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Non-relativistic QM (revision)

* For particle physics need a relativistic formulation of quantum mechanics. But
first take a few moments to review the non-relativistic formulation QM

» Take as the starting point non-relativistic energy:

ﬁZ
E=T4+V=—+V
2m
* In QM we identify the energy and momentum operators:
, = J
p——iV, E—i o
which gives the time dependent Schrodinger equation (take V=0 for simplicity)
I G0 Jy
—— VY =i— (S1)

o VT o
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with plane wave solutions: = Ne'\P where oy
Yo =BV
*The SE is first order in the time derivatives and second order in spatial
derivatives - and is manifestly not Lorentz invariant.

*In what follows we will use probability density/current extensively. For
the non-relativistic case these are derived as follows
1 25 Jy”
(S1)* mp ——Viy*t = —i
m ¥ ot

(S2)



1 oy dy*
*x(S1)—wx(S2): —— (v'Viy— 2w*) = il w2t
VxS x (82 L (y vy vy z<w af”’a;)
l = * 7.k L a *
—EV-(quf—Ww) = 5 (V')
*Which by comparison with the continuity equation
= - dp
V.j+ — =
J+ P
leads to the following expressions for probability density and current:
—wy=yP =5 (v Yy
p=vyy=|y J=5 (W VY —yVy

-For a plane wave Y = Ne'(P7—El)

p=INF and  J=|NPL =N

* The number of particles per unit volume is |N|2

* For |N|2 particles per unit volume moving at velocity v, have |N|2\17| passing
through a unit area per unit time (particle flux). Therefore j is a vector in the
particle’s direction with magnitude equal to the flux.



The Klein-Gordon equation

-Applying p — —iV, E — id/dt to the relativistic equation for energy:

= |p]* +m* (KG1)
gives the Klein-Gordon equation:
I’y =
57 =Vy—m’y (KG2)

. _ 9 _ (9 9 2 29 pwy — 9> 9* 9% 9
Using a H = gxH — (E’a’a_y’a_z) - 0 a“—aﬂ ox>  dy* 972

KG can be expressed compactly as Cls 8“ + m2) v =0 (KG3)

* For plane wave solutions, Y = Ne'lt i(p.r— E‘). the KG equation gives:
290 — 2 2
—E*y =—|plry—m-y
= E=d4+/|p]>+m?

* Not surprisingly, the KG equation has negative energy solutions - this is
just what we started with in eq. KG1

+ Historically the -ve energy solutions were viewed as problematic. But for the KG
there is also a problem with the probability density...



* Proceeding as before to calculate the probability and current densities:

2 3irk
(KG2)* aa;’; = V2y* — m*y (KG4)
v x (KG2) — y x (KG4) :
* 82 82 * * * *
y a—g—uf aj:! = Y (Vy—my)—y(Vy* —m’y")

J * a'l’ a‘lf* o * %7 T 3
3, (w 5 "V, ) = V.(y'Vy—yVy’)
*Which, again, by comparison with the continuity equation allows us to identify
Jy  Jdy’ S _ .
p "(”’ar "’at) and  j=i(y"Vy—-yVy’)
*For a plane wave Y = Ne!(P7—El)

p=2EIN? and J=|N*p

* Particle densities are proportional to E. We might have anticipated this from the
previous discussion of Lorentz invariant phase space (i.e. density of 1/V in the
particles rest frame will appear as E/V in a frame where the particle has energy E
due to length contraction).




The Dirac equation

* Historically, it was thought that there were two main problems with the

Klein-Gordon equation:
* Negative energy solutions

+* The negative particle densities associated with these solutions
p =2EIN|*

* We now know that in Quantum Field Theory these problems are
overcome and the KG equation is used to describe spin-0 particles
(inherently single particle description = multi-particle quantum
excitations of a scalar field).

Nevertheless:

* These problems motivated Dirac (1928) to search for a
different formulation of relativistic quantum mechanics
in which all particle densities are positive.

* The resulting wave equation had solutions which not only
solved this problem but also fully describe the
intrinsic spin and magnetic moment of the electron!




The Dirac equation

*Schrédinger eqn: 1 o2 Oy 1st orderin d/dt
2m W_IW 2nd orderin 9 /dx,d/dy,d/0z

- Klein-Gordon eqn: (3“8“ +m?)y =0 2 order throughout

 Dirac looked for an alternative which was 1st order throughout:

. d
Ay = 6.5+ Bm)y _;a—"t” (D1)
where I:I is the Hamiltonian operator and, as usual, ﬁ = —ﬁ/’

*Writing (D1) in full:

o ia? g a9
oy Py Rg TP V=g )Y

“squaring” this equation gives
d Jd . d . d d %y
(—z(xr— — c% :az—z + ,Bm) (—uxr P .sozyav [0, — pp —I—ﬁm) =53

* Which can be expanded in gory details as...



