INTRODUCTION TO DATA SCIENCE

This lecture is based on course by E. Fox and C. Guestrin, Univ of Washington

20/10, 27/10, 3/11 2021 WFAiS UJ, Informatyka Stosowana I stopień studiów

Regression for predictions

- Simple regression
- Multiple regression
- Accesing performance
- Ridge regression
- Feature selection and lasso regression
- Nearest neighbor and kernel regression

What is regression?

From features to predictions

Case study

Predicting house prices

Data

input output
$$(x_1 = sq.ft., y_1 = $)$$

 $(x_2 = sq.ft., y_2 = $)$
 $(x_3 = sq.ft., y_3 = $)$
 $(x_4 = sq.ft., y_4 = $)$
 $(x_5 = sq.ft., y_5 = $)$

Input vs output

y is quantity of interest
assume y can be predicted from x

Model: assume functional relationship

Task 1:

Which model to fit?

Task 2:

For a given model f(x) estimate function $\hat{f}(x)$ from data

How it works: baseline flow chart

10

SIMPLE LINEAR REGRESSION

Simple linear regression model

The cost of using a given line

12

Find "best" line

Predicting size of house you can afford

Interpreting the coefficients

Interpreting the coefficients

ML algorithm: minimasing the cost

17

Convex/concave function

18

Finding max/min analytically

Finding the max via hill climbing

Sign of the derivative is saying me what I want to do :move left or right or stay where I am

> How do we know whether to move w to right or left? (Inc. or dec. the value of w?)

while not converged $\omega^{(t+1)} \leftarrow \omega^{(t)} + \eta \frac{dg(\omega)}{d\omega}$ iteration stepsize t

Finding the min via hill descent

21

Choosing the step size (stepsize schedule)

Convergence criteria

For convex functions, optimum occurs when $\frac{dg(\omega)}{dw} = 0$

In practice, stop when

 $\left| \frac{dg(\omega)}{dw} \right| < \varepsilon$ threshold to be set

That will be "good enough" value of ε depends on the data we are looking at

Algorithm:

while not <u>converged</u> $W^{(t+1)} \leftarrow W^{(t)} - \eta \frac{dg}{dw}\Big|_{W^{(t)}}$

Moving to multiple dimensions

Gradient example

25

$$g(w) = 5w_0 + \underline{10}w_0w_1 + 2w_1^2$$

$$\frac{\partial q}{\partial w_0} = 5 + 10w_1$$

$$\frac{\partial q}{\partial w_1} = 10w_0 + 4w_1$$

$$'g(w) = \begin{bmatrix} 5 + 10w_1 \\ 10w_0 + 4w_1 \end{bmatrix}$$

Contour plots

26

Gradient descent

-n[] Convergence:

Compute the gradient

$$RSS(w_0, w_1) = \sum_{i=1}^{N} (y_i - [w_0 + w_1 x_i])^2$$

Taking the derivative w.r.t.
$$w_0$$

$$\sum_{i=1}^{N} 2(y_i - [w_0 + w_1 \times i])' \cdot (-1)$$

$$= -2\sum_{i=1}^{N} (y_i - [w_0 + w_1 \times i])$$

Putting it together:

$$\nabla \text{RSS}(w_0, w_1) = \begin{bmatrix} -2\sum_{i=1}^{N} [y_i - (w_0 + w_1 x_i)] \\ -2\sum_{i=1}^{N} [y_i - (w_0 + w_1 x_i)] x_i \end{bmatrix} \text{ Taking the derivative w.r.t. } w_1$$

$$\sum_{i=1}^{N} 2(y_i - [w_0 + w_1 x_i]) \cdot (-x_i)$$

$$= -2\sum_{i=1}^{N} (y_i - [w_0 + w_1 x_i]) x_i$$

Approach 1: set gradient to 0

29

Approach 2: gradient descent

Interpreting the gradient:

$$\nabla \text{RSS}(w_0, w_1) = \begin{bmatrix} -2 \sum_{i=1}^{N} [y_i - (w_0 + w_1 x_i)] \\ -2 \sum_{i=1}^{N} [y_i - (w_0 + w_1 x_i)] x_i \end{bmatrix} = \begin{bmatrix} -2 \sum_{i=1}^{N} [y_i - \hat{y}_i(w_0, w_1)] \\ -2 \sum_{i=1}^{N} [y_i - (w_0 + w_1 x_i)] x_i \end{bmatrix} = \begin{bmatrix} -2 \sum_{i=1}^{N} [y_i - \hat{y}_i(w_0, w_1)] \\ -2 \sum_{i=1}^{N} [y_i - (w_0 + w_1 x_i)] x_i \end{bmatrix}$$

Approach 2: gradient descent

31

$$\nabla RSS(w_0, w_1) = \begin{bmatrix} -2 \sum_{i=1}^{N} [y_i - \hat{y}_i(w_0, w_1)] \\ -2 \sum_{i=1}^{N} [y_i - \hat{y}_i(w_0, w_1)] x_i \end{bmatrix}$$

while not converged (-1).(-1)

$$\begin{bmatrix} W_{0}^{(t+1)} \\ W_{1}^{(t+1)} \end{bmatrix} \leftarrow \begin{bmatrix} W_{0}^{(t)} \\ W_{1}^{(t)} \end{bmatrix} + 2\pi \begin{bmatrix} \sum_{i=1}^{V} [Y_{i} - \hat{Y}_{i}(W_{0}^{(t)}, W_{1}^{(t)})] \\ \sum_{i=1}^{W} [Y_{i} - \hat{Y}_{i}(W_{0}^{(t)}, W_{1}^{(t)})] X_{i} \end{bmatrix}$$
If overall, under predicting \hat{Y}_{i} , then $\mathbb{Z}[Y_{i} - \hat{Y}_{i}]$ is positive
 $\longrightarrow W_{0}$ is going to increase
similar intuition for W_{1} , but multiply by X_i

Comparing the approaches

- For most ML problems, cannot solve gradient = 0
- Even if solving gradient = 0 is feasible, gradient descent can be more efficient
- Gradient descent relies on choosing stepsize and convergence criteria

