DATA SCIENCE WITH
MACHINE LEARNING:
CLUSTERING

This lecture is
based on course by E. Fox and C. Guestrin, Univ of Washington



What is clustering?
i

Discover groups of similar inputs

Data #M# Intelligence

Input {x}: I

featL'thes'for Separate
oints in : .
I:)dataset points into  Output {z):

disjoint sets cluster labels per
datapoint
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Clustring applications
i

Clustering documents by “topic”

Intelligence
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Clustering applications
B

Clustering images

For search, group as:

— Ocean
ﬂ--n—

— Pink flower
- Dog

— Sunset

— Clouds
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Overwiew of content

Nearest : .
neighbors KD-trees Distance metrics
| : | Locality sensitive | Approximation
Clustering hashing algorithms
| Mixture of L | Unsupervised
Gaussians k-means learning
Latent Dirichlet Probabilistic
1 allocation —| MapReduce | modeling
Expectation | Data parallel
Maximization problems
o~ - || Bayesian
Gibbs sampling infarence
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Clustering:

An unsupervised learning task
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Motivation

Goal: Structure documents by topic

Discover groups (clusters) of related articles

SPORTS WORLD NEWS
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Motivation

s
Why might clustering be useful?

| dont’t just
like sport!
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Motivation

K
Learn user preferences

Set of clustered documents read by user

Use feedback
to learn user
preferences
over topics

Cluer Cluster 4
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Clustering: a supervised learning
o

What if some of the labels are known?

Training set of labeled docs

ENTERTAINMENT _ SCIENCE
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Custering: a supervised learning
I

Multiclass classification problem

Example of

supervised learning
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Clustering: an unsupervised learning
2

No labels provided

.uncover cluster structure
from Input alone SN

Input: docs as vectors X
Output: cluster labels z,

An unsupervised

learning task

U word T counts

18/01/2022



What defines a cluster ¢

Cluster defined by
center & shape/spread

Assign observation X; (doc)
to cluster k (topic label) if s
o cluster k (topic label) | oz t—61)

- Score under cluster k is d
higher than under others

- For simplicity, often define
score as distance to cluster
center (ignoring shape)
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Hope for unsupervised learning

14
Easy SR
= .
Impossible 3
2h
In between
—_—
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Other (challenging!) clusters to discover
s

Analysed by your eyes

Twn spirals Chusterin cluster Comers

ih

_f‘

h

Crascent & Full Moon Cutler
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Other (challenging!) clusters to discover

Analysed by clustering algorithms

g!lllln'lﬁ!
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k-means

clustering algorithm
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k-means clustering algorithm
e

Assume

-Score= distance to
cluster center
(smaller better)

CLUSTER
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k-means clustering algorithm
B

0. Initialize cluster centers
M1y 2y ooy
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k-means clustering algorithm
o

0. Initialize cluster centers

1. Assign observations to
closest cluster center

2 \orono:
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k-means clustering algorithm
i

0. Initialize cluster centers

1. Assign observations to
closest cluster center

2. Revise cluster centers /
as mean of assigned

observations
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k-means clustering algorithm

0. Initialize cluster centers

1. Assign observations to
closest cluster center

2. Revise cluster centers
as mean of assignhed
observations

3. Repeat 1.4+2. until
convergence

18/01/2022



K-means as coordinate descent algorithm
23

1. Assign observations to closest cluster center
. 2
2 ¢ argmin ||p; — xi[3
J

2. Revise cluster centers as mean of assigned
observations

pj = argmin Y [l — x| [3
H 1:2i=]

Alternating minimization

1. (zgiven y) and 2. (u given z)
= coordinate descent
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Convergence of k-means
I

Converges to:

- Glo um Because we can cast k-means as coordinate
descent algorithm we know that we are
-|[Local optimum

converging to local optimum
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Convergence of k-mans to local mode
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Smart initialisation: k-means++ overwiew

Initialization of k-means algorithm is
critical to quality of local optima found

Smart initialization:

1. Choose first cluster center uniformly at
random from data points

2. For each obs x, compute distance d(x) to
nearest cluster center

5. Choose new cluster center from amongst
data points, with probability of x being
chosen proportional to d(x)?

4. Repeat Steps 2 and 3 until k centers have
been chosen
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k-means++ visualised
A
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k-means++ visualised
28 |
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k-means++ visualised
29
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k-means++ visualised
30 |
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Smart initialisation: k-means++ overwiew

N
k-means++ pros/cons

Computationally costly relative to
random initialization, but the subsequent
k-means often converges more rapidly

Tends to improve quality of local
optimum and lower runtime
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Assessing quality of the clustering

N
Which clustering do | prefer?
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K-means objective
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Lower is better!
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What happens to heterogeneity as k increases?

Can refine clusters more and more to the data
- overfitting!
5 o o’owmﬂan}'
Extreme case of k=N:
— can set each cluster center equal to datapoint
- heterogeneity = ) { (ﬁ‘d‘}‘;ﬁ:ﬂ“‘ﬁm se O)

Lowest possible cluster heterogeneity

decreases with increasing k
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How to choose k@
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Probabilistic approach:

mixture model

18/01/2022




Why probabilistic approach?
=N

Learn user preferences

Set of clustered documents read by user

Use feedback
to learn user
preferences
over topics

Cluster 3 Cluster 4
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Why probabilistic approach?
=R

Uncertainty in cluster assignments

Hard assignments
don't tell full story

Slightly closer to
Cluster 4 than

Cluster 2, but count
fully for Cluster 47

ter 3

Cluster 4

Clus
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Why probabilistic approach?
o~

Other limitations of k-means

Assign observations to closest cluster center
- 2
z; <— argmin ||p; — x4||3
J

N\

Can use weighted Euclidean,
but requires known weights

Only center matters

Still assumes all clusters have
the same axis-aligned ellipses

Equivalent to assuming

spherically symmetric clusters .