8214/ 82 332w 28 2 92
G T gm g oy thy
J*y J*y d*y
_(aray+a‘ax)axay T (a}’a2+az ,)aya7 T ((xzqr+(xx(xz)m
aw

(e Bagm Y (@B + ey’ - (@p o+ aym

* For this to be a reasonable formulatlon of relativistic QM, a free partlcle
must also obey E? = p + m? , i.e. it must satisfy the Klein-Gordon equation:

J%y o’y 'y Iy
P T PR N e 7y

* Hence for the Dirac Equation to be consistent with the KG equation require:

al=al=a?=p>=1 (D2)
;B +Ba; =0 (03)
ajoy+oya; =0 (jF#k) (D4)

*Immediately we see that the O; and B cannot be numbers. Require 4
mutually anti-commuting matrices
* Must be (at least) 4x4 matrices (see Appendix |)



* Consequently the wave-function must be a four-component Dirac Spinor

%‘ A consequence of introducing an equation
Y = ‘Vg that is 15t order in time/space derivatives is that
/1 the wave-function has new degrees of freedom !

» For the Hamiltonian Hy = (¢&t.p 4 Bm)y = idy/dt to be Hermitian
requires - > - -
O =045 Oy=0y; Oz=0; [=p" (D5)

i.e. the require four anti-commuting Hermitian 4x4 matrices.

« At this point it is convenient to introduce an explicit representation for ¢, B.

It should be noted that physical results do not depend on the particular
representation - everything is in the commutation relations.

A convenient choice is based on the Pauli spin matrices:

p=(51): @=(q 7)

: 10 01 0 —i 1 O
an 1= (49). o= (88). @=(2). w=(59)

* The matrices are Hermitian and anti-commute with each other



Dirac Equation: Probability Density and Current

* Now consider probability density/current - this is where the perceived
problems with the Klein-Gordon equation arose.

 Start with the Dirac equation

_dy Jy Jy Iy
—i0— — 0y —— R tava—z +mBy = i (D6)
and its Hermitian conjugate

81}/’ 814/ au/ ; 81;/'*’
= —i D7
oy O T oy iy el my BT = —im5 - (D7)

»Consider Y x (D6) — (D7) X Y remembering o, B are Hermitian ==
. d d d dy' a AVAl . 0 dy'

y' (—:at a‘i’ iy, 81;1 f(xZa—l‘u +,quf) ( aw 6?; Oy +1i c;!z ocg+:m,cﬁﬁ) y=iy' a—w+ a—l{;w

d d 0 Ayt Ayt Ay’ a(y'
- v (a2 ta, a2 )+ (g + o+ Ty + W)
o dy dz dt

— ——a
dx dy ° dz )

*Now using the identitv:

dy dy' (vl y)
¥ | —
Vo 0 ox %Y = dx

X
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—

:
gives the continuity equation | V. (yﬁf’xqj) + IV'Y) =0 (D8)

ar

where y' = (Wi w5, w3, wy)

* The probability density and current can be identified as:

p=vy'y| and |j=vylay
— v — 2 2 2 2

where p =Yy = |y["+[ya|"+ |ys| 4+ |yul” >0

e Unlike the KG equation, the Dirac equation has probability densities which
are always positive.

 In addition, the solutions to the Dirac equation are the four component
Dirac Spinors. A great success of the Dirac equation is that these
components naturally give rise to the property of intrinsic spin.

* It can be shown that Dirac spinors represent spin-half particles (appendix Il)
with an intrinsic magnetic moment of

- q =
H = %S (appendix Ill)
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Covariant Notation: the Dirac y Matrices

*The Dirac equation can be written more elegantly by introducing the
four Dirac gamma matrices:

Y =B: v =B }’QEBay; Y =Be,

Premultiply the Dirac equation (D6) by 5

zﬁaxaw —|—.c}3ayaw —i—:ﬁmaw B2my = —zﬁ

= w—+w2 z‘}ﬁa—z—ml,u=—iy0W

using dy = (%, %, a%, a%) this can be written compactly as:

(i’}’u 8u — m)l;/ = ( (D9)

* NOTE: it is important to realise that the Dirac gamma matrices are not
four-vectors - they are constant matrices which remain invariant under a
Lorentz transformation. However it can be shown that the Dirac equation
is itself Lorentz covariant (see Appendix IV)

12



Properties of the y matrices

 From the properties of the & and ﬁ matrices (D2)-(D4) immediately obtain:

(,};])2:[-;2:1 and (}/1)2:6axﬁax:—(xxﬁﬁax:_af:_1
*The full set of relations is (,})0)2

PP =P=r)? = -1
Y'Y +7YY = 0
YY+7Y = 0 (#k)
which can be expressed as:
{Yﬂa '}’V} — ”}/’” ’J/v + '}’VY‘U — Zg”"' (defines the algebra)

« Are the gamma matrices Hermitian?

. B is Hermitian so "})0 is Hermitian.
+ The & matrices are also Hermitian, giving

Y = ,(ﬁax)'i‘ = o/ fT=ap =—-Bo=—7

* Hence ’}/1, ’}’zg ’}"5 are anti-Hermitian

P =P = P =P P =7

13



Pauli-Dirac representation

*From now on we will use the Pauli-Dirac representation of the gamma matrices:

( ) X ( 0 o ) which when written in full are

1000 0001 000 - 001 O
o100} 4, (0010} - [00i0 [ 000-1
=loo-10|:7=|0100):7=|0i00]:7"={-1000
00 0-1 -1 000 1000 010 0

*Using the gamma matrices P — WTIJI and ] = WT(_}EI,U can be written as:

M =(p,)) = v Py

where j‘u is the four-vector current.
(The proof that j‘” is indeed a four vector is given in Appendix V.)