Symmetric cost function

33

Asymmetric cost functions

What you can do now

- Describe the input (features) and output (real-valued predictions) of a regression model
- Calculate a goodness-of-fit metric (e.g., RSS)
- Estimate model parameters to minimize RSS using gradient descent
- Interpret estimated model parameters
- Exploit the estimated model to form predictions
- Discuss the possible influence of high leverage points
- Describe intuitively how fitted line might change when assuming different goodness-of-fit metrics

MULTIPLE REGRESSION
Multiple regression

Fit more complex relationships than just a line

> Incorporate more inputs

- Square feet
- # bathrooms
 - # bedrooms
 - Lot size
 - Year built

Polynomial regression

feature $p+1 = x^p$

parameter $p+1 = w_p$

Other functional forms of one input

Other functional forms of one input

Seasonality

Example of detrending

41

Trigonometric identity: sin(a-b) = sin(a)cos(b) - cos(a)sin(b) $\rightarrow sin(2\pi t_i / 12 - \Phi) = sin(2\pi t_i / 12)cos(\Phi) - cos(2\pi t_i / 12)sin(\Phi)$

Example of detrending

Equivalently, $y_i = w_0 + w_1 t_i + w_2 \sin(2\pi t_i / 12) + w_3 \cos(2\pi t_i / 12) + \varepsilon_i$

feature 1 = 1 (constant) feature 2 = t feature 3 = $sin(2\pi t/12)$ feature 4 = $cos(2\pi t/12)$ sinusoidal seasonal component

Fit polynomial trend and

Other examples of seasonality

20

Generic basic expansion

44

. . .

Model: $y_{i} = \underset{D}{\mathsf{w}_{0}} h_{0}(\mathbf{x}_{i}) + \underset{1}{\mathsf{w}_{1}} h_{1}(\mathbf{x}_{i}) + ... + \underset{D}{\mathsf{w}_{D}} h_{D}(\mathbf{x}_{i}) + \boldsymbol{\varepsilon}_{i}$ $= \sum_{j=0}^{D} \underset{i}{\mathsf{w}_{j}} h_{j}(\mathbf{x}_{i}) + \boldsymbol{\varepsilon}_{i}$

feature 1 = $h_0(x)$...often 1 (constant) feature 2 = $h_1(x)$... e.g., x feature 3 = $h_2(x)$... e.g., x^2 or sin($2\pi x/12$)

feature $D+1 = h_D(x)... e.g., x^p$

More realistic flow chart

Incorporating multiple inputs

46

Incorporating multiple inputs

47

General notation

Output: $y \not \sim scalar$ Inputs: $\mathbf{x} = (\mathbf{x}[1], \mathbf{x}[2], ..., \mathbf{x}[d])$ d-dim vector

Notational conventions:

Simple hyperplane

Noise term Model: $y_i = w_0 + w_1 x_i [1] + ... + w_d x_i [d] + \varepsilon_i$ feature 1 = 1feature 2 = x[1] ... e.g., sq. ft.feature 3 = x[2] ... e.g., #bath. . . feature $d+1 = \mathbf{x}[d] \dots e.g.$, lot size

More generally: D-dimensional curve

...

Model:

$$y_{i} = \mathbf{w}_{0} \mathbf{h}_{0}(\mathbf{x}_{i}) + \mathbf{w}_{1} \mathbf{h}_{1}(\mathbf{x}_{i}) + \dots + \mathbf{w}_{D} \mathbf{h}_{D}(\mathbf{x}_{i}) + \boldsymbol{\varepsilon}_{i}$$

$$= \sum_{j=0}^{D} \mathbf{w}_{j} \mathbf{h}_{j}(\mathbf{x}_{i}) + \boldsymbol{\varepsilon}_{i}$$

More on notation

observations (x_i,y_i) : N
inputs x[j] : d
features h_i(x) : D

feature 1 = $h_0(\mathbf{x}) \dots e.g.$, 1 feature 2 = $h_1(\mathbf{x}) \dots e.g.$, $\mathbf{x}[1] = sq.$ ft. feature 3 = $h_2(\mathbf{x}) \dots e.g.$, $\mathbf{x}[2] = \#bath$ or, $log(\mathbf{x}[7]) \mathbf{x}[2] = log(\#bed) \times \#bath$

feature $D+1 = h_D(\mathbf{x})$... some other function of $\mathbf{x}[1],..., \mathbf{x}[d]$

51

Simple linear regression

Two linear features $\hat{y} = \hat{w}_0 + \hat{w}_1 \mathbf{x}[1] + \hat{w}_2 \mathbf{x}[2]$ fix

But...

increasing #bathrooms for fixed #sq.ft will make your bedrooms smaller and smaller. Think about interpretation.

54

Polynomial regression

$$\hat{y} = \hat{w}_0 + \hat{w}_1 x + \dots + \hat{w}_j x^j + \dots + \hat{w}_p x^p$$

Then ... can't interpret coefficients

But...

increasing #bedrooms for fixed #sq.ft will make your bedrooms smaller and smaller. You can end with negative coefficient. Might not be so if you removed #sq.ft from the model. Think about interpretation in context of the model you put in.

Fitting in D-dimmensions

Rewriting in vector notation

57

Rewriting in matrix notation

Fitting in D-dimmensions

©2015 Emily Fox & Carlos Guestrin

Machine Learning Specialization

20/10, 27/10, 3/11 2021

46

Cost function in D-dimmension

60

RSS in vector notation

Cost function in D-dimmension

61

RSS in matrix notation

RSS in matrix notation

Gradient of RSS

$$\nabla RSS(\mathbf{w}) = \nabla [(\mathbf{y} - \mathbf{H}\mathbf{w})^{\top}(\mathbf{y} - \mathbf{H}\mathbf{w})]$$
$$= -2\mathbf{H}^{\top}(\mathbf{y} - \mathbf{H}\mathbf{w})$$

Why? By analogy to 1D case: $\frac{d}{dw} (y-hw)(y-hw) = \frac{d}{dw} (y-hw)^2 = 2 \cdot (y-hw)'(-h)$ = -2h(y-hw)

Approach 1: set gradient to zero

Closed-form solution

This might not be CPU feasible.

