Machine Learning and Multivariate

Techniques in HEP data Analyses

Artificial Neural Networks

Extracted from slides by:
G. Cowan’s lectures at RH London Univ., H. Voss at SOS 2016, K. Reygers lectures at Heilderbeg Univ.

Prof. dr hab. Elzbieta Richter-Was

Machine Learning - Basic terminology

The goal of machine learning is to predict results based on incoming data.

Features (also parameters, or variables): these are the factors for a machine to
look at. E.g.: carthesian coordinates, pixel colors, a car mileage, user's gender,
stock price, word frequency in the text.

« Quantitative (x ={1.02, 0.21, 0.12, 2})

Qualitative discrete (x = {medium, small, large}) or categorical (x={red, blue,
green})

Algorithms (also models): Any problem can be solved in different ways. The
method you choose affects the precision, performance, and size of the final model.

If the data is insufficient/inapproriate (e.g. statistically limited or missing
important features), even the best algorithm won't help. Pay attention to the
accuracy of your results only when you have a good enough dataset.

CLASSICAL MACHINE LEARNING

Data is pre-categorized %"ot labeled
in any way

or numerical
,” SUPERVISED . UNSUPERVISED

/ \
/ * Oeaiet i \ i i
/ a cotegory irff,féer \ by Similarity
\
\CLUSTERING i
dependencies

|dentify Sequences

/
CLASSIFICATION s
kDivide the socks by color» «Split \‘Avt\)t?rg\;l:;ksc)gothmg
I — o\ ASSOCI|ATION
| @ § (\d/'/_\'/' «Find What clothes | often
¢ REGRESSION 1 ... e
\ «Divide the ties by length» [,-f‘_z
- 0 I + —=
\ O\
X = / DIMENSI|ON
X A S REDUCTION
\ °c / L 2
i o (generalization)
~ 7’ «Make the best outfits from the given clothes»
~ -
- :'.':’.’
i Image credit: https://vas3k.com/blog/machine learning/

_—
_ s =

OUR FOCUS

Where are the Neural Networks?

DRSCAN O
¥ . aive Baye
Mem\-shiftk Means Agglomerative oxi SVM Rt v
Fuzzy C-Means m Classification) Logistic Regression
Euclat
Linear Regression
Apriori Pqttel"‘n S'Eﬂlfeh
Polynomial
FP-Grawth - Regreision
Ridge/Losso
UNSUPERVISED) (SUPERVISED el
DIMENS|OM REDUCTION
(generalization
£-SME LDA
AT CLASSICAL

LEARNING

Rondom Forest

MACHINE
LEARNING

REINFORCEMENT
LEARNING

Gevnetic Q-Learning

Algorithm
30 SARSA Desp G-wetwork

ASC ©am) CatBoost

Perceptrans
{MLP)
Heural Hetworks

Lsm (RN seqiseq
Generative
Adversarial Wetworks

L
ST™ GRU (GAN)

NEURAL
NETS AND
DEEP LEARNING

Convolutional

Image credit: hitps:/ivas3k.com/blog/machine learning/

Neural Networks

Any neural network is a collection of neurons and connections between them.

Neuron is a function with a set of inputs and one output. Its task is to take all
numbers from its input, apply a function on them and send the result to the output.

 Example: sum up all numbers from the inputs and if that sum is bigger than N
give 1 as a result. Otherwise return zero.

Connections are like channels between neurons. They connect outputs of one
neuron with the inputs of another so they can send digits to each other. Each
connection has only one parameter the weight.

 These weights tell the neuron to respond more to one input and less to
another. Weights are adjusted when training — that's how the network learns.

Perceptron

n
Discriminant: y(X)=h (w{} +> w,-x,-)
=1

The nonlinear, monotonic function h is called activation function.

1
Typical choices for h: 1+ o—x ("sigmoid”), tanhx

X

X1 O
0.8
0.6
O y(X) -
0.2

Xn

The Biological Inspiration: the Neuron

Cell body

Axon Telodendria ey
/" f‘ i 3

¢

D
Gy —Axon hilﬁz\’k Synaptic terminals
‘,{',4"'. ' »

-— Human brain:
Golgi apparatus 1011 neurons, each with on average

Endoplasmic /.