*In terms of the four-vector current the continuity equation becomes
* Finally the expression for the four-vector current

=yt

can be simplified by introducing the adjoint spinor

14



The Adjoint Spinor

* The adjoint spinor is defined as

y=y'y

10 0O
. — A * * * * 01 O O
i.e. W:WTYO = (W)I?’U:(Wlaufza%a‘lle) 00-1 0
00 O -1

v o= (vi,¥5,—v3,—yy)

*In terms the adjoint spinor the four vector current can be written:
TR v T
JT=YYY

* We will use this expression in deriving the Feynman rules for the
Lorentz invariant matrix element for the fundamental interactions.

* That’s enough notation, start to investigate the free particle solutions
of the Dirac equation...

15



Dirac Equation: Free Particle at Rest

*Look for free particle solutions to the Dirac equation of form:
v = u(E, p)e' P E
where u(ﬁ,E) , Which is a constant four-component spinor which must satisfy
the Dirac equation Ul

(iYH Iy —m)y =0

* Consider the derivatives of the free particle solution

9 | E
o =S =ity =L <ipy,

substituting these into the Dirac equation gives:

(YE—=v'px—7vpy— ¥ p:—mu=0
which can be written: (Ypu—mu=0 (D10)

* This is the Dirac equation in “momentum” - note it contains no derivatives.

*For a particle atrest p =0
and Y =u(E,0)e !
eq. (D10) = EYu—mu=0

16



100 0\ /0 01
(0100 (02) _ [0
= “100-1 0 o] ~ "\ s (D11)
00 0 -1 04 04
* This equation has four orthogonal solutions:
1 0 0 0
0 1 0 0
w1 (m,0) = RE ur(m,0) = RE u3(m,0) = 1 (m,0) = 0
0 0 O 1
S _ S— L
(D11)mp | E=m (D11) mmp = -1
still have NEGATIVE ENERGY SOLUTIONS
* Including the time dependence from Y — u E, e gives
1 0 0 0
v = 8 e—imr; Y, = (1) e—smr (1) 4—1,,'1fz;1,“J and Wy = 8 €+imr
0 0 0 1
Two spin states with E>0 Two spin states with E<0

*In QM mechanics can’t just discard the E<0 solutions as unphysical
as we require a complete set of states -i.e. 4 SOLUTIONS

17



Dirac Equation: Plane Wave Solutions

«Now aim to find general plane wave solutions: Y = u(E, ﬁ)e*'(p"’_m)
 Start from Dirac equation (D10): (}/“p‘u — m)u =X

and use ,},,up‘u —-—m = EYO _px'}’] _py72 _pz”}; —m

- (30 (% 8)s-m(49)

_ (E—m)I

G.p
Note in the above equation the 4x4 matrix is
written in terms of four 2x2 sub-matrices

spinor as

oo = (57 50,)(2) =)

* Writing the four component (uA)
=

o
Giving two coupled (6'.1_9’)1,53 — (E — m) U
simultaneous equations oo (D12)
for UA, UB (6.P)us = (E+m)up

18



Expanding 5.;3’:(?(]))px+((;- _6)Py+((]) _(]))Pz
p

G.5 = ( Pz Px_ipy)
Pxtipy —p;
*Therefore (D12) (6.p)up = (E—m)uy }
(6.p)ugs = (E+m)ug
i _ G.p _ 1 z Px —ipy )
gives Up = E+mMA o E+m (px+ipy — Pz “A

e Solutions can be obtained by making the arbitrary (but simplest) choices for U4

S )

1 0
o 0 1. where N is the
giving up = Nj —FPZ ;  and  up =Nz | peipy wave-function
p;—_li-_;?)., {7;;’” normalisation
E+m E+m

NOTE: For p = 0 these correspond to the E>0 particle at rest solutions
* The choice of 14 is arbitrary, but this isn’t an issue since we can express any
other choice as a linear combination. It is analogous to choosing a basis for
spin which could be eigenfunctions of §,, S, or §,

19



1
Repeating for up — (0) and U = ((])) gives the solutions U3 and 4

* The four solutions are: Y; = Hf(E, I—,’)ei(ﬁ.?—Er)

! 0 = peivy
L—m —
0 1 Pt -’:}3}- ‘E_ p}zn
u; = N Pz s U =No | p—ipy |3 uz =Nz E—m T Us = Ny E—m
E-+m E-+m 1 0
DPx+ipy —p- 0
E-+m E-+m 1
If any of these solutions is put back into the Dirac equation, as expected, we obtain
E* = p* +m*

which doesn’t in itself identify the negative energy solutions.

i «One rather subtle point: One could ask the question whether we can interpret
i all four solutions as positive energy solutions. The answer is no. If we take
all solutions to have the same value of E, i.e. E = +|E|, only two of the solutions
are found to be independent.
* There are only four independent solutions when the two are taken to have E<0.

* To identify which solutions have E<0 energy refer back to particle at rest (eq. D11).

