Unfolding algorithms and RooUnfold
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Deconvolution

Finite resolution of the detector
smears the quantities we're
interested in.

Goal:
smeared information
— original information

This is called deconvolution or
unfolding

"Inverse problem”

Problem can be ill-posed in the
sense that unfolded result can be
very sensitive to small perturbations
in the data

Object

. / o

Example:
Smearing of a telescope image

https://en.wikipedia.org/wiki/Point_spread_function



To Unfold or not?

lt's a lot of work, and often produces biased or otherwise unsatisfactory
results. Moreover it's often unnecessary.

"Forward fitting" is much easier
» Take theory prediction
» Convolve it with the response of the detector

» Compare smeared theory directly with the data



When Unfolding Make Sense

1. Results from experiment A and B with different response function are to be
compared

2. It is too complicated to publish the response function of the detector along
with the data

» Detector response might be very complex, e.g., time dependent
» Sometimes computer code reflecting the response would have to be published

» Danger that future users don't use the filter correctly



When Unfolding Make Sense

= Multiplicity distributions P(Nech)

» Measured multiplicity differs from true charged particle multiplicity due to
detector effects (efficiency, fake hits, ...)

= D7 Spectra, e.g., 10 spectrum measured with a calorimeter

» finite energy resolution and shower overlaps in a calorimeter affect the pr of the
reconstructed shower

Example: mul’uphaty dlstr|but|on5 in pp colhsmns arXiv-0912.0023
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Response Matrix (l)

Suppose that we deal with continues variables (e.g., transverse momentum)

ft(xr) . distribution of true values (normalized to unity)
fm(xm) . distribution of measured values (normalized to unity)

fb(Xm) . distribution of background (normalized to unity)

Response function R:

R(xm|xt) = r(xm|xt) x e(x¢) probability (density) to observe xm given xi
"smearing” "efficiency”

By construction, one has

/ r(xm|xe)dx,m = 1

m



Response Matrix (Il)

Further definitions:

Mot : number of true events
Not : Number of measured events

bwot : number of background events

fror = E [mtot] ot = E [ntot]f Prot = E [btot]
It is practical to work with discrete bins. E.g., probability to find true in bin J:

Pi —/ dxe fe(xe),  pj = ot X pj
bin j

lgnoring backgrounds, the measured number of entries in bin / is:

= ,utot/ dx; Prob(x,, in i|true x;, detected)

t

x Prob(detect x;) x Prob(produce x)

,utot/ de/ err Xm‘Xr (Xf)ft(Xr)
bin i "



Response Matrix (l11)

Further definitions: y

Vi = Htot / de Z
bin i -

J=1

_Z/ de/ dx; "(Xm|Xr)5(Xr)fr(Xr)’uj
bin i bin j

Hj / Htot

/b_ _dxr r(xm|xe)e(xe) fe(xe)

This may be written as

M
Vi = E R,j,u);
Jj=1

with the components of the response matrix

. Joini @Xm Jpin j dXe r(xm | )2 (3 ) e (e )
I fbinj dx.f(x;)




Response Matrix (1V)

In other words:
Rj = Prob(observed in bin i|true in bin j)

Obviously, summing the response matrix over / gives the efficiency:
N
> Ri=¢
i=1

In compact matrix form (including background):

M
vi =Y _ R+ Bi 7=Rji+ [
Jj=1

Response matrix depends on fi(xi) which we want to know. However, if we
make the bins small enough fi(xi) = const. within a bin and drops from the ratio:

Xm dxe r(Xm|xe)e(xe) fe(x
Rj = fbmr fb el ‘ r) ( r) r( r) N / dxm/ dxr Xm|Xt) ( )
fbinj dx f(xt) Axtj Jbini bin j




Unfolding by Inverting Responce Matrix (l)

We have

Replace v by r to obtain and obvious estimator for the true distribution:

—

i=R YA p)

This solution minimizes

(i) = () = ATVNH@) — 7)) where Vi = covlmi, ]

It can be shown that the covariance matrix of the solution is given by

U=RIVR™HT
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Unfolding by Inverting Responce Matrix (Il)

It can also be shown that matrix inversion is unbiased an has minimal variance.