Approach 2: gradient descent

We initialise our solution somewhere and then ...

while not converged $\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} - \eta \nabla RSS(\mathbf{w}^{(t)})$ $-2\mathbf{H}^{\mathsf{T}}(\mathbf{y} - \mathbf{H}\mathbf{w})$ $\leftarrow \mathbf{w}^{(t)} + 2\eta \mathbf{H}^{\mathsf{T}}(\mathbf{y} - \mathbf{H}\mathbf{w}^{(t)})$ $\tilde{\mathbf{y}}(\mathbf{w}^{(t)})$

Gradient descent

$$RSS(\mathbf{w}) = \sum_{i=1}^{N} (y_i - h(\mathbf{x}_i)^{\mathsf{T}} \mathbf{w})^2$$
$$= \sum_{i=1}^{N} (y_i - w_0 h_0(x_i) - w_1 h_1(x_i) - \dots - w_0 h_0(x_i))^2$$

Partial with respect to w_j $\sum_{i=1}^{N} 2(y_i - w_0 h_0(x_i) - w_1 h_1(x_i) - w_0 h_0(x_i))^{i} + (-h_j(x_i))^{i} + (-h_j(x_i))^{i} + (-h_j(x_i))^{i}$ $= -2 \sum_{i=1}^{N} h_j(x_i)(y_i - h(x_i)^T w)$

Update to jth feature weight: $w_j^{(t+1)} \leftarrow w_j^{(t)} - \eta(-2 \sum_{i=1}^{\infty} h_j^{(x_i)} (y_i - h_i^{(x_i)} \omega^{(t)}))$ $y_i^{(w^{(t)})}$

68

Interpreting elementwise

Summary of gradient descent

Extremely useful algorithm in several applications

init $\mathbf{w}^{(1)}=0$ (or randomly, or smartly), $\underline{t}=1$ while $\|\nabla RSS(\mathbf{w}^{(t)})\| > \varepsilon$ for j=0,...,D $partial[j] = -2\sum_{i=1}^{N} h_j(\mathbf{x}_i)(y_i - \hat{y}_i(\mathbf{w}^{(t)}))$ $\mathbf{w}_j^{(t+1)} \leftarrow \mathbf{w}_j^{(t)} - \eta$ partial[j] $t \leftarrow t + 1$

What you can do now

- Describe polynomial regression
- Detrend a time series using trend and seasonal components
- Write a regression model using multiple inputs or features thereof
- Cast both polynomial regression and regression with multiple inputs as regression with multiple features
- Calculate a goodness-of-fit metric (e.g., RSS)
- Estimate model parameters of a general multiple regression model to minimize RSS:
 - In closed form
 - Using an iterative gradient descent algorithm
- Interpret the coefficients of a non-featurized multiple regression fit
- Exploit the estimated model to form predictions
- Explain applications of multiple regression beyond house price modeling

71

ACCESSING PERFORMANCE

Assessing performance

Make predictions, get \$, right??

Assessing performance

Or, how much am I losing?

Example: Lost \$ due to inaccurate listing price

- Too low \rightarrow low offers
- Too high \rightarrow few lookers + no/low offers

How much am I losing compared to perfection?

Perfect predictions: Loss = 0 My predictions: Loss = ???

Measuring loss

"Remember that all models are wrong; the practical question is how wrong do they have to be to not be useful." George Box, 1987.

Symmetric loss Examples: *functions* (assuming loss for underpredicting = overpredicting) Absolute error: $L(y, f_{\hat{w}}(\mathbf{x})) = |y - f_{\hat{w}}(\mathbf{x})|$ Squared error: $L(y, f_{\hat{w}}(\mathbf{x})) = (y - f_{\hat{w}}(\mathbf{x}))^2$

74

Accessing the loss

Use training data

Compute training error

1. Define a loss function $L(y, f_{\hat{w}}(\mathbf{x}))$

- E.g., squared error, absolute error,...
- 2. Training error
 - = avg. loss on houses in training set = $\frac{1}{N} \sum_{i=1}^{N} L(y_i, f_{\hat{w}}(\mathbf{x}_i))$

fit using training data

Training error

77

Use squared error loss $(y-f_{\hat{w}}(\mathbf{x}))^2$

Training error

78

More intuitive is to take RMSE, same units as y

Training error vs. model complexity

79

Is training error a good measure?

Issue: Training error is overly optimistic

because ŵ was fit to training data

Generalisation (true) error

Really want estimate of loss over all possible (î,\$) pairs

Distribution over house

82

For houses with a given # sq.ft. (1), what house prices \$ are we likely to see?

Generalisation error definition

Really want estimate of loss over all possible (î,\$) pairs

Formally: Sequence of the se

Generalisation error (weighted with popularity) vs model complexity

Generalisation error vs model complexity

85

Forming a test set

Hold out some (â, \$) that are not used for fitting the model Test so ,ever

We want to approximate generalisation error.

Test set: proxy for ,,everything you might see"

Training set

Compute test error

Training, true and test error vs. model complexity. Notion of overfitting.

88

Training/test splits

Typically, just enough test points to form a reasonable estimate of generalization error

If this leaves too few for training, other methods like **cross validation** (will see later...)

Three sources of errors

In forming predictions, there are 3 sources of error:

- 1. Noise
- 2. Bias
- 3. Variance

Data are inherently noisy

Bias contribution

92

This contribution we can control.

Assume we fit a constant function

Bias contribution

93

Over all possible size N training sets, what do I expect my fit to be?

Bias contribution

94

Variance contribution

How much do specific fits vary from the expected fit?