* For ﬁ = (0: u1, U2 correspond to the E>0 particle at rest solutions
U3, ugq correspond to the E<0 particle at rest solutions

* So U], Uy are the +ve energy solutions and U3, U4 are the -ve energy solutions

20



Interpretation of —ve Energy Solutions

* The Dirac equation has negative energy solutions. Unlike the KG equation
these have positive probability densities. But how should -ve energy

solutions be interpreted? Why don’t all +ve energy electrons fall into
to the lower energy -ve energy states?

Dirac Interpretation: the vacuum corresponds to all -ve energy states

being full with the Pauli exclusion principle preventing electrons falling into
-ve energy states. Holes in the -ve energy states correspond to +ve energy

anti-particles with opposite charge. Provides a picture for pair-production
and annihilation.

Y — e~er e et — Y

»> FY FY

me2 b —=—— me? | =—— me2 | ———
H-L nfr
-mc2 k- L
mee - ——— -mc?2 : -mc2f
_._.__._'_ — ) — () —
—— — — — —
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Discovery of the Positron

* Cosmic ray track in cloud chamber: C.D.Anderson, Phys Rev 43 (1933) 491

g

ZY

* vy
y

et/ 63 MeV.”

* e* enters at bottom, slows down in the
Iead plate —_— know direction © Copyright California Institute of T;cbnologg. ATl rights reserved.

= Curvatu re in B-field Shows that it iS a Commercial use or modification of this material is prohibited.
positive particle
* Can’t be a proton as would have stopped in the lead

mmm) Provided Verification of Predictions of Dirac Equation

* Anti-particle solutions exist ! But the picture of the vacuum corresponding to
the state where all -ve energy states are occupied is rather unsatisfactory, what

about bosons (no exclusion principle),....

22



Feynman-Stuckelberg Interpretation

* There are many problems with the Dirac interpretation of anti-particles
and it is best viewed as of historical interest - don’t take it too seriously.

Feynman-Stiickelberg Interpretation:

* Interpret a negative energy solution as a negative energy particle which
propagates backwards in time or equivalently a positive energy anti-particle
which propagates forwards in time

N e~ (E<0) e" (E>0)

1=t Y :
e e -

E>0 E<0

time

e~ (E>0) € (E>0)

e—i(—E)(—t) _, pTIEl NOTE: in the Feynman diagram the arrow on the
anti-particle remains in the backwards in time
direction to label it an anti-particle solution.

* At this point it become more convenient to work with anti-particle
wave-functions with F = \/|ﬁ|2 + m? motivated by this interpretation

23



Anti-Particle Spinors

*Want to redefine our -ve energy solutions such that: FE = |\/|ﬁ|2 + m2|
i.e. the energy of the physical anti-particle.

We can look at this in two ways:

o Start from the negative energy solutions

Pz Px—1Py
E_I—_Ign E—m N
B pxtipy | B — Pz Where E is understood to
— N3 E-m D Uy = Ny E—m -
1 0 be negative
0 1

*Can simply “define” anti-particle wave-function by flipping the sign
of I and P following the Feynman-Stiickelburg interpretation:

V](E,ﬁ)e_j(ﬁ'?_Er):uz;( E, P) i(p.7—Et)
Vz(E,ﬁ)é'_i(ﬁ'?_Er):ug( E p) i(p.r—ELt)

where E is now understood to be positive, F — |\/|ﬁ|2 +m?|

24



Anti-Particle Spinors

Find negative energy plane wave solutions to the Dirac equation of

the form: Yy = V(E,ﬁ)é:.fo(f"-?—Ef) where [ — |\/|ﬁ|2 +m2|

*Note that although E > () these are still negative energy solutions

in the sense that ﬁvl _ -’:g‘v’l — —Ev
*Solving the Dirac equation (i’}’” 8“ — m) Y = 0
1 2 _
= (—=Y’E+7'ps+7py+7p.—my=0
(Y pu+my=0 (D13)
* The Dirac equation in terms of momentum for ANTI-PARTICLES (c.f. D10)
*Proceeding as before:  (0.p)vy = (E—m)vp } otc.. ...
(6.p)vg = (E+m)va
Px—Ipy EIL
E_t;? Px‘t‘!g}’
= Vi ZN{ E6m . V2 ZNE E‘i‘m
1 0

* The same wave-functions that were written down on the previous page.

25



Particle and anti-particle Spinors

* Four solutions of form: y; = uf(E,ﬁ)ef(ﬁ‘F_Ef)

1 0 7= Px—ipPy
2 —m E-m
0 | pxt+ipy oy
Uy =N Pz s =N | p—ipy | s ua=N| E-m |; ua=N| E-m
E+m E+m 1
PyTipy — P 0 ]
E+4+m E+m
N N— _—

E=+|VIFP+m? E=—|VIpt+m?

* Four solutions of form y; = Vf(E,ﬁ)e_‘(ﬁ-F—Ef)

Px—Ipy f'ﬁj 1 0
T +m
E—JE?T Pxtipy 0 1
V] = N E+m . V= N E+m s V3= N Pz s V4= N Px—ipy
0 1 E—m E—m
1 0 PxtHipy —Pr
/, - E—m E_m_z

T Y
E=+|VIFF+m E=—|VIpP+m
* Since we have a four component spinor, only four are linearly independent
= Could choose to work with  {uy,uy,u3,ustor {vy,vy,v3,v4} or..