O

18/01/2022



Why probabilistic approach?
=

Failure modes of k-means

overlapping clusters

disparate cluster sizes

different shaped/
oriented clusters
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Mixture models
B

* Provides soft assignments of observations
to clusters (uncertainty in assignment)

- e.g., 54% chance document Is world news,
45% science, 1% sports, and 0% entertainment

» Accounts for cluster shapes not just centers

 Enables learning weightings of dimensions

- e.g., how much to weight each word in the
vocabulary when computing cluster assignment
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Application: clustering images

Discover groups of
similar images

oo (L ge
- Ocean n.-n— f ﬁ\ HI!@!I-

- Pink flower - U L
- Dog = |y Provide groupings |

- Sunset = DUt NOt category

- Clouds

E B
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Application: clustering images

2 S
Simple image representation

Consider average red, green, blue pixel intensities

Single RGB vector per image
[R=0.85 G=0.05 B =0.35]
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Application: clustering images

Distribution over all cloud images

Let's look at just the blue dimension

il |

|

||“mHﬂllllum......._ ,

0.8

blue
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Application: clustering images
N

Distribution over all sunset images

Let's look at just the blue dimension

|’
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Application: clustering images
2
Distribution over all forest images

Let's look at just the blue dimension

ulll””“”

1

|

0.42
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Application: clustering images
I
Distribution over all images

We see that they are grouping!
But not easy to distinguish between groups

il HHHmm.....[........_,

blue
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Application: clustering images

B
Can be distinguished along other dim

Now look at the red dimension

<>
e e g In this dimmension
| I separable groups!
il ‘ Hhml'.,. .
0.05 red

18/01/2022



Model for a given image type
o

For each dimension of the [R, G, B] vector,
and each image type, assume a
Gaussian distribution over color intensity

N | p, o2)
‘ parameters
l;! Ih Random variable the
i :i- ' \ distribution is over

e.g., blue intensity

¥ blue
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Model for a given image type
I

2D Gaussians — Bird's eye view

>
3D mesh plot e
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Application: clustering images
s

2D Gaussians — Parameters

Fully specified by mean p and covariance 2

M= [Mpe Ugreen]

2
z — Oblue c'-lzmlu'e,g:jreen
2
D-greer‘l,l:)lL,ue Ugreen
covariance determines L
orientation + spread blue

green
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Application: clustering images
I
Covariance structures
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Application: clustering images

Notating a multivariate Gaussian

N(x \\u, Z)j

/ parameters

Random vector
e.q., [R, G, B] intensities
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Mixture of Gaussians
55|

Model as Gaussian per category/cluster

B M - it

- _ . --.-
Use blue  FREENEE

o o ||
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Mixture of Gaussians
e |

Jumble of unlabeled images

HISTOGRAM

How do we model
this distribution?
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Mixture of Gaussians

What if image types not equally represented?

e.g., forest images are very

<ikely In the collection

0.8.42
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Mixture of Gaussians

s
Combination of weighted Gaussians

Associate a weight 11, with each Gaussian component

LIS 1T, Tl 0 < T, < 1
™ =[0.47 0.26 0.27/]

M, \/'/" ;Trk:l

Relative proportion of
each class in world from
which we get data

Lk
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Mixture of Gaussians

I
Mixture of Gaussians (1D)

Each mixture component represents

a unique cluster specified by:
2

{njﬁ, H,, O}

1
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Mixture of Gaussians
0|

Mixture of Gaussians (general)

Each mixture component
represents a unique cluster
specified by:

{Tﬂ{ . M, Zk}
E”z3
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Mixture of Gaussians

According to the model...

Without observing the image content, what's the
probability it's from cluster k? (e.qg., prob. of seeing "clouds” image)

;:E“ A p(zl — k) = T pror

N =

Given observatior@s from cluster_k, what's th
likelihood of Seeing )(i? (e.g., just look at distribution for "cloyds”)

p(x; | zi =k, e, X)) = N (x| e

i o g mk'
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Application: clustering documents
T

Discover groups of related documents
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Application: clustering documents

Document representation
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Application: clustering documents

e §
Mixture of Gaussians for
clustering documents

Space of all documents
(really lives in RY for vocab size V)

Make soft assignments
of docs to each
Gaussian

18/01/2022



Application: clustering documents
o

Counting parameters

Each cluster has {11, , B, 2, }
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Application: clustering documents

I
Counting parameters

Each cluster has {11, , K. 2}

INn V (vocab size) dims:
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Application: clustering documents

Restricting to diagonal covariance

Each cluster has {11, , y,. 2, diagonal }

V params
o,° \
o O
2 = 0—32
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Application: clustering documents
T

Restrictive assumption, but...

— Can learn weights on dimensions
@ (e.g., weights on words in vocab)
— Can learn cluster-specific
weights on dimensions

Still more flexible than k-means

Spherically
symmetrlc clusters
Specify weights...
@ @ All clusters have same

axis- allg ned ellipses
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Inferring soft assignments with

expectation maximization (EM)

18/01/2022



Inferring cluster labels

=

Data
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What if we knew the cluster
parameters {11, , U,, 2, }?