Variance contribution

96

Variance of high complexity models

97

Assume we fit a high-order polynomial

Bias of high complexity models

98

Assume we fit a high-order polynomial

High complexity models are very flexible, pick better average trends. 20/10, 27/10, 3/11 2021

Bias -variance tradeoff

Errors vs amount of data

The regression/ML workflow

- 1. Model selection Often, need to choose tuning parameters λ controlling model complexity (e.g. degree of polynomial)
- 2. Model assessment Having selected a model, assess the generalization error

Hypothetical implementation

Training set

Test set

1. Model selection

For each considered model complexity λ :

- i. Estimate parameters \hat{w}_{λ} on training data
- ii. Assess performance of \hat{w}_{λ} on test data
- iii. Choose λ^* to be λ with lowest test error

2. Model assessment

Compute test error of \hat{w}_{λ^*} (fitted model for selected complexity λ^*) to approx. generalization error

Hypothetical implementation

Training set

Test set

1. Model selection

For each considered model complexity λ :

- i. Estimate parameters \hat{w}_{λ} on training data
- ii. Assess performance of $\hat{\mathbf{w}}_{\lambda}$ on test data
- iii. Choose λ^* to be λ with lowest test error

2. Model assessment

Overly optimistic!

Compute test error of \hat{w}_{λ^*} (fitted model for selected complexity λ^*) to approx. generalization error

Hypothetical implementation

Issue: Just like fitting $\hat{\mathbf{w}}$ and assessing its performance both on training data

- λ* was selected to minimize test error (i.e., λ* was fit on test data)
- If test data is not representative of the whole world, then \hat{w}_{λ^*} will typically perform worse than test error indicates

Practical implementation

Solution: Create two "test" sets!

- 1. Select λ^* such that \hat{w}_{λ^*} minimizes error on validation set
- 2. Approximate generalization error of \hat{w}_{λ^*} using test set

Practical implementation

106

Typical splits

107

Training set	Validation set	Test set
80%	10%	10%
50%	25%	25%

What you can do now

- Describe what a loss function is and give examples
- Contrast training, generalization, and test error
- Compute training and test error given a loss function
- Discuss issue of assessing performance on training set
- Describe tradeoffs in forming training/test splits
- List and interpret the 3 sources of avg. prediction error
 - Irreducible error, bias, and variance
- Discuss issue of selecting model complexity on test data and then using test error to assess generalization error
- Motivate use of a validation set for selecting tuning parameters (e.g., model complexity)
- Describe overall regression workflow
109

RIDGE REGRESSION

Flexibility of high-order polynomials

Symptoms for overfitting: often associated with very large value of estimated parameters \hat{w}

Overfitting with many features

111

Not unique to polynomial regression, but also if **lots of inputs** (d large)

Or, generically, lots of features (D large) $y_i = \sum_{j=0}^{D} w_j h_j(\mathbf{x}_i) + \varepsilon_i$

- Square feet
- # bathrooms
- # bedrooms
- Lot size

- ...

– Year built

How does # of observations influence overfitting?

Few observations (N small)
 → rapidly overfit as model complexity increases
 Many observations (N very large)
 → harder to overfit

112

How does # of inputs influence overfitting?

1 input (e.g., sq.ft.):

Data must include representative examples of all possible (sq.ft., \$) pairs to avoid overfitting

How does # of inputs influence overfitting?

114

d inputs (e.g., sq.ft., #bath, #bed, lot size, year,...):

Data must include examples of all possible (sq.ft., #bath, #bed, lot size, year,...., \$) combos to avoid overfitting

Lets improve quality metric blok

Desire total cost format

Want to balance:

Total cost =

- i. How well function fits data
- ii. Magnitude of coefficients

want to balance

measure of fit + measure of magnitude of coefficients small # = good fit to training data small # = not overfit

Measure of fit to training data

117

$$RSS(\mathbf{w}) = \sum_{\substack{i=1 \ N}}^{N} (\mathbf{y}_{i} - \mathbf{h}(\mathbf{x}_{i})^{\mathsf{T}} \mathbf{w})^{2}$$
$$= \sum_{\substack{i=1 \ N}}^{N} - \hat{\mathbf{y}}_{i}(\mathbf{w}))^{2}$$
$$Small RSS \longrightarrow model fitting training data well$$

Measure of magnitude of regression coefficients

118

Consider specific total cost

Total cost = measure of fit + measure of magnitude of coefficients RSS(w)

Consider resulting objectives

120

What if
$$\hat{\psi}$$
 selected to minimize

$$RSS(\psi) + \lambda ||\psi||_{2}^{2}$$

$$RSS(\psi) + \lambda ||\psi||_{2}^{2}$$

$$RSS(\psi) + \lambda ||\psi||_{2}^{2}$$

$$Luning parameter = balance of fit and magnitude$$

$$If \lambda = 0:$$

$$reduces to minimizing RSS(\psi), as before (old solution) \rightarrow \hat{\psi}^{1S}$$

$$Ieast squares$$

$$If \lambda = \infty:$$

$$For solutions where \hat{\psi} \neq 0, then total cost is \infty$$

$$F \hat{\psi} = 0, then total cost = RSS(0) \rightarrow solution is \hat{\psi} = 0$$

$$If \lambda in between: Then 0 \leq \|\hat{\psi}\|_{2}^{2} = \|\hat{\psi}^{1S}\|_{2}^{2}$$

Ridge regression: bias-variance tradeoff

Large λ : high bias, low variance (e.g., $\hat{\mathbf{w}} = 0$ for $\lambda = \infty$) In esse controls

Small λ :

In essence, λ controls model complexity

low bias, high variance

(e.g., standard least squares (RSS) fit of high-order polynomial for $\lambda = 0$)

Ridge regression: coefficients path

122

What happens if we refit our high-order polynomial, but now using **ridge regression**?