* Natural to use choose +ve energy solutions
{HIJMZJVI:VZ}
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Wave function normalisation

From Lecturel want to normalise wave-functions

to 2 F particles per unit volume 1
*Consider Y = uyeti(PrEl) ) u =N 3
Probability density P = ¥y = (W) w=ulu ety
3 o) o) E+m
T 2 P Px ‘I‘Py
= |N 1
it N ( TErmeE T (E+m)2)
_ wp (EEmE RN e (EEm) A ER -
- (E+m)? - (E+m)?
2E*+2Em 2E
2 2
= |V =N
(E+m) E+m

which for the desired 2E particles per unit volume, requires that

N=+vVE+m

*Obtain same value of N foru, Uz, vy, V2
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Charge Conjugation

* In the Relativitv and Electrodvnamics course it was shown that
the motion of a charged particle in an electromagnetic field A" = (¢,A)
can be obtained by making the minimal substitution

p—p—eA; E—E—ef
with p=—iV; E=id/dt
this can be written au — a“ + ieAu

and the Dirac equation becomes:

Y (Oy +ieAy)y+imy =0

* Taking the complex conjugate and pre-multiplying by —.i’}/z
= =iy (O —ieAy) Y —myryt =0
But P =Py = P =P =Y amd PP = gy
U - . * S *
— P (9 —ieA )iy W +imiy*y* =0 (D14)
*Define the charge conjugation operator:

y' =Cy =iy’ y

28



D14 becomes:

YH(dy —ieAy )y +imy’ =0
eComparing to the original equation
YH(Oy +ieAy )y +imy =0

we see that the spinor lj/’ describes a particle of the same mass but with
opposite charge, i.e. an anti-particle !

M

C ™

particle spinor < anti-particle spinor

*Now consider the action of (C on the free particle wave-function:

qf’ = é]!f — I’}lzlp'* — i/}/zu’lke—f(ﬁ.?—El‘)
. 1 * Px—ipy
000 - Px—_ 0y
: ] 00 ¢ 6 0 Ej;;f
i 000 prtipy :
. E+m
hence V= ulg*'(ﬁ-F—Ef} i} Vf’ _ Vle—i(ﬁ.?—Er)
similarly V= uzgf(ﬁ-?"—E?} ¢ 5 W, — Vze—i(ﬁ.F—Er)

* Under the charge conjugation operator the particle spinors i#] and >
transform to the anti-particle spinors v{and Vv

29



Using the anti-particle solutions

*There is a subtle but important point about the anti-particle solutions written as
_ V(E ﬁ) —i(p.Fr—Et)
Applying normal QM operators for momentum and energy p= —zV H= za/at
gives Hvy =idv,/dt = —Ev; and  pv| = —iVv, = — PV
* But have defined solutions to have E>0

* Hence the quantum mechanical operators giving the physical energy and
momenta of the anti-particle solutions are:

~

o) — —id/dt and p = iV
»Under the transformation (E,p) — (—=E,—p): L = FADp— —L
0

Conservation of total angular momentum [H,L+ S| =

* The physical spin of the anti-particle solutions is given by SA("') = -9

F 9

0

A spin-up hole leaves the
In the hole picture: -m¢? | —o——4— negative energy sea in a spin

e down state
—y
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Summary of Solutions to the Dirac Equation

*The normalised free PARTICLE solutions to the Dirac equation:

Y = M(E’I‘;’)eﬁ(ﬁ-?—ﬂ) satisfy (Y pu—mu=0
with 1 0
0 ]
uy =vVE+m FP: : uy =E+m| p—ipy
i T
E+m E+m

*The ANTI-PARTICLE solutions in terms of the physical energy and momentum:
l]U' — V(E’ﬁ)e—f(P-r—Ef) satisfy (/]/“p“ +m)v = ()

. Px—1py Pz
— Pz Pxtipy
Vi=+vE+m E+m X v =+E+m E+m
0 |
1 0

For these states the spin is given by SA(") — S
* For both particle and anti-particle solutions: F = \/|[3’|2 + m?
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Spin States

*In general the spinors u,u>,v,vy are not Eigenstates of S‘Z

1 00 0
5 —1 :
Szt == %Zz — % (%Z (()') ) = % 8 0 (1) 8 (Appendix Il)
Z
0 0 0 -1
*However particles/anti-particles travelling in the z-direction: P = j:|ﬁ|
1 0 0 +|7|
0 1 7|Pl Eam
uy=N| +p| |3 up=N 0 : vi=N Eam ; v =N "
By T|7| 1 0
. E+m
are Eigenstates of §,
§ZL£1 = —|—%u1 §§v)v1 — —SAZW — Jr%vl Notf the change of sign
~ ) A(v) “ ) of § when dealing with
Szug = —§u2 SZ Vo = —SZVZ — —35V2 antiparticle spinors
— 4= —) <= — 4= —) <=
—_ —> —r —p| | — « < e
Ui 2% V1 > %) Ui 2% V1 > %)

* Spinors Uj,U2,V1,V2 are only eigenstates of §z for PD; = :|Z|ﬁ|
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Pause for Breath ...

* Have found solutions to the Dirac equation which are also eigenstates §z but
only for particles travelling along the z axis.