7000 synaptic connections
reticulum
L >4
Mitochondrion \J\ Dendrite Input
& yl—l Wl_l
/ ‘| N Dendritic branches 11_1 \\1_] — \Output
Yo =1
Wi oS Z)y—
. | T N
https://en.wikipedia.org/wiki/Neuron 1-1 //vvl—l 0

Feedforward Neural Network with One Hiden Layer

superscripts indicates layer number

X, /
0i(X) = h [wl) + Z W!-’,(-l)Xj
j=1
ﬁ 2 2) /o
y(R)=h | wip + Z Wl(j)@J(X)
X, =1

hidden layer

Straightforward to generalize to multiple hidden layers

Network Training

X, : training event, a=1, ..., N

t, . correct label for training event a

e.qg., ta= 1, 0 for signal and background, respectively

w : vector containing all weights

Error function:

Weights are determined by minimizing the error function.

Backpropagation

Start with an initial guess w(®) for the weights an then update weights after
each training event:
w1 — (7)) _ UVEa(VT’(T))
[learning rate
Let's write network output as fO||OWS'

y(X) = h(u(X)) with u(ZW i(X), ¢j(X) = (Z Wi xk) = h(v;(X))
k=0
Here we defined ¢®o = xo = 1 and the sums start from O to include the offsets.

Weights from hidden layer to output:

IE, ou
_ = (va — ta)h'(u(X5))-
5W1(J-2)))) E)Wg)

Weights from input layer to hidden layer (— further application of chain rule):

= (va — ta)h'(u(X3)) % (%a)

Ea — _(ya — ta)z —

JE,

o (1
de(k)

= (Vo — ta) B (u(Z)) Wi H (i (%a)) Xak R = (Xots oo Xam)

Neural Network Output and Decision Boundaries

— Signal
— Background | | OUtpUt Of
neural network

Number of events

e i O Y o e T

o 02 04 06 08 1

Xy hy 0(x) = f(x,w)

v * Signal e

. .
' . 1
e |

0L 3 + Background |~
R . &+ « -7 — NN contours
3 ,g‘t‘,‘r””’"l\
td = A 4 B i \\ﬁ‘ﬁl\‘l\!\?ﬂﬁ ;
decision - . g ;;-1;’«10;1’{\:‘;\\!‘1\“?0\\‘.,‘;‘1“-\‘*~“’ | signal
boundaries K . ° 1 = Al probability
for different o i S P(s | x1, Xx2)
cuts on NN e e ey —
output e b ¥
00 50 100 150 200

Variable x,

Example of Overtraining

Too many neurons/layers make a neural network too flexible
— overtraining

> 4 > 4
- training sample - test sample
2_ R 2_
0— 0 a
E'— —?
| | | | | | 1 | | | | | | | | | | | |
-2 0 / 2 4 -2 0 2 4
X X

Network "learns” features that are merely
statistical fluctuations in the training sample

Monitoring Overtraining

Monitor fraction of misclassified events (or error function:)

error rate

optimum = minimum of
error rate for test sample

overtraining =
increase of error rate

test sample

training sample

flexibility (e.g., number
of nodes/layers)

>

Deep Neural Networks

Deep networks: many hidden layers with large number of neurons

Challenges Big progress in recent years
» Hard too train ("vanishing gradient » Interest in NN waned before ca. 2006
problem®) » Milestone: paper by G. Hinton (2006):
» Training slow "learning for deep belief nets”
» Risk of overtraining » Image recognition, AlphaGo, ...

» Soon: self-driving cars, ...

) hidden layer 1 hidden layer 2 hidden layer 3
input layer

T N~ o \\\ —
— -~ —_— - Ry
S / ~ = ~
. -4‘/_/ / P ~
\\ - ——

\ IR 207 RS output layer

}//
\

How do NNs work?

input layer hidden layer 1 hidden layer 2 hidden layer 3

How do NNs work?

| bias
activation weights |
function
| (1)_ W .o W [~ (0)_
a() (.);0) (.],n ao bo
sms — f : .. : N + N
a‘gll) Wk;o . Wk’n a?(lo) bn

How do NNs learn?

After we constructed a network, our task is to assign proper weights so neurons
will react correctly to incoming signals.

« define a loss function to measure how far the response is from the truth

This function is a function of all the weights and biases in the NN (a priori a very
large number), and the goal of training is to find its minimum.

« To start with, all weights are assigned randomly.

« After evaluating the NN on the training
dataset, we can compute all the
per-neuron differences with respect
to the correct result.

« Computing the gradient of the loss,
gives us a direction in which to tune the
weights towards a local minimum

The process of correcting the weights is
called backpropagation an error.

DES

How do NNs learn?