Flow chart

Ridge regression: cost in matrix notation

In matrix form, ridge regression cost is: $RSS(w) + \lambda ||w||_{2}^{2}$ $= (y-Hw)^{T}(y-Hw) + \lambda w^{T}w$

Gradient of ridge regresion cost

$$\nabla [RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_{2}^{2}] = \nabla [(\mathbf{y} - \mathbf{H}\mathbf{w})^{\mathsf{T}}(\mathbf{y} - \mathbf{H}\mathbf{w}) + \lambda \mathbf{w}^{\mathsf{T}}\mathbf{w}]$$
$$= \left[(\mathbf{y} - \mathbf{H}\mathbf{w})^{\mathsf{T}}(\mathbf{y} - \mathbf{H}\mathbf{w}) \right] + \lambda \left[(\mathbf{y} - \mathbf{H}\mathbf{w})^{\mathsf{T}}(\mathbf{y} - \mathbf{H}\mathbf{w}) \right] + \lambda \left[(\mathbf{y} - \mathbf{H}\mathbf{w})^{\mathsf{T}}\mathbf{w} \right]$$
$$-2\mathbf{H}^{\mathsf{T}}(\mathbf{y} - \mathbf{H}\mathbf{w}) = 2\mathbf{w}$$

Why? By analogy to 1d case... $\mathbf{w}^{\mathsf{T}}\mathbf{w}$ analogous to \mathbf{w}^2 and derivative of $\mathbf{w}^2=2\mathbf{w}$

Ridge regression: closed-form solution

126

$$\nabla \text{cost}(\mathbf{w}) = -2\mathbf{H}^{\mathsf{T}}(\mathbf{y} - \mathbf{H}\mathbf{w}) + 2\mathbf{\lambda}\mathbf{I}\mathbf{w} = 0$$

Solve for $\mathbf{W}'_{*} + \mathbf{H}^{\mathsf{T}}\mathbf{H}\hat{\mathbf{w}} + \mathbf{\lambda}\mathbf{I}\hat{\mathbf{w}} = 0$
$$\mathbf{H}^{\mathsf{T}}\mathbf{H}\hat{\mathbf{w}} + \mathbf{\lambda}\mathbf{I}\hat{\mathbf{w}} = \mathbf{H}^{\mathsf{T}}\mathbf{y}$$

$$(\mathbf{H}^{\mathsf{T}}\mathbf{H} + \mathbf{\lambda}\mathbf{I})\hat{\mathbf{w}} = \mathbf{H}^{\mathsf{T}}\mathbf{y}$$

$$\hat{\mathbf{w}}^{\mathsf{H}^{\mathsf{H}}}(\mathbf{H}^{\mathsf{T}}\mathbf{H} + \mathbf{\lambda}\mathbf{I})^{-1}\mathbf{H}^{\mathsf{T}}\mathbf{y}$$

Ridge regression: gradient descent

Summary of ridge regression algorithm

init $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), t=1while $||\nabla RSS(\mathbf{w}^{(t)})|| > \epsilon$

for j=0,...,Dpartial[j] = -2 $\sum_{i=1}^{N} (\mathbf{x}_i)(\mathbf{y}_i - \hat{\mathbf{y}}_i(\mathbf{w}^{(t)}))$ $\mathbf{w}_j^{(t+1)} \leftarrow (1-2\eta\lambda)\mathbf{w}_j^{(t)} - \eta$ partial[j] $t \leftarrow t+1$

If sufficient amount of data...

K-fold cross validation

For k=1,...,K

- 1. Estimate $\hat{w}_{\lambda}^{(k)}$ on the training blocks
- 2. Compute error on validation block: $error_k(\lambda)$

K-fold cross validation

For k=1,...,K

- 1. Estimate $\hat{\mathbf{w}}_{\lambda}^{(k)}$ on the training blocks
- 2. Compute error on validation block: $error_k(\lambda)$

K-fold cross validation

For k=1,...,K

- 1. Estimate $\hat{\mathbf{w}}_{\lambda}^{(k)}$ on the training blocks
- 2. Compute error on validation block: $error_k(\lambda)$

Compute average error: $CV(\lambda) = \frac{1}{K} \sum_{k=1}^{K} error_{k}(\lambda)$

K-fold cross validation

Repeat procedure for each choice of λ

Choose λ^* to minimize $CV(\lambda)$

What value of K

Formally, the best approximation occurs for validation sets of size 1 (K=N)

leave-one-out cross validation

Computationally intensive

– requires computing N fits of model per λ

Typically, K=5 or 10

5-fold CV 10-fold CV

How to handle the intercept

135

. . .

Recall multiple regression model

Model: $y_{i} = \underset{D}{\mathsf{w}_{0}} h_{0}(\mathbf{x}_{i}) + \underset{1}{\mathsf{w}_{1}} h_{1}(\mathbf{x}_{i}) + ... + \underset{D}{\mathsf{w}_{D}} h_{D}(\mathbf{x}_{i}) + \varepsilon_{i}$ $= \sum_{j=0}^{D} \underset{i}{\mathsf{w}_{j}} h_{j}(\mathbf{x}_{i}) + \varepsilon_{i}$

feature 1 = $h_0(\mathbf{x})$...often 1 (constant) feature 2 = $h_1(\mathbf{x})$... e.g., $\mathbf{x}[1]$ feature 3 = $h_2(\mathbf{x})$... e.g., $\mathbf{x}[2]$

feature $D+1 = h_D(\mathbf{x})... e.g., \mathbf{x}[d]$

Do we penalize intercept?

136

Standard ridge regression cost: $RSS(w) + \lambda ||w||_{2}^{2}$ strength of penalty

Encourages intercept w_0 to also be small

Do we want a small intercept? Conceptually, not indicative of overfitting...

Do we penalize intercept?

Option 1: don't penalize intercept

Modified ridge regression cost: $RSS(w_{0,}w_{rest}) + \lambda ||w_{rest}||_{2}^{2}$

Option 2: Center data first

If data are first centered about 0, then favoring small intercept not so worrisome

Step 1: Transform y to have 0 mean
Step 2: Run ridge regression as normal (closed-form or gradient algorithms)

___, .0, 27/10, 3/11 2021

What you can do now

- Describe what happens to magnitude of estimated coefficients when model is overfit
- Motivate form of ridge regression cost function
- Describe what happens to estimated coefficients of ridge regression as tuning parameter λ is varied
- Interpret coefficient path plot
- Estimate ridge regression parameters:
 - In closed form
 - Using an iterative gradient descent algorithm
- Implement K-fold cross validation to select the ridge regression tuning parameter λ

FEATURES SELECTION & LASSO REGRESSION

Why features selection?