* Not a particularly useful basis

* More generally, want to label our states in terms of “good quantum numbers”,
i.e. a set of commuting observables.

Can’t use z component of spin: [FI,SAZ] ;é 0 (AppendixIl)

*Introduce a new concept “HELICITY”

Helicity plays an important role in much that follows
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Helicity

* The component of a particles spin along its direction of flight is a good quantum
number:

[A,5.p] =0
* Define the component of a particles spin along its direction of flight as HELICITY:
. S.p _ 2S P L.p
S|l 1P
*If we make a measurement of the component of spin of a spin-half particle

along any axis it can take two values +1/2, consequently the eigenvalues
of the helicity operator for a spin-half particle are: -1

7 'y

h=+1 h=-1
Often termed: “right-handed” “left-handed”

* NOTE: these are “RIGHT-HANDED” and LEFT-HANDED HELICITY eigenstates
* In Lecture 3 we will discuss RH and LH CHIRAL eigenstates. Only in the limit
v = ¢ are the HELICITY eigenstates the same as the CHIRAL eigenstates
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Helicity Eigenstates

* Wish to find solutions of Dirac equation which are also eigenstates of Helicity:
(E.ﬁ)uT — —|—L£T (Eﬁ)ul = —U|

where U1 and U| are right and left handed helicity states and here ﬁ IS
the unit vector in the direction of the particle.

*The eigenvalue equation: [.] [.] []
6.p 0 \(fua) _ . (ua k[t ([
(%" &) (i) == (1) I [
gives the coupled equations: 2\ u — +u
(% .P)ua A (D15)
(0.p)up = Zup
«Consider a particle propagating in (0,¢) direction /{
p=(sinBcos@,sin@sin¢d,cosb) 0 >+ Z
3 A_( Pz Px—ipy\ _ cos 6 sinBcosgﬁ—isinBsinqb)
P= px+ipy  —p; —\ sinBcos@ +isinOsin@ —cos 6
G 5 cos @ sin Qe 10
P= 1 singe® —cosd
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a a
*Writing either g4 — (b) or Up — (b) then (D15) gives the relation

cos® sinB@e? ay _ a For helicity +1
(sin Be'® —cosB ) (b) == (b) ( yED

So for the components of BOTH “A and UB

b :|:1;—C0$9€“p

a sin 6
* For the right-handed helicity state, i.e. helicity +1:
b _ 1—.00596@2 23in2(g) effb:ei?%
a sin 6 ZSin(g)cos (g) COS (%)
cos (%) cos (%)
~ e () e (0

* Putting in the constants of proportionality gives:

)
)

k1 cos (2

~ (ua\ | k1€ sin (
“T=\ug) = ;-'ccos(ﬁ
2 2

K'Qe (

19| D e 1| D
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*From the Dirac Equation (D12) we also have

(6’.}3)14,4 — (E—I—m)ug
c.p pl - . 7|
P Em E+m(_ﬁ) AT T Esm ?
Helicity
* (D15) determines the relative normalisation of 144 and Up , i.e. here
i
ug — +1 u
B= Eoomit

€£¢Slﬂ()
]

2
Pl i i (8
E+m€ SIH(Z)

*The negative helicity particle state is obtained in the same way.

* The anti-particle states can also be obtained in the same manner although
it must be remembered that S( V) — _§

i.e. A = —(X.p) = (Z.p)vy=—v
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* The particle and anti-particle helicity eigenstates states are:

[ cos(3) [ —sin(3)

B ei‘p sin (g) - e‘_‘.p CoS (%)

TN () | TN den (D)
prye?sin (§) \—pf¢ cos (§)
En(®) \ | oos(8)

p) 2

e“bcos(g) / ef¢sin(ﬂ) )
anti-particles

particles

U o V1 V|
Yien V|| Zien ¥

* For all four states, normalising to 2E particles/Volume again gives |N = /E + m

* The helicity eigenstates will be used extensively in the calculations that follow.
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Intrinsic Parity of Dirac Particles

* Before leaving the Dirac equation, consider parity

* The parity operation is defined as spatial inversion through the origin:
XY=—x; yYVy=—y, Z=—-z; =

*Consider a Dirac spinor q/(x y,z, ) which satisfies the Dirac equation

iy! a +.:y2 WO%?:;A (D17)
*Under the parity transformatlon. qf ( jy s Z ,t ) = Pl,l/(x,yjz,t)
Iy P=9  y(W.20) =Py(xyz0)

(W) =1 so u/x,y,zt =1/ (¥, y, 7.t
(D17) == ;yly‘)a‘” +:y2y0 +.¢y3y03"”

*Expressing derlvatlves in terms of the prlmed system:

Py = i Y

Since '}’0 anti-commutes with ’}’1 ’}’2 73

/

Py 28 -y = —i%
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8w

LAY,

Pre-multiplying by ’}’0 = 1Y

*Which is the Dirac equation in the new coordlnates.

k There for under parity transformations the form of the Dirac equation is
unchanged provided Dirac spinors transform as

v — Py =+Yy
(note the above algebra doesn’t depend on the choice of P = j:}/o )
* For a particle/anti-particle at rest the solutions to the Dirac Equation are:

WV =ue H?’H’ V= use —imt . U/—V1€+jmf,l,l/—1)2€+"’mr

_170 ot’