A mostly complete chart of

~ Input Cell N e U ra l N e tWO r kS Deep Feed Forward (DFF)

O Backfed Input Cell ©2019 Fjodor van Veen & Stefan Leijnen asimovinstitute.org
STAYAN
%

A Noisy Input Cell Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF) S et Sy,
K AR K
‘,“ 15 (3

. Hidden Cell f : = X
: , . WAV

@ rrobablistic Hidden Cell : >. 7 N ,

@ spiking Hidden Cell

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU)
Q) . - - - -
. Capsule Cell

NN 9.9,

‘ Output Cell 2 '165"1#5}'1 = '165}'15%'{
JREIRTA LR

\“"\""\ \n"\n"\

‘ Match Input Output Cell

. Recurrent Cell

. Memory Cell

. Gated Memory Cell

Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

Kernel

(O Convolution or Pool

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM) Deep Belief Network (DBN)

/
v

O/ BB BB/
oA R R PR

@, 0 O

There are many more...

How do NNs learn?

Sigmoid

¢ Each input is multiplied by a weight. o

* The weighted values are summed "
and a bias is added

* The result is passed to an o 0
activation funciton (nhon liniarity).

tanh(z)

>

Summation and Bias

=
¢

Inputs Activation

Leaky RelL.U
max(0.1z, z)

Maxout

max(w] z + by, w3 z + bo)

ELU
x>0
nr(r* 1) <0

g=f Z(wzxz) + bias

=1

Thers’s a
world inside
black boxes!

Qutput

Typical Applications

Regression: Classification:
Predict a continuous label. Separate events into multiple categories.

Input Preprocesing

* |nput features could have vastly different scales (e.g. pr vs n).

+ Difficult to find optimal values.

* Basic strategy: Normalize to mean=0 and variance=1.

original data zero-centered data normalized data

-10
-0

* Other options possible: decorrelation, non-linear transformation, ...

———

* Training starts specifying an input and a target dataset.

* For each input set, the target is what the network should learn
for that input.

* Aloss function is required L(0):

* The loss funtion quantifies the mistakes the NN makes.
E.g. mean squared error can be used for regression.

L(O)A
e Local mi
Training is the ocarmin
minimization of the / Global min
loss function w.r.t. the
NN parameters. *

Training: (Stochastic) Gradient Descent

¢ Given the increasing size of datasets and parameters, it is no more
possible to directly minimize the loss function.

| Iterative minimization by updating @ in opposite direction of gradient.

OL _ .
0, =0,_1— a% , where a is the so-called « learning rate ».

¢ Evaluation and derivation of the loss
funciton for the full dataset is costly: g
&

Stochastic gradient descent:
Calculate gradient for a small
stochastic subset of the training
sample (batch). — This also helps
to avoid local minima! Parameter’

One iteration over the full training dataset is called epoch.

Training: more optimisers

. ———— == sgd
* More advanced options than . ~— momentum []
fixed learning rate. o} R oy nzg .
7/ . - adagra R
, § R 3
+ Momentum: i "' A\ sl
¥ ol rmsprop \
past gradients used as |
« velocity » —3plif
+ Adaptive methods: -4 ‘{ ‘
different learning rates gty .
for each parameter and 100
as a function of past
gradients.
160 120

Sa Epoch

Underfitting and overtraining

Underfitting: If model capacity is too low
or if training is not enough
- bad performance.

| Underfitting Overfitting

Overfitting: If model capacity is too high,
network can « memorize » training samples
- bad generalization.

Overtraining solutions

Early stop: Dropout:

Evaluate the performance of Randomly drop a percentage

the network on a validation of nodes at each training step.
dataset. Learn redundant

Stop when performance on representations, hence giving
validation set decreases a more robust model.

overtrainin

A
loss

validation set

training set

epochs

Convolutional NN

¢ Convolutional NNs are made to exploit local correlation and
translation invariance.

¢ Typical application are image processing and computer vision.

>

TRAUSLATION UARIANCE

V| & v

/

Convolution layer

* A small filter (weight tensor) slides over the image to create a

feature map.
/ OUIV
filter e

input

32
height

32 /
width L.

* Several filters could be stacked depth-wise.

+ Several convolution can be applied one after the other to extract
higher level features.

3 depth

Average and Max pooling layers

* When output size reduction is required:

* Max pooling: takes the maximum of each patch.

* Average pooling: takes the average of each patch.

max pooling S
d
average pooling E
“

* EQ: 2x2 filter with stride=2

Convolutional NN architecture

=0

Py

fagy

L0

_o.

e % -] ~o

o No

o o

{+] o

+]]

[+] -]

Q [+]

- : [+] o

convolution + max pooling vec |4 k
nonlinearity | o

I |
convolution + pooling layers fully connected layers Nx binary classification

¢ Convolution and pooling layers to extract features.
* Fully connected layers used at the end to combine features.