Efficiency:

- If size(\mathbf{w}) = 100B, each prediction is expensive
- If ŵ sparse, computation only depends on # of non-zeros
 many zeros

$$\hat{\mathbf{y}}_{i} = \sum_{\hat{w}_{j} \neq 0} \hat{w}_{j} \mathbf{h}_{j}(\mathbf{x}_{i})$$

Interpretability:

- Which features are relevant for prediction?

Sparcity

Housing application

Lot size Single Family Year built Last sold price Last sale price/sqft Finished sqft Unfinished sqft Finished basement sqft # floors Flooring types Parking type Parking amount Cooling Heating Exterior materials Roof type Structure style

Dishwasher Garbage disposal Microwave Range / Oven Refrigerator Washer Dryer Laundry location Heating type Jetted Tub Deck Fenced Yard Lawn Garden Sprinkler System

Sparcity

Find best model of size: 0

Find best model of size: 1

Find best model of size: 2

145

Note: not necessarily nested!

Find best model of size: N

Choosing model complexity

Option 1: Assess on validation set

Option 2: Cross validation

Option 3+: Other metrics for penalizing model complexity like BIC...

Complexity of "all subsets"

148

Greedy algorithm

Forward stepwise algorithm

- 1. Pick a dictionary of features $\{h_0(\mathbf{x}),...,h_D(\mathbf{x})\}$
 - e.g., polynomials for linear regression
- 2. Greedy heuristic:
 - i. Start with empty set of features $F_0 = \emptyset$ (or simple set, like just $h_0(\mathbf{x}) = 1 \rightarrow y_i = w_0 + \varepsilon_i$)
 - ii. Fit model using current feature set F_t to get $\hat{\mathbf{w}}^{(t)}$
 - iii. Select next best feature $h_{i^*}(\mathbf{x})$
 - e.g., h_j(x) resulting in lowest training error when learning with F_t + {h_j(x)}
 - iv. Set $F_{t+1} \leftarrow F_t + \{h_{j^*}(\mathbf{x})\}$
 - v. Recurse

150

- # bedrooms
- # bathrooms
- sq.ft. living
- sq.ft. lot
- floors
- year built
- year renovated
- waterfront

151

of features

- # bedrooms
- # bathrooms
- sq.ft. living
- sq.ft. lot
- floors
- year built
- year renovated
- waterfront

152

of features

of features

- # bedrooms
- # bathrooms
- sq.ft. living
- sq.ft. lot
- year built
- year renovated
- waterfront

When do we stop?

When training error is low enough?

No!

When test error is low enough?

No!

Use validation set or cross validation!

Complexity of forward stepwise

How many models were evaluated?

- 1st step, D models
- 2nd step, D-1 models (add 1 feature out of D-1 possible)
- 3rd step, D-2 models (add 1 feature out of D-2 possible)

- How many steps?
- Depends
- At most D steps (to full model)

Other greedy algorithms

156

Instead of starting from simple model and always growing...

Backward stepwise:

Start with full model and iteratively remove features least useful to fit

Combining forward and backward steps: In forward algorithm, insert steps to remove features no longer as important

Lots of other variants, too.

Using regularisation for features selection

Instead of searching over a **discrete** set of solutions, can we use regularization?

- Start with full model (all possible features)
- "Shrink" some coefficients *exactly* to 0
 - i.e., knock out certain features
- Non-zero coefficients indicate "selected" features

158

159

160

Nothing measuring bathrooms was included!

161

Remember: this is linear model. If we assume that #showers = #bathrooms and remove one of them from the model, coefficients will sum up.

162

Try this cost instead of ridge ...

Lasso regression

164

Just like ridge regression, solution is governed by a continuous parameter λ

$$RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_{1}$$

$$\int \text{tuning parameter} = \text{balance of fit and sparsity}$$
If $\lambda = 0$: $\hat{\mathbf{w}}^{\text{lesso}} = \hat{\mathbf{w}}^{\text{ls}}$ (unrequire i zed solution)

 $|f_{\lambda} = \infty; \quad \hat{\omega}^{base} \neq O$

If λ in between: $\mathcal{O} \leq \|\hat{\omega}^{\text{mass}}\|_{1} \leq \|\hat{\omega}^{\text{mass}}\|_{1}$

Coefficient path: ridge

165

Coefficient path: lasso

Visualising ridge cost in 2D

Visualising ridge cost in 2D

Visualising ridge cost in 2D

Visualising lasso cost in 2D

Visualising lasso cost in 2D

Visualising lasso cost in 2D

How we optimise for objective

To solve for $\hat{\mathbf{w}}$, previously took gradient of total cost objective and either:

- 1) Derived closed-form solution
- 2) Used in gradient descent algorithm

Optimise for lasso objective

can use subgradient descent

Coordinate descent

Goal: Minimize some function g $\min_{g(w)} g(w) = g(w_0, w_1, \dots, w_D)$

Often, hard to find minimum for all coordinates, but easy for each coordinate

Coordinate descent:

Comments on coordinate descent

How do we pick next coordinate?

 At random ("random" or "stochastic" coordinate descent), round robin, ...

No stepsize to choose!

Super useful approach for many problems

- Converges to optimum in some cases (e.g., "strongly convex")
- Converges for lasso objective

Normalizing features

Normalizing features

Scale training **columns** (not rows!) as:

$$\underline{h}_{j}(\mathbf{x}_{k}) = \underbrace{h_{j}(\mathbf{x}_{k})}_{\sqrt{\sum_{i=1}^{N} h_{j}(\mathbf{x}_{i})^{2}}} \overset{\text{Normalizer}}{\swarrow} Z_{j}^{\text{Normalizer}}$$

Apply same training scale factors to test data:

Optimising least squares objective

178

One coordinate at a time

$$RSS(\mathbf{w}) = \sum_{i=1}^{N} (y_i - \sum_{j=0}^{D} w_j \underline{h}_j(\mathbf{x}_i))^2$$
Fix all coordinates \mathbf{w}_{-i} and take partial w.r.t. w_j

$$\frac{\partial}{\partial w_j} RSS(\mathbf{w}) = -2 \sum_{i=1}^{N} \underline{h}_j(\mathbf{x}_i) (y_i - \sum_{j=0}^{D} w_j \underline{h}_j(\mathbf{x}_i))$$

$$= -2 \sum_{i=1}^{N} \underline{h}_j(\mathbf{x}_i) (y_i - \sum_{j=0}^{D} w_j \underline{h}_j(\mathbf{x}_i))$$

$$= -2 \sum_{i=1}^{N} \underline{h}_j(\mathbf{x}_i) (y_i - \sum_{j=0}^{D} w_j \underline{h}_j(\mathbf{x}_i)) + 2 w_j \frac{w_j}{w_j} \underline{h}_j(\mathbf{x}_i)^2$$

$$= -2 p_j + 2 w_j^2$$

Optimising least squares objective

$$RSS(\mathbf{w}) = \sum_{i=1}^{N} \left(y_i - \sum_{j=0}^{D} w_j \underline{h}_j(\mathbf{x}_i) \right)^2$$

Set partial = 0 and solve

$$\frac{\partial}{\partial w_j} RSS(\mathbf{w}) = -2\rho_j + 2w_j = 0$$

$$\hat{w}_j = \rho_j$$

Coordinate descent for least squares regression

Initialize $\hat{\mathbf{w}} = 0$ (or smartly...) while not converged residual for j=0,1,...,D without feature j compute: $\rho_j = \sum_{i=1}^{n} \underline{h}_j(\mathbf{x}_i)(\mathbf{y}_i - \hat{\mathbf{y}}_i(\hat{\mathbf{w}}_{-j}))$ set: $\hat{w}_j = \rho_j$ prediction without feature j Measure of the correlation between w_i

and the residual without this feature.
How to access convergence

Initialize $\hat{\mathbf{w}} = 0$ (or smartly...) while not converged for j=0,1,...,D compute: $\rho_j = \sum_{i=1}^{N} \underline{h}_j(\mathbf{x}_i)(y_i - \hat{y}_i(\hat{\mathbf{w}}_{-j}))$ set: $\hat{w}_j = \begin{cases} \rho_j + \lambda/2 & \text{if } \rho_j < -\lambda/2 \\ 0 & \text{if } \rho_j \text{ in } [-\lambda/2, \lambda/2] \\ \rho_i - \lambda/2 & \text{if } \rho_i > \lambda/2 \end{cases}$

Soft thresholding

Convergence criteria

183

When to stop?

For convex problems, will start to take smaller and smaller steps

Measure size of steps taken in a full loop over all features

- stop when max step $< \epsilon$

Other lasso solvers

Classically: Least angle regression (LARS) [Efron et al. '04]

Then: Coordinate descent algorithm [Fu '98, Friedman, Hastie, & Tibshirani '08]

Now:

- Parallel CD (e.g., Shotgun, [Bradley et al. '11])
- Other parallel learning approaches for linear models
 - Parallel stochastic gradient descent (SGD) (e.g., Hogwild! [Niu et al. '11])
 - Parallel independent solutions then averaging [Zhang et al. '12]
- Alternating directions method of multipliers (ADMM) [Boyd et al. '11]

How do we chose λ

If sufficient amount of data...

How do we chose λ

K-fold cross validation

For k=1,...,K

- 1. Estimate $\hat{\mathbf{w}}_{\lambda}^{(k)}$ on the training blocks
- 2. Compute error on validation block: $error_k(\lambda)$

Compute average error: $CV(\lambda) = \frac{1}{K} \sum_{k=1}^{K} error_{k}(\lambda)$

How do we chose λ

Choosing λ via cross validation

Cross validation is choosing the λ that provides best predictive accuracy

Tends to favor less sparse solutions, and thus smaller λ , than optimal choice for feature selection

c.f., "Machine Learning: A Probabilistic Perspective", Murphy, 2012 for further discussion

Impact of feature selection and lasso

Lasso has changed machine learning, statistics, & electrical engineering

But, for feature selection in general, be careful about interpreting selected features

- selection only considers features included
- sensitive to correlations between features
- result depends on algorithm used
- there are theoretical guarantees for lasso under certain conditions

What you can do now

- Perform feature selection using "all subsets" and "forward stepwise" algorithms
- Analyze computational costs of these algorithms
- Contrast greedy and optimal algorithms
- Formulate lasso objective
- Describe what happens to estimated lasso coefficients as tuning parameter λ is varied
- Interpret lasso coefficient path plot
- Contrast ridge and lasso regression
- Describe geometrically why L1 penalty leads to sparsity
- Estimate lasso regression parameters using an iterative coordinate descent algorithm
- Implement K-fold cross validation to select lasso tuning parameter $\boldsymbol{\lambda}$

NONPARAMETRIC REGRESSION

Fit globaly vs fit locally

191

Parametric models Below f(x) is not really У**↑** a polynomial function price (\$) price (\$) У constant linear price (\$) sq.ft. Х sq.ft. Х y4 y 🕇 quadratic sq.ft. Х price (5) price (\$) sq.ft. sq.ft. Х Х

What alternative do we have?

If we:

- Want to allow flexibility in f(x) having local structure
- Don't want to infer "structural breaks"

- What's a simple option we have?
- Assuming we have plenty of data...

Nearest Neighbor & Kernel Regression (nonparametric approach)

Fit locally to each data point

What people do naturally...

195

Real estate agent assesses value by finding sale of most similar house

1-NN regression more formally

Visualizing 1-NN in multiple dimensions

Voronoi tesselation (or diagram):

- Divide space into N regions, each
- containing 1 datapoint
 - Defined such that any
 x in region is "closest"
 to region's datapoint

Don't explicitly form!

Xq closer to X; than any other X; for iti.

