel, ([xq-x,]) =
exp(-(X;-Xg)?/N)

Note: never exactly O!

Kernel drives how the weights
will decay, if at dll, as a function
of the distance.

4/01/2022



. Nadaraya-Watson
Kernel regression

kernel weighted average
sy

Instead of just weighting NN, weight all points

redict weight on each datapoint
vJ
X — CqY| ; Kemel)\(distance(xi,xq)) *y.
yq = N =

N
ZC ’ ZKern el, (distance(x; X))

=1 =1
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Kernel regression in practice
B

Epanechnikov Kernel (lambda = 0.2)
T T

15F | | oI "o o | J
° o Boo Kernel has bounded
1 o 5 o support...Only subset

of data needed to
compute local fit

0.5
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Choice of bandwith A

Often, choice of kernel matters
much less than choice of A

Boxcar
kernel

1 1 L L L L L L L 1 1 1 1 1 1 1 1 1 1 1 1 | 1 | 1 1 1
01 02 03 04 0 06 o7 08 08 1 [] 01 02 03 04 =0 06 07 08 09 1 0 01 02 03 04 Eul 06 o7 08 09 1
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Choosing A (or k on k-NN)

How to choose? Same story as always...

Cross Validation
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Contrasting with global average
N

A globally constant fit weights all points equally

N C

4
y
1

<o
O
|l
|
g
<
|l

>c

1=1

equal weight on each datapoint

Boxcar Kemel (lambda =1)
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Contrasting with global average

N
Kernel regression leads to locally constant ﬁt

- slowly add in some points and
and let others gradually die off

N

Z Kernel, (distance(x; X)) *

n i=1

Yq =

ZKernel;\(distance(xi,xq))

a5

Boacar Kemel [h'nbch ozp
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Local linear regression
I

So far, discussed fitting constant function
locally at each point

- "locally weighted averages”

Can instead fit a line or polynomial locally
at each point

- "locally weighted linear regression”
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Local regression rules of thumb

- Local linear fit reduces bias at boundaries with minimum
INncrease In variance

- Local quadratic fit doesn't help at boundaries and increases
variance, but does help capture curvature in the interior

- With sufficient data, local polynomials of odd degree
dominate those of even degree

Recommended default choice:
local linear regression
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Nonparametric approaches

k-NN and kernel regression are examples
of nonparametric regression

General goals of nonparametrics:
- Flexibility
- Make few assumptions about f(x)
- Complexity can grow with the number of observations N

Lots of other choices:

- Splines, trees, locally weighted structured regression models...
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Limiting behaviour of NN

N
Noiseless setting (g,=0)

IN the limit of getting an infinite amount of
noiseless data, the MSE of 1-NN fit goes to O

v d_‘..‘,. panet-
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Y. Model complexity ¥ -
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Limiting behaviour of NN

m —
Noiseless setting (g,=0)

INn the limit of getting an infinite amount of
Nnoiseless data, the MSE of 1-NN fit goes to O
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Not true for parametric models!
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Error vs amount of data
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Limiting behaviour of NN

Noisy data setting

In the limit of getting an infinite amount of data,
the MSE of NN fit goes to O If k grows, too

Fépasest Masigrbors Mol [ = 200) Chstatirht Fingrisasiof,
1

1-NN fit 200-NN fit Quadratic fit
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Issues: NN and kernel methods
N

NN and kernel methods work well when the data
cover the space, but...

- the more dimensions d you have, the more
points N you need to cover the space

- need N = Olexp(d)) data points for good performance

This is where parametric models become useful...
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Issues: Complexity of NN search
R

Nalve approach: Brute force search
- Given a query point x,
- Scan through each point x;,x,..., Xy
- O(N) distance computations per 1-NN query!
- O(Nlogk) per k-NN query!

What if N is huge???
(and many queries)

Will talk more about efficient methods in
Clustering & Retrieval course
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Summarising

* Linear regression
 Regularization: Ridge (L2), Lasso (L1)
* Nearest neighbor and kernel regression

e Gradient descent
e Coordinate descent

Algorithms

e Loss functions, bias-variance tradeoff,

Concepts cross-validation, sparsity, overfitting,
model selection, feature selection
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