* Applications in HEP: PID for neutrino experiments, jet tagging,
reduction of seeds for tracking, etc..

* Recursive NNs are deep NN created by applying the same set
of weights recursively over a structured input of variable size.

* They are called recurrent because they performe the same task
for every element of a sequence, with the output being
depended on the previous computations.

* Typical applications in natural language processing: apply the
recursive NN to each word in a sentence for text generation
(predict the next word in the sequence), translation, etc..

0

O Dt—] ot IDr+J'
- Y
S w t—1 t 5t+j
Unfold T w W W
U U U U
X X1 x4 Xirl

Recursive NN: possible HEP applications

* With particle-flow, collision raw data is
converted in a list of particles. /\/%./A

¢ Complex objects (e.g. jets) are reconstructed e b T o [l o Bios
by combining particles from this list.

* Image-processing approaches might not be
the best in this case.

+ Recursive NNs can be better suited.

Fermilab has a herd of bisons

¢ Particles are like words In a sentence.

* QCD is the grammar.

Adversarial NN

* Two deep NNs in competition with each other.

* The first NN can be used to maximize the classification
performance of signal against background events.

* The second NN can be trained to identify dependency on
systematic uncertanty of the output of the first NN.

* The minimization of the global loss function guarantees optimal
classification performance with reduced systematic dependence.

Classifier f Adversary r

2 Li=Le-Lr

|

\ N | 1 (£ 05): o) |
£(X;05) / va(£(X; 07); 07)
X — I — O ‘P{T].!Tﬁ! S }
QO
/4

Of Lyr(0r)

1
|
|
|
|
|
|
|

= |
|
|

1 |

L
(w}
5
G
P

Generative Adversarial NN

* Adversarial NNs can also be used for image generation.

* A generator and a discriminator are trained in competition.

¢ Generator:
creates images
starting from noise.

¢ Discriminator:
tries to distinguish
between true and
generated images.

|—. : Fa
L e
- L
1]

* The global loss function is given by Loss(gen) — Loss(discr).

* The generator learns to make images that it has never seen
simply by fooling the discriminator!

* Application: gen of calo images, jets, and even high-level variables!

Lorentz boost network: motivation

* Deep learning methods using high-level and low-level variables are
outperforming shallow learning methods using high-level variables.

* There is some information in low-level variables that high-level
variables is not using.

* Deep learning methods using low-level variables only are not able
to reproduce the same results as deep learning methods using
also high-level variables.

* Need of a new NN architecture to fully exploit low-level
Information and automatize the design of high-level variables.

arxiv: 1812.09722

Lorentz boost network: network architecture

+ Two stages approach:

combines them to form compdsite particles and rest frames.
Composite particles are boosted in the rest frames where
features are extracted.

* An application specific NN uses LBN features as input.

Lorentz Boost Network

Input vecrors Particles Boosted particles Features

— Neural Network

Rest frames :E Lt =20 [Objective

Trainable : Lorerz Fearure |

weights |) boosts exmraction

e Iv: 1812.09722
alrxiv.

e Nx4 2-(Mx4) M x4 Fxl

Lorentz boost network: feauture extraction

* Extract generic features from boosted particles.

¢ Single particle features: E, m, pT, n, ¢.

¢ Pairwise features: such as cos(6) between all pairs.

* E.g. cos(6*) in the semi-leptonic decay of the top quark, defined as
the angular difference between the direction of the charged lepton
In the W rest frame and the direction of the W in the top rest frame.

Input vectors Particles Boosted particles Features

i i }u
W= pu+u,

TAd

Rest frames

l:-;; W= »“"'”.u
|t =b+u+ty,

BN for tth(bb) vs tt+bb: performance

* LBN performance compared to standard DNN with low-, high- and
comination of low- and high-level variables.

Pr LBN DNN DNN DNN
ordered low low high combined

* LBN shows improved performance ;m:
in terms of ROC AUC. ’ "»

Conclusions

* Neural networks are widely used in HEP and will become more and
more important.

* Aquick overview of the basic structure of the most used NNs in
HEP was given.

* New NNs layers, specifically engineered for HEP, were created.

* In this case, high performance comes also with a good
interpretability of the trained parameters.

* NN is a quickly developing field. Exciting time to work on it and to
find new applications for HEP.