Compute responsibilities

lnes
# clusters & 1&‘ .'f: e

(s Ll"“ LS ri“}

&t““&;iulbuﬁbﬂ
/ Responsibility cluster k tak%for observation i
r&ulﬂ'

——
rig = pla =k | {m), 15, 85} 1)

vandol probability of \ /

\ e :
assignment given model
to cluster k parameters and
observed value
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What if we knew the cluster
parameters {11, , M, 2, }?

Responsibilities in pictures

Green cluster
takes more
responsibility

Blue cluster
takes more

responsibility

Uncertain...
split
responsibility
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What if we knew the cluster
parameters {11, , M, 2, }?

Responsibilities in pictures

Need to weight by cluster probabilities,
not just cluster shapes

Still uncertain,

but green cluster seems
more probable...

takes more responsibility
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What if we knew the cluster
parameters {11, , M, 2, }?

Responsibilities in equations

Responsibility cluster k takes for observation |

‘r,f’
Iil. = Tk N(%‘ | M,::Ek)

How likely is the
Initial probability of observed value x; under

being from cluster k this cluster assignment?

vy wali wnder bhe green clustes
Jm w:‘:{h vhe prior -1? qreen hf.'nl-zf
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What if we knew the cluster
parameters {11, , M, 2, }?

Responsibilities in equations

Responsibility cluster k takes for observation |

ik = Tk N(ZI??, | LL;C,E;,J)

K

§ :WjN(mi | g, Ej) Normalized
j:]_ - over all
possible
cluster

assignments

—
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What if we knew the cluster
parameters {11, , M, 2, }?

Recall: According to the model...

Without observing the image content, what's the
probability it's from cluster k? (e.g., prob. of seeing "clouds” image)

p(z; = k) = mg

Given observation x; is from cluster k, what's th
likelihood of Seeing )(i? (e.g., just look at distribution for "cloyds”)
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What if we knew the cluster
parameters {11, , M, 2, }?

Part 1: Summary

Desired soft assignments
(responsibilities) are easy
to compute when
cluster parameters

{1, . U, 2, } are kKnown

But, we don’'t know these!
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Imagine we knew the cluster
(hard) assignments z,

Estimating cluster parameters

Imagine we know the

: :,,;: i .
3 g cluster assignments
A X
R R —r
P R L S Estimation problem
RN -::;'-_;*-._.':.*_ decouples across

-QL*LLLHHHHHH clusters

L] - .: '

"% ~~__Is green point informative of
fuchsia cluster parameters?

NO!
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Imagine we knew the cluster
(hard) assignments z,

Data table decoupling over clusters

R G B Cluster
x[1] x,[2] x,[3] 3
%,[1] X,2] X,[3] 3
x3[1] X512] X313] 3
X4[1] %,[2] X4[3] 1
xs[1] X:[2] x:[3] 2
X¢[1] X¢[2] X¢[3] 2

Then split into separate tables and consider them independently.
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Imagine we knew the cluster
(hard) assignments z,

Maximum likelihood estimation

R G SRSl Estimate {11, , 1, 2, }
xy(1] (2] X (3] e giVEﬂ data aSSigﬂed
x5[1] x,[2] x;[3] 3
il .2 %3] - to cluster k

maximum likelihood estimation

(MLE)

Find parameters that maximize the
score, or likelihood, of data
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Imagine we knew the cluster
(hard) assignments z,

T
Mean/covariance MLE

Cluster
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Imagine we knew the cluster

(hard) assignments z,

Cluster proportion MLE

R G B Cluster
X,l1] x,[2] X,[3] 1

R G B Cluster
xs[1] Xc[2] xc[3] 2
xgl1] Xg[2] x¢[3] 2

Cluster
x,[1] x,[2] X,[3] 3
X5[1] X5[2] X5[3] 3
X3[1] xz[2] X3[3] 3

# obs in cluster k

total # of obs

True for general mixtures of i.i.d. data,

not just Gaussian clusters
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Imagine we knew the cluster
(hard) assignments z,

Part 2a : Summary

.. needed to compute soft assignments
Ll Cluster parameters are simple
¥ .y to compute if we know the
. 'f,:sé!'}: ", cluster assignments

?" L .; ':‘i: i‘.'. '.
) - [ .'}'. o.'
a® % S -V
* e f.r“ .
I But, we don't know these!
" .
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What can we do with just
soft assignments r;?

Estimating cluster parameters
from soft assignments

S Instead of having a full

R . ,

Saed oo observation x; in cluster kK,
s_g‘ d' just allocate a portion r;,
.y ‘ '\i:ha\:;

-:‘Q.t.i' " ‘}o. t".‘.
. .‘ :“?‘:‘" \ ‘
X, divided across all clusters,
as determined by r;,
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What can we do with just

soft assignments r;?

Maximum likelihood estimation

from soft assignments

Just like in boosting with weighted observations...

N\

52% chance

this obs is Iin
cluster 3

R G B ri ro riz
x,[1] x,[2] x(3 | 030 | 018 | 052
x5[1] X2[2] x:31 | 001 | 026 | 073
x5[1] X3[2] x5(3] | 0.002 | 0.008 | 0.99
X4[1] X4[2] x,31 | 075 | 010 | 015
xs[1] X5[2] xs(3] | 005 | 093 | 0.02
xo[1] X4[2] x31 | 013 | 086 | 001

Total weight in cluster: | 1.242 | 2.8 | 242

(effective # of obs)
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What can we do with just

soft assignments r;?