Distance metrics: Notion of "closest"

In 1D, just Euclidean distance:

distance
$$(x_j, x_q) = |x_j - x_q|$$

In multiple dimensions:

- can define many interesting distance functions
- most straightforwardly, might want to weight different dimensions differently

Weighting housing inputs

Some inputs are more relevant than others

bedrooms # bathrooms sq.ft. living sq.ft. lot floors year built year renovated waterfront

Scaled Euclidan distance

200

Formally, this is achieved via

distance(
$$\mathbf{x}_{j}, \mathbf{x}_{q}$$
) =
 $\sqrt{a_{1}(\mathbf{x}_{j}[1] - \mathbf{x}_{q}[1])^{2} + ... + a_{d}(\mathbf{x}_{j}[d] - \mathbf{x}_{q}[d])^{2}}$

weight on each input (defining relative importance)

Other example distance metrics:

Mahalanobis, rank-based, correlation-based, cosine similarity, Manhattan, Hamming, ...

Different distance metrics

Performing 1-NN search

202

- Specify: Distance metric
- Output: Most similar house

1-NN algorithm

1-NN in practice

Get more "comps"

205

More reliable estimate if you base estimate off of a larger set of comparable homes

K-NN regression more formally

- Dataset of $(\widehat{\mathbf{n}}, \$)$ pairs: $(\mathbf{x}_1, \mathbf{y}_1)$, $(\mathbf{x}_2, \mathbf{y}_2)$,..., $(\mathbf{x}_N, \mathbf{y}_N)$ Query point: \mathbf{x}_q
- 1. Find k closest x; in dataset (XNNI, XNNI, XNNI) such that for any Xi not in nearest neighbor set, distance(Xi, Xq) Z distance (XNNI, Xq)
- 2. Predict $\hat{y}_{q} = \frac{1}{k} (y_{NN, + y_{NN_{2} + \dots + y_{NN_{k}}})$ $= \frac{1}{k} \underbrace{\xi}_{j=1}^{k} y_{NN_{j}}$

K-NN more formally

• Query house:

• Dataset:

- Specify: Distance metric
- Output: Most similar houses

K-NN algorithm

K-NN in practice

209

K-NN in practice

210

20/10, 27/10, 3/11 2021

Issues with discontinuities

Overall predictive accuracy might be okay, but...

For example, in housing application:

- If you are a buyer or seller, this matters
- Can be a jump in estimated value of house going just from 2640 sq.ft. to 2641 sq.ft.
- Don't really believe this type of fit

Weigh more similar houses more than those less similar in list of k-NN

How to define weights

Want weight c_{qNNj} to be small when distance(**x**_{NNj}, **x**_q) large

and c_{qNNj} to be large when distance(\mathbf{x}_{NNj} , \mathbf{x}_{q}) small

Kernel weights for d=1

214

Kernel regression

215

Instead of just weighting NN, weight all points

Kernel regression in practice

216

Choice of bandwith λ

217

Choosing λ (or k on k-NN)

218

How to choose? Same story as always...

Cross Validation

Contrasting with global average

219

A globally constant fit weights all points equally

Contrasting with global average

220

Kernel regression leads to locally constant fit

 slowly add in some points and and let others gradually die off

$$\hat{\mathbf{y}}_{q} = \frac{\sum_{i=1}^{N} \text{Kernel}_{\lambda}(\text{distance}(\mathbf{x}_{i}, \mathbf{x}_{q})) * \mathbf{y}_{q}}{\sum_{i=1}^{N} \text{Kernel}_{\lambda}(\text{distance}(\mathbf{x}_{i}, \mathbf{x}_{q}))}$$

Local linear regression

So far, discussed fitting constant function locally at each point

 \rightarrow "locally weighted averages"

Can instead fit a line or polynomial locally at each point

 \rightarrow "locally weighted linear regression"

Local regression rules of thumb

- Local linear fit reduces bias at boundaries with minimum increase in variance
- Local quadratic fit doesn't help at boundaries and increases variance, but does help capture curvature in the interior
- With sufficient data, local polynomials of odd degree dominate those of even degree

Recommended default choice: local linear regression

Nonparametric approaches

k-NN and kernel regression are examples of nonparametric regression

General goals of nonparametrics:

- Flexibility
- Make few assumptions about f(x)
- Complexity can grow with the number of observations N

Lots of other choices:

- Splines, trees, locally weighted structured regression models...

Limiting behaviour of NN

Noiseless setting ($\epsilon_i = 0$)

In the limit of getting an infinite amount of noiseless data, the MSE of 1-NN fit goes to 0

Limiting behaviour of NN

Noiseless setting ($\epsilon_i = 0$)

In the limit of getting an infinite amount of noiseless data, the MSE of 1-NN fit goes to 0

20/10, 27/10, 3/11 2021

Error vs amount of data

Limiting behaviour of NN

Noisy data setting

In the limit of getting an infinite amount of data, the MSE of NN fit goes to 0 if k grows, too

Issues: NN and kernel methods

228

NN and kernel methods work well when the data cover the space, but...

- the more dimensions d you have, the more points N you need to cover the space
- need N = O(exp(d)) data points for good performance

This is where parametric models become useful...

Issues: Complexity of NN search

Naïve approach: Brute force search

- Given a query point \mathbf{x}_{q}
- Scan through each point x1,x2,..., xN
- O(N) distance computations per 1-NN query!
- O(Nlogk) per k-NN query!

What if N is huge??? (and many queries)

Will talk more about efficient methods in Clustering & Retrieval course

We have discussed how to

- Motivate the use of nearest neighbor (NN) regression
- Define distance metrics in 1D and multiple dimensions
- Perform NN and k-NN regression
- Analyze computational costs of these algorithms
- Discuss sensitivity of NN to lack of data, dimensionality, and noise
- Perform weighted k-NN and define weights using a kernel
- Define and implement kernel regression
- Describe the effect of varying the kernel bandwidth λ or # of nearest neighbors k
- Select λ or k using cross validation
- Compare and contrast kernel regression with a global average fit
- Define what makes an approach nonparametric and why NN and kernel regression are considered nonparametric methods
- Analyze the limiting behavior of NN regression

Summarising

Models	 Linear regression Regularization: Ridge (L2), Lasso (L1) Nearest neighbor and kernel regression
Algorithms	Gradient descentCoordinate descent
Concepts	 Loss functions, bias-variance tradeoff, cross-validation, sparsity, overfitting, model selection, feature selection