0 0 0
with uy =N ( ; up =N (]) ; vi=N 8 ; =N (1} ;
0 1 0
10 0 O 1 5 n 5
A O1 O 0O O Uy = xuy rvy = +Fvij
Pur==x1| 0g0-1 0 0| =tur etc. — |4 .
Pu> = +u» Pvyr =
00 O -1 0 uz U vy = —+va

* Hence an anti-particle at rest has opposite intrinsic parity to a particle at rest.
* Convention: particles are chosen to have +ve parity; corresponds to choosing

=+
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Summary

* The formulation of relativistic quantum mechanics starting from the
linear Dirac equation oy

=) New degrees of freedom : found to describe Spin ' particles
* In terms of 4x4 gamma matrices the Dirac Equation can be written:
. u L L
iy dy —m)y =0
* Introduces the 4-vector current and adjoint spinor:
U — vy = vt
FEyY Yy =ty
* With the Dirac equation: forced to have two positive energy and two

negative energy solutions

* Feynman-Stiuckelberg interpretation: -ve energy particle solutions
propagating backwards in time correspond to physical +ve energy
anti-particles propagating forwards in time

uip, Uz, vi, V2
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Summary

* Most useful basis: particle and anti-particle helicity eigenstates

Vi V|

* In terms of 4-component spinors, the charge conjugation and parity

operations are:

v — Cy =iy’y’

v — Py =7y

* Now have all we need to know about a relativistic description of
particles... next discuss particle interactions and QED.
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Appendix I: Dimensions of the Dirac Matrices

Starting from Ay = (a.p+ fm)y = i%—lf

For H to be Hermitian for all P requires ;= Otf B = ﬁﬂf*

To recover the KG equation: o =o; =a; =B° =1

paj+o;B=0

ooy + oo =0 (j#k)

Consider Tr(B'AB) = BLA kB

with B'B =1 = BuBlAj

OikA ji

Tr(A)

Therefore Tr(a) = Tr(o ooy)

= _T”(a;ajaf) (using commutation relation)
= ~Tro)

= Triog) = 0
similarly Tr(B) = 0
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We can now show that the matrices are of even dimension by considering
the eigenvalue equation, e.g. axX = AX
X¥=xo ox = A*AX'X
Eigenvalues of a Hermitian matrix arerealso A?=1 — A =+1
but Tr(a) =Y A

Since the o, 3 are trace zero Hermitian matrices with eigenvalues of
+1 they must be of even dimension

For N=2 the 3 Pauli spin matrices satisfy
0;0;+0;0,=0 (j#1i)

But we require 4 anti-commuting matrices. Consequently the a;, B of the
Dirac equation must be of dimension 4, 6, 8,..... The simplest choice for

is to assume that the ¢;, ﬁ are of dimension 4.
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Appendix Il: Spin

*For a Dirac spinor is orbital angular momentum a good quantum number?
i.e. does L=FApPp commute with the Hamiltonian?

H,L] = [6.p+pm,FAp]
= [6.p,7FAP]
Consider the x component of L:
H,L,] = |[a.p,(FAP)«]

= [0upx+ Qypy + 0Pz, YP: — 2Py
The only non-zero contributions come from: [x, p,| = [y, py| = [z, p;] =i

[H,Ly] = aypz|py,y] — 0py[ps,7]
= —i(ayp; — opy)
= —i(aAP)s
Therefore [H,L) = —ig A p (A.1)

*Hence the angular momentum does not commute with the Hamiltonian
and is not a constant of motion
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Introduce a new 4x4 operator:

0100 0 -0 O 1 00 O
1000 i 00 O 0—-10 O
L=10001]> =10 00—i]> ==|0 01 0
0010 0O 07 O 0 00 —1
Now consider the commutator
H.5) = a5+ Bm. 5]
2 I 0 G 0 g 0 I 0
here [ﬁﬂ_(()—l)(oa' ‘(0&)(0 —1):0
and hence H.%| =[a.p,2]
Consider the x comp: [H,Zx] — [axpx—FOCypy-l—OCzpz,Zx]

Pl O, E] + pylaty, B 4 pe o, 2o
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Taking each of the commutators in turn:

wsl = (5)(58)-(F8)(25)=0
ms) = (29)(52)-(32)(2 %)

0 O-y Gy - O.ycx
O-y 0._7( - Gxay

- 0 —2io;
- —2io, 0

= =2id,
0,2 = 2i,
Hence [H;Zx] — px[axazx] +py[ayazx] +pz[a23 Zx]
—2ipy 0, +2ip, 0ty

H,X| =2ia AP
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*Hence the observable corresponding to the operator X is also not
a constant of motion. However, referring back to (A.1)

— 1 - -
H,S| = E[H’Z] =icNp=—|H,L]|

Therefore: [H,L+5]=0
. o 1 G 0
Because S_E(O 6)

the commutation relationships for S are the same as for the G , €.9.
Sy, Sy] = iS,. Furthermore both S? and S, are diagonal

1000
100\
010 |3 5
001

1 3
=14+ +22) =2

b3 —

1 0 0 0
0-10 0
O 010
0 0 0 —

oo

1

* Consequently SPw=S(5+1 Y= % and for a particle travelling along

the z direction S,y = :I:% v

S

% S has all the properties of spin in quantum mechanics and therefore the

Dirac equation provides a natural account of the intrinsic angular
momentum of fermions
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Appendix lll: Magnetic Moment