Maximum likelihood estimation

from soft assignments

X3[1]

X411 ]

G

R

G

B

B

Cluster 1

weights

Cluster 2

weights

xXs[1] | Cluster 3
xc[1] weights

x 1 | xl1] x,[2] X, [3] 0.52

xc[1] x5[1] X-[2] X5[3] 0.73

xg[1] xz[1] xz[2] Xz[3] 0.99

X4[1] x4[2] X4[3] 0.15

Xs[1] x5[2] X5[3] 0.02

xg[1] xg[2] xg[3] 0.01
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What can we do with just

soft assignments r;?

Cluster-specific location/shape MLE

R G B ‘weigns
x,[1] x,[2] x,[3] 0.30
x[1] X,[2] X[3] 0.01
xs[1] X5[2] X;[3] 0.002
x,[1] X4[2] X4[3] 0.75
x:[1] X:[2] Xc[3] 0.05
xc[1] Xe[2] X[3] 0.13

1 N
Hk = j‘\,TSOft Zrik; ;

Compute cluster parameter estimates
with weights on each row operation

Total weight in cluster k

ffective # ol
— off . e
= elrecuve # ODS
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What can we do with just
soft assignments r;?

MLE of cluster proportions 7.

Estimate cluster

proportions from

relative weights

i1 Fi2 iz

030 | 018 | 0.52
001 | 026 | 073
0.002 | 0.008 | 0.99
075 | 010 | 015
005 | 093 | 002
013 | 086 | 0.1

Total weight

: . 2.8

In cluster: (2 cal

Total weight 6

in dataset: \

# datapoints N

,ﬁ_.lf — —h T \ -
——— LV soft § ,
Nk = ik

i=1

otal weight in cluster k
= effective # obs
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What can we do with just

soft assignments r;?

when r; in {0,1}

Hard assignments have:

Defaults to hard assignment case

- {

1

0 otherwise

1k

R G B Fia Fi2 riz
x[1] x[2] x[3] 0 0 1
X5[1] x3[2] X5[3] 0 0 1
x3[1] Xz[2] X3[3] 0 0 1
X4[1] X4[2] X,[3] 1 0 0
Xs[1] Xs[2] Xs[3] 0 1 0
xg[1] Xe12] X413] 0 1 0

Total weight in cluster: | 1 2 3

N

One-hot encoding
cluster assignment

of
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What can we do with just
soft assignments r;?

Equating the estimates...

15 {0 f;
X NSOft N;?Oft Z @P T w:‘t. v
T = ohsk* o )
N W Y
1
oft Z.ﬁ w —vm%} v

S
k 1=1
1

NSOftZ®($?’ ) (i — ‘uk) /

.:_,;.m ss obove

- |
4, L, bi- R by
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What can we do with just
soft assignments r;?

B
Part 2b: Summary

o Still straightforward

e,‘ig"f T to compute cluster
parameter estimates

from soft assignments
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Expectation maximization (ME)

e
An iterative algorithm

Motivates an iterative algorithm:

1. E-step: estimate cluster responsibilities
given current parameter estimates
AN (z; | fu, )

S #iN (i | 1, 55)

2. M-step: maximize likelihood over
parameters given current responsibilities

Fikk =

ﬁ'k: ,ar’kj ik | {Tﬁikw :I:i}
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Expectation maximization (ME)

EM for mixtures of Gaussians
INn pictures — initialization

(a8, A, 3¢

Then com Pu.t't.

M
“:[p52 04 0.08)
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Expectation maximization (ME)
o

EM for mixtures of Gaussians
In pictures — after 15" iteration

ﬂ“;ﬁ'.u. I;kl,]“'\DOA ')
given soft assiqn- i

A m A )y 'fﬂg
--?i-n. Ll 2

Then .rupmpu.hf. respon st ey
.
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Expectation maximization (ME)
x

EM for mixtures of Gaussians
in pictures — after 2"9 iteration

rinse
&

repent
untl mmfn/ﬁ-ﬂﬂfe.
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Expectation maximization (ME)
o

EM for mixtures of Gaussians
In pictures — converged solution

\ l . -

P
ﬁﬁﬁnman of "L
te blwe or F""L:s""

L
Glu‘t.f P Ry

finol ossiQ™ '
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Expectation maximization (ME)

EM for mixtures of Gaussians
INn pictures - replay
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Expectation maximization (ME)
B

Convergence of EM

* EM is a coordinate-ascent algorithm

— Can equate E-and M-steps with alternating
maximizations of an objective function

« Convergences to a local mode

« We will assess via (log) likelihood of data
under current parameter and
responsibility estimates
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Expectation maximization (ME)
B

INnitialization

- Many ways to initialize the EM algorithm

« Important for convergence rates and quality
of local mode found

- Examples:

- Choose K observations at random to define K "centroids”.
Assign other observations to nearest centriod to form initial
parameter estimates.

- Pick centers sequentially to provide good coverage of data
like in k-means++

- Initialize from k-means solution

- Grow mixture model by splitting (and sometimes removing)
clusters until K clusters are formed
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Expectation maximization (ME)
“ioo

Overfitting of MLE

Maximizing likelihood can overfit to data

Imagine at K=2 example with one obs assigned to
cluster 1 and others assighed to cluster 2
- What parameter values maximize likelihood?

Set center equal to

point and shrink
variance to O

Likelihood goes to oo |
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Expectation maximization (ME)
N
Overfitting in high dims

Doc-clustering example:
Imagine only 1 doc assigned to cluster k has word w
(or all docs in cluster agree on count of word w)

Likelihood maximized by setting y,[w] = x;[w] and crz_k =0

W

Likelihood of any doc with different count on
word w being in cluster k is O!
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Expectation maximization (ME)

o024
Simple regularization of M-step
for mixtures of Gaussians

Simple fix: Don’t let variances = O!

Add small amount to diagonal of
covariance estimate

Alternatively, take Bayesian approach
and place prior on parameters.

Similar idea, but all parameter
estimates are "smoothed” via cluster
pseudo-observations.
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Expectation maximization (ME)
o

Relationship to k-means

Consider Gaussian mixture model with  _ gpperical clusters with

equal variances, so relative

Spherically - . .
2 ™~ : likelihoods just function of
o symmetric clusters distance to cluster center

0-2
> = o2 . .
= — As variances—=>0, likelihood
* .
+ ratio becomes O or 1
L J

- ./ @ - Responsibilities weigh in
cluster proportions, but

] dominated by likelihood
and let the variance parameter 0 =2 0 disparity

_ ’fi’ki\r(ﬁﬁ | kaEJEI)
Datapoint gets fully assigned to > i1 7N (i | fij, 021)

nearest center, just as in k-means
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Expectation maximization (ME)

L
Infinitesimally small variance EM
= k-means

1. E-step: estimate cluster responsibilities given
current parameter estimates

-~ . - 2
P N (x; | fig, o°T) c {0.}, 1}

K - -
> i1 TN (i | 1y, 021)
Decision based on

Infinitesimally small distance to nearest
cluster center

2. M-step: maximize likelihood over parameters
given current responsibilities (hard assignmentsl!)

ﬁk:ﬁk | {?ﬁika mi}
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Mixed membership models

for documents
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Clustering model
CR

So far, clustered articles into groups

Doc labeled
with a topic
assignment

Clustering goal: discover groups of related docs
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Clustering model

107

Are documents about just one thing?

Is this article
just about
science?
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Clustering model

Soft assignments capture uncertainty

Soft assignment r;,
tells us this doc
could be about world
news or science

But, clustering
model still specifies
each doc belongs to

1 topic
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Soft assignments

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events

Dransin F. Wulin®, Emily B. Fox®, Brian Litt*P
“Department of Ricengineering, University of Pennsyivania, Philadelpkia, PA
 Department of Newrology, University of Pernsylvania, Philadelphia, PA
=Departrnent of Statistics, University of Washington, Seattle, WA

Abstract
wi can_ manifest short, sub-clinical opileptic “bursts” in
n to full- We beliove the relationship between

these two classes of events—something not proviously studied quantitatively—
jeld important insights into the nature and intringic dyvnamices of
ovonts

could

A poal of our work is to parse these complex
into distinet dynamic regimes. A challenge posed by the intracran
(IEEG) data we study is the fact that the number and placement of electro
can vary betweon| We develop a Bayesian nonparametric Markov
switching process ows for (i) shared dynamic regimes between a vari-
able mumber of channels, (ii) asynchronous regime-switching, and (jii) an
mmknown dictionary of dynamie regimes. We encode a sparse and changing
sot of dependencies botween the channels using a Markov-switching Gaussian D

Keywords:  Bayesian nonparametric, EEG, factorial hidden Markov model,
graphical model, time sories

1. Imiroduction

Dieapite over three decades of research, we still have very little idea of
nes a This ignorance stems both from the complexity of
as a and a pancity of quantitative tools that are flexible

Encoding of cluster
membership z, = 4
Based on science

related words, maybe
doc in cluster 4

A " - = 8 o I N 1 fL T % T h 1
graphical model for the innovations proeess driving the channel dynamics and
demonstra jmportance of this model in parsing and out-of-sample pre- Kg} ‘} .@i‘ %\ “Qf: d}‘ K“'ZT“ é}‘
dictions o data. We show that our model produces intuitive state \\) {" \}‘)\ﬁ \}r-:l .{“ \}"J {\c"
assignments that can help automate i and enable @ :,Qo C}' o (_} 6“' f_} *\0
the comparison of sub-clinical bursts A & '08 O
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Soft assignments

Modeling the Complex Dynamiecs and Changing
Correlations of Epileptic Events
Drausin F. Wulsin®, Emily B. Fox®, Brian Litt®?
“Departmend of Bivengineering, University of P yivanin, Philodelphic, P4

* Department of Newrology, University of Pernsylvania, Fﬁﬂnddpm P4
=Department of Statistice, University of Waskington, Seattls, WA

Abstract
Patients with epilepsy ean manifest short, sub-elinical epileptic “bursts” in

Soft assignments
capture uncertainty

Nz =2or4

i TVTEE = model in parsi n.nd c:rub—of—sample pre-
d.muu-ns of iEEG data. We show that our roduces intuitive state

assignments that can help) linical analysis of seizures and enahble
the comparison of sub-clini ursts and full elinical seimmres.