* In the part Il Relativity and Electrodynamics course it was shown that

the motion of a charged particle in an electromagnetic field A* = (¢, A)
can be obtained by makina the minimal substitution

p—p—qAi E—E—qp
* Applying this to equations (D12)
(6.5—q6.Aug = (E—m—qd)uy (A.2)

(6. —qB.A)ua (E+m—q@)up
Multiplying (A.2) by (E +m—q¢)

(6.5 —q0.A)(E+m—qo)up (E—m—q¢)(E+m—qd)ua

(60.p—q0.A)(6.p—q0.A)uy = (T—qd)(T+2m—q@lus (A.3)
where kinetic energy 7' =F —m
*In the non-relativistic limit 7" << m (A.3) becomes

(S.ﬁ—qﬁ.ﬁ)(ﬁ.ﬁ—qﬁ.ﬁ)uA ~ 2m(T —qo)uy
[(6'5)2_(1?(5'5)(5-5)_Q(a-ﬁ)(aﬁ)‘f‘qz(&ﬂ)z]”A ~ 2m(T —q@)us (A.4)
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* Now cyA (A

which leads to

+ zA,,

(P—qA)> —qB.B
* Substituting back into (A.4) gives the Schrodinger-Pauli equation for
the motion of a non-relativisitic spin 'z particle in an EM field

1

Zmp

p=—iV
(VAA) W =V A(Ay) +AN (V)
B=VAA

LAV
gA) -

5.§+qq‘)} up = Tuy



1 — q I
—(p—gA)? — 1-G.B+ us = Tu
5 (P—qA)" — 5 qP | ua A
@ Since the energy of a magnetic moment in a field B is —ﬁ.g we can
identify the intrinsic magnetic moment of a spin 2 particle to be:

— q —

=30
In terms of the spin: § = %5‘

_— q =

3
L

@ The intrinsic magnetic moment of a spin half Dirac particle is twice

that expected from classical physics. This is often expressed in terms
of the gyromagnetic ratio is g=2.

H:&'ES

—

51



Appendix IV: Covariance of Dirac Equation

*For a Lorentz transformation we wish to demonstrate that the Dirac
Equation is covariant i.e.

iy.uauw — my (A.5)
transforms to iyt oy = my’ (A.6)
where a’_d:(d J 9 8)
o oxlm at’’ dx'’ dy'’ 97
and v/ (xX') = Sy(x) is the transformed spinor.

*The covariance of the Dirac equation will be established if the 4x4 matrix
S exists.

*Consider a Lorentz transformation with the primed frame moving with
velocity v along the x axis

9 = Aoy
where ?é _18?’88
H —pPY 7
Av=1 0" 0 10
0 0O 01
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With this transformation equation (A.6)

iv'oyy = my
= iYYAYWSYy = mSy
which should be compared to the matrix S multiplying (A.5)

* Therefore the covariance of the Dirac equation will be demonstrated if
we can find a matrix S such that

iYAYOSY = iSytouy
=  YAYSIy = Sy'ouy

= |SY* = 9y"SAY (A.7)
*Considering each valueof u =20, 1, 2, 3
SYO — VYDS_ﬁV}/lS ) where y= (]—ﬁz)_l/z
Syl = —By’S+vyls > and fB=v/c
Sy = 9°S
SY} — 7’38' /

53



It is easy (although tedious) to demonstrate that the matrix:

S:a[—l—b}p’}’l with a:\/%(y—kl), b:\/%(’y—l)

satisfies the above simultaneous equations

NOTE: For a transformation along in the —x direction 5/ = —\/% (y—1)

* To summarise, under a Lorentz transformation a spinor l;/(x) transforms
to y/(x') = Sy(x). This transformation preserves the mathematical
form of the Dirac equation
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Appendix V: Transformation of Dirac current

* The Dirac current j* = YY" v plays an important réle in the description
of particle interactions. Here we consider its transformation properties.

*Under a Lorentz transformation we have y' = Sy
and for the adjoint spinor: V' = I,U"Jf}/o = Sl,lﬁ}/j = I;ITSWO
*First consider the transformation properties of Ww’
vy =y STy Sy
where ST =al +by" YT =al —by'y
giving  §'YS = (al —by' Y)Y’ (al +byPyh)
= P -BYPPPY +abPPY - by VY
= P+ (V) (v')* +aby' —aby’
= (@b
hence vy =yisTYSy = yiPy =gy
*The product yy is therefore a Lorentz invariant. More generally, the
product Yy, is Lorentz covariant
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*Now consider /1t —  y/yty/
= (¢S )rtsy
*To evaluate this wish to express y*S in terms of Sy*
(A.7) Sy = yYSAL

= SYHAD = yWSALAD = yVSSP = 9PS
where we used A, Aj =68
* Rearranging the labels and reordering gives:

™S =AVSY
(W' ST Sy =y ST (AL SY ) w
= AV STy =A v Yy
MY Y =AY
= vty =AYy

j*

* Hence the Dirac current, WVY* ¥ transforms as a four-vector
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