K. BRI 0. ctrl o RG]
SRS oo, e serics

1. Imtroduction

Despite over three decades of research, we still have very little idea of
what defines a seigure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of guantitative tools that are flexible

Encoding of cluster
membership z; = 2

Or maybe cluster 2
(technology) is a better fit
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Soft assignments
o

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events

Drausin F. Wulsin®, Emily B. Fox®, Brian Litt®®

o Department of Bicengineering, University of Penmsylvania, Philadelphia, PA
® Department of Newrology, University of Penneglvania, Philadelphia, P4
“Department of Statistics, University of Washington, Seattle, WA

Abstract _ Really, it's about science
e : and technoloagy

additon to -blown
these two classes of events—something not previously studied quantitatively
rield important insights into the nature and intrinzic dynamics of

T
dictions of]
assignments that can hel
the comparison of sub-clinical

maodel, time series

1. Introduction

Despite over three decades of research, we still have very little idea of

: ines alseigure] This ignorance stems both from the complexity of
and a paucity of quantitative tools that are flexible
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Mixed membershio models
B

Modeling the Complex Dynamics and Changing . .
Correlations of Epileptic Events M IX e d m e m b e r S h I p

Dirausin F. Wulsin®, Emily B. Fox®, Brian Linb

“Depariment of Bicengineering, University of Pennayivania, Philodelphia, PA I I I Od e ls

¥ Departmnent of Neurology, University of Pennsylvania, Philadelphia, PA
= Department of Statiatics, University of Washingion, Seaitls, WA

Abstract

@wit can manifest short, sub-clinical epileptic “bursts” in Wa nt to d I S C Ove r a
addition to full- Tl We beliove the relationship between
these two classes of events—something not previously studied quantitatively H
could vield important insights into the natore and intringic dvnamics of set Of m e m be rS h | p S
A poal of our work is to parse these complox ovonts

into distinct dynamic regimes. A challenge posed by the intracrand
(IEEG) data we study is the fact that the number and placement of electro
cat vary hmmﬁ We develop m
switching process that allows for shared QVIAINIE Terimes Detwoel 4 varl-
able munber of channels h saching and (1) an | (| contrast, cluster models
unknown dictionary of dynamic regimes. W d changi !
sot of dependencies between the channels using a mﬂ 1 M 1 1
ﬁmuﬁclfﬂrth rocess driving the ol | dynamics an alm at dlscoverlng a Slngle

MONSLra jImpor of this model in parsing and out-of-sample pre- M

: membership)

dietions o
assignments that can help)

1. Imiroduction

Despite over three decades of research, we still have very little idea of

nes a Thizs ignorance stems both from the complexity of
a8 a and a paucity of quamitative tools that are flexible
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Building alternative model
i

An alternative document clustering model

(Back to
clustering,
not mixed
membership
modeling)

18/01/2022



Building an alternative model
N

So far, we have considered

Modeling the Complex Dynamics and Changing
Cormelations of Epileptic Events

Drausin F. Wulsin®, Emily B. Fox®, Brinn Litt*®

e of Moot Grierety of oo, Phedciin B4
Dipar  of St Unnsoasty of Weshingion, Scatiic, WA

Abstract

Patients with opilepsy can ifesit short, sab-climical epileptic “bunss™ in

nddition to fallblown clinseal seisurmes. We believe the relationship between x —
theme twn ol isses of events—something not previously studied gquantitatively I

could yieki important insights imto the nature and intrinsic dynamics of

seizures. & goal of our work = to parse these complex epileptic events
imto distinet dynamic regimes. A challenge posed by the intracranianl EEG
(EEEQ) data we stady is the fact that the namber and placemest of dectrodes
can vary betwesn patients. We develop & ]!nyulnn monparametric Markow | L

switching process that allows for (i) shared d.rnl imes between o vari- — I V =c1 o
nble number of channels, (5] asyochronous ii n
unknown dictionary of dynamic regimes. 'We encode

dictioss of IEEQ data. We show that car modd prodoces i
mssignmenis that con help automate climical anolysis of s
the comparison of sub-clinical bursts amd full clinical seizures.
Keyworads: Bayminn nomparametric, EEG, factorinl hidden Markow mi
Eraphica]l moded, time serims

L. Introduection

Ihesspite over three decades of research, we still have very lictle iden of
wl:ud. defines u seiare. This ignorance stems both from the complexity ol
pay a8 & di and & ity of guantitative tools thot are Aexible

T

18/01/2022



Building an alternative model
N

Bag-of-words representation

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events

Drausin ¥. Wulsin®, l".nily B. Fox®, Brmn Litt*®
2 Department of B y of Penmnyts n..x.dd,l... PA

'ogrm..m Nﬂpd-”(hu-:r of Porsuphuania, Philedcipbia, P
Dq-un:tnf“" m'!./ glon, Sctde, WA

Abstract

Patients with epilepsy can manifest short, sub-clinical qnlcptu: ‘bunnts" mn
aidition to fall-blown clinscal sei We beli the relats

these two classes of events — soanethi n:m.uln:ly

could yieki important insights IH‘W dynamics of
slsxun:x_ A goul ol ur | = to these lew/epileptic events
imo ge posed by the introcranial EEG
(3Kl LC) he number and placemesit of clectrodes
can vary bcn\-em pnn:nus. We develop a lhyumn nonparunﬂ.nc Mnrkuv

switching process that allows for (i) shared
able number of chamneds, (i) asynchrono

unknown dictiomary of dynamge mgineg. We encodn: o =pd and changimg
set of dependenci wing a Mark itching G 2
gruphical mode fi driving the channel dy umuz and

demonstrate the importance of this moded in parsing and out-of-sample pre-
dicty f iEEC data. MWe show that our model produoces imtuitive state

]| a te climical analysis of sczures and enable
£ and full clinical setzures.

o
Kegwords: Baymsian nomparametric, EEC, factorial hidden Markov model,
gruphical moded, time seris

1. Introduction

Despite over three decades of rescarch, we =till have very little idea of
whn definess n wezzure. This :gnnrnncfwnlboth from the complexity of
pilepsy as a di and a § v of itative Lools that are flexible
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Building an alternative model
T

Bag-of-words representation

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Evonts

Drzusin F. Wulsin®, Emily 0. Fax®, Brinn Litt™®
e g, L y of Penmayivania, Phildciphia, Pl
Pl i

'uTn—m Nowolegy, Uni P
Dw:ru of Staieetics, Lrnwn?:lqr W’u'un.pm‘ E—Mr WA

Abstract
Patients with epilepsy can monifest short, subclinical epileptic *bursts™ in

nebditi Fall-blown clinienl sch We belicve the relationship bet x { d l l l

L ol ofevest et hiog sk preeiously s quasttatinly | modelting, complex, eplepsy,
Id yickl impaortant insights isto the nature and intrinsic dynamices af

e Tk o e v e e ot elopie ot modeh ng, Bayesian, ¢ linical,

imtn distinet dynamic regimes. A challenge posed by the intracraninl EEG

EE) data we stody is the fact that th e asd placement of eleetrod

g lorwrinmpe e aniraspet e i epl lepsy FEG data dyna mic...}

switching process that allows for (i) shared dyname regimes betwees o vari- ’ 4 ’

nble number of channeds, (§) asynchronous regime-switching, amd (i) an

unknown dictionary of dynamic regimes. 'We encode o sparse amd changing

et of dependencies between the ek dn wming o Morkov-switching Gnossian -
graphical mode] for the innovations proces driving the channel dynamios and
demonstrate the mportance of this model in paming and out-of-sample pre- I I I u I s e

dictioes of iIEEQ data. We show that cor moded prodoces imouitive state
nssignments thot can help automate climical analysis of seomres ond eneahle
the comparison of sub-clinical bursts and full clinical seizures.

Keywords: Bayminn noaparametric, EEC, factorial hidden Markov medel,
graphical moded, time series

_ = uhordered set of words with
Doy ot o e, e ol b v e o duplication of unique elements

what defines o seiware. This gnorance stems both from the complexity af

epilepey 23 & disease and & puocity of quantitative tools that are Aexibi mattering
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Model for ,,bag-of-words”

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events

Drausin F. Wulsin®, Emily B. Fox®, Brian Litt*®

*Department of Bicengineering, University of Pennsylvania, Philadelphia, PA
¥ Department of Neurology, University of Pennsylvania, Philadelphia, PA
= Department of Statiatics, [niversity of Washington, Seattle, WA

Abstract

Patients with epilepsy can manifost short, sub-clinical epileptic “bursts” in
addition to full-blown clinical seizures. We beliove the relationship betwoen
these two classes of ovents —something not previously studied quantitatively—
could yield important insights into the nature and intrinsie dynamies of
soizures. A goal of our work is to parse these complex epileptic events
into distinet dynamic regimes. A challenge posed by the intracranial EEG
(IEEG) data we study is the fact that the number and placement of electrodes
can vary between patients. We develop a Bayesian nonparametric Markow
switching process that allows for (i) shared dynamic regimes between a vari-
able mmmber of channels, (i) asynchronous regime-switching, and (iii) an
unknown dictionary of dynamie regimes. We encode a sparse and changing
g0t of dependencies botween the channels using a Markov-switching Ganssian
graphical model for the innovations process driving the channel dynamics and
demonstrate the importance of this model in parsing and out-of-sample pre-
dictions of iIEEG data. We show that our model produces imtuitive state
assigmments that can help automate clinical analysis of seizures and enable
the comparison of sub-clinical bursts and full cinical seimres.

Keywords:  Bayesian nonparametric, EEG, factorial hidden Markov model,
graphical model, time series

1. Introduction

Dicapite over three decades of rescarch, we still have very little idea of
what defines a seizure. This ignoranee stems both from the complexity of
epilepsy as a disease and a paueity of quantitative tools that are fexible

A model for bag-of-words

representation

As before, the "prior”
probability that doc i is
from topic kis:

plzi = k) =m

™= [T, 10, ... T
represents corpus-wide
topic prevalence
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Model for ,,bag-of-words”

s | A model for bag-of-words

Drausin F. Wulsin®, Emily B. Fox®, Brian Litt*®

e representation

“ Department of Neurology, Univer o]" ivanio, Philadelphia, PA
<Department of Statistics, U y of Washi Seattle, WA

Abstract Assuming doc i is from

Patients with epilepsy can manifest short, sub-clinical epileptic “bursts” in
addigon to full- wn clinical seizures. We believe the relationship between 1
these tWwlgsses of oveags - wemetiing not previously studied quantitatively— toplc k: Words Occur

could ...-: :-.< g nature and intrinsie dynamies of .th b b.l.t.
seizures. wg,_goal of O ese complex epileptic events il
into distinct dvTmsa mgim. ‘. d by the intragranial EEG Wi pro aplities.
(iEEG) data we study ¥ : *h i cament Miloctrods

can vary between patients. ‘- ewglop a parametric larke

SCIENCE

switching process that allgys for (i) shard
able number of channels, (i) aSTTrehsg
unknown dictionary of dynamie regimes. DATE:
setofdepeudenembemeenﬂwdmnnelsmmgnhlnrkov e T k\\
graphical model for the innovations process driving the channel dynam c T
demonstrate the importance of this model in parsing apd g
dictions of iIEEG dftar=We SIOWTHAT our 11 h.mmw
assignments that can help automate clinical analysis of seizures Apg
the eomparison of sub-clinical bursts and full clinical seizurgse

Keywords: Bayesian nonparametric. EEG, factogiadei -5‘ kov model,
graphical model. time series

1. Introduction

Despite opeethree ch, we still have very little idea of
what deliffes a seizure*Thj orance stems both from the complexity of
opilepsy as a disease a paucity of quantitative tools that are flexible

Y
words in vocab
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Model for ,,bag-of-words”
“s

Topic-specific word probabilities

Distribution on words in vocab for each topic

SCIENCE TECH SPORTS

(table now organized by decreasing probabilities
showing top words in each category)
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Model for ,,bag-of-words”

120
Comparing and contrasting

Previously Now

Prior topic
plzi=k)=m zi=k)=m
probabilities g Pz ) g
Likelihood —_—
under
each topic @
{modeling, complex, epilepsy,
modeling, Bayesian, clinical,

tf-iidﬂ vector epilepsy, EEG, data, dynamic...}

compute likelihood of tf-idf | compute likelihood of the
vector under each Gaussian | collection of words in doc
under each topic distribution
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Hierarchical clustering
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Why hierarchical clustering
R

* Avoid choosing # clusters beforehand

« Dendrograms help visualize
different clustering granularities
- No need to rerun algorithm [rl rlﬁn

« Most algorithms allow user to choose
any distance metric

— k-means restricted us to Euclidean distance
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Why hierarchical clustering
CR

Can often find more complex
shapes than k-means or
Gaussian mixture models

Gaussian mixtures:

ellipsoids
k-means: spherical

clusters

e
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Why hierarchical clustering
NER

Can often find more complex
shapes than k-means or
Gaussian mixture models

What about these?

'y
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Two main types of algorithms
N

Divisive, a.k.a top-down: Start with all data in
one big cluster and recursively split.

- Example: recursive k-means

Agglomerative a.k.a. bottom-up: Start with
each data point as its own cluster. Merge
clusters until all points are in one big cluster.

- Example: single linkage
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Divisive clustering
e

Divisive In pictures — level 1
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Divisive clustering

Divisive in pictures — level 2
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Divisive: Recursive k-means

128 |
Wlklpedla\
Non-athletes

Athletes

E——
E—
=
=
== ==
=
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Divisive: Recursive k-means

129 |
- /Wlklpema\ﬂ '
thletes on-athletes
~ \
Baseball Soccer/  Musicians, Scholars, politicians,
Em— Ice hockey artists, actors ~ government officials
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Divisive: choices to be made
3

» Which algorithm to recurse
* How many clusters per split
« When to split vs. stop

— Max cluster size:
number of points in cluster falls below threshold

— Max cluster radius:
distance to furthest point falls below threshold

— Specified # clusters:
split until pre-specified # clusters is reached
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Aglomerative: Single linkage
R

1. Initialize each point to be its own cluster

D ©

®
O,
®

®
®
®
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Aglomerative: Single linkage
NER

2. Define distance between clusters to be:

@@ @ distance(C,,C,) =
® ©® .,
®

@ specified pairwise
distance function

®

Linkage criteria
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Aglomerative: Single linkage
NER

3. Merge the two closest clusters
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Aglomerative: Single linkage
EER

4. Repeat step 3 until all points are in one cluster

PR
)
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Aglomerative: Single linkage
s

4. Repeat step 3 until all points are in one cluster
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Cluster of clusters
Sl

Just like our picture for divisive clustering...
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The dendrogram

v
* X axis shows data points (carefully ordered)
* y-axis shows distance between pair of clusters

Height here indicates
min distance between
blue pts and green pts
(2 clusters)

Cluster
distance

Data points
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Extracting a partition
N

Choose a distance D* at which to cut dendogram

Every branch that crosses D* becomes a separate cluster

*

D
Cluster "'rrrh""""'

distance

Data points
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Agglomerative: choices to be made
N

» Distance metric: d(x; x)

» Linkage function: e.g., mirg: d(x, x)
X;in C,,
X; in C,

* Where and how to cut dendrogram

DA, - a== b o o S
Cluster _
distance =

| ---l

Data points
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More on cutting dendrogram

* For visualization, smaller # clusters is preferable

* For tasks like outlier detection, cut based on:

- Distance threshold (i)
- Inconsistency coefficient

» Compare height of merge to average merge heights below

subsets that are relatively far apart compared to the
members of each subset internally

» Still have to choose a threshold to cut at, but now in terms
of “inconsistency” rather than distance

* No cutting method is “incorrect’, some are just
more useful than others
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Computational considerations
B

» Computing all pairs of distances is expensive
- Brute force algorithm is O(N4log(N))

# datapoints

« Smart implementations use triangle inequality
to rule out candidate pairs

* Best known algorithm is O(N?)
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