This sounds good ... let's try it.

Cowan, http://inspirehep.net/record/599644
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This looks like a disaster ... unfolded distribution very different from the true one
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Unfolding by Inverting Responce Matrix (lll)

Another example: (0-75 025 0O )
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Same conclusion: we don't get the desired (smooth) answer
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What’s Wrong with the Matrix Inversion Method?

Unbiased, minimum variance, actually also a ML estimator ... all very nice!

The result is not wrong, it is just not desirable
» Does not really look like the original distribution

» Large correlation between bins

"Applying the response matrix £ smears out fine structure
— applying A~ creates (usually unwanted) structure”

More desirable solution by adding (smoothness) constraints.
However, this will produce a bias.

The art of unfolding is to find an acceptable balance between bias and
smoothness.
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Bin-by-Bin Method (l)

Used very often, but has issues ...

Assume shape of true spectrum and determine correction factor for each bin
(usually determined from Monte Carlo simulation):

MC

I L.-
i = C.,‘(ﬂj — 3,-) G — 'LI{\AC

Vi

Works if smearing (bin-to-bin sharing) is negligible, only loss due to finite
efficiency:
Rij = djjcj

Obviously works, too, if MC = nature.

Expectation value for corrected data:

E[ﬁt,] — C,-'E[ni — 3;] — Cj(y,- — 3,) = ij;"ig
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Bin-by-Bin Method (ll)

Inserting the Ci's one can determine the bias:

Elp;] = s [ i) s o no bias only if
= oMcYi T | MC i i ! -~
% Z voe MC = nature
ljzgs

Covariance matrix of the corrected data (smearing fluctuations
independent between bins)

U-ff — COV[].’:‘l-i, ﬁj] = C,C;. COV[n?ig, n_?ig] — szvar[n?ig]é‘;j

0 for i#j

lterative bin-by-by method

Start with plausible guess of true spectrum

-

-

Apply correction to measurement

-

Generate new correction factors from corrected spectrum of previous iteration

-

And so on ... usually a few iterations sufficient
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Regularized Unfolding

Matrix inversion is the maximum likelihood solution:

Independent M =i

Poisson In L(ji) = E (ni Inv; — ;) ML estimator: . .
s . — =R YA-p)

fluctuations: i—=1 M

ldea: accept solutions that are close to maximum likelihood estimate:

In L(j7) > In L(jimax) — A In L(j7)

Define a smoothness function S that gets bigger when the unfolded
solution becomes smoother.

The task then is to maximize
&) = aln L(ji) + S(p)

/ N\

a depends on A In i, smoothness function
a — o give ML solution
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Tikhonov Regularization

Measure of smoothness = mean square of k-th derivative of deconvoluted

function f:
df°

/

Minus sign makes S big when derivative is small

Tikhonov for k = 2 with log L = -x2/2:
M—2
S(ii) == > (—pi +2pis1 — pis2)’
i=1

Implementation by A. HOcker, V. Kartvelishvili: Singular Value Decompaosition
(NIM A372 (1996) 469, hep-ph/9509307, TSVDUnfold in ROOT)

Minimizes — X2(0) +7 Y [(pisr — ) — (i — piza))

/ i

Advice on how to choose T in the paper
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RooUnfold package

« Provide a framework for different algorithms
- Can compare performance directly, with common user code

+ RooUnfold takes care of different binning, normalisation, efficiency
conventions

« Can use common RooUnfold utilities
» Write once, use for all algorithms

» Currently implement or interface to iterative Bayes, SVD, TUnfold,
unregularised matrix inversion, and bin-by-bin correction factors algorithms

-  Simple OO design
* “response matrix” object can be filled separately from training sample
« in a different routine, or a different program (ROOT I/0 support)
« Simple interface for the user
 From program, ROOT/CINT script, or interactive ROOT prompt
» Fill with histograms, vectors/matrices,... or direct methods:

e response->Fill (X easuredr Xiue) @Nd Miss (Xy,.) Methods takes care of
normalisation

 Results as a histogram with errors, or vector and covariance matrix

18



RooUnfold features

Supports different binning scenarios
- multi-dimensional distributions (1D, 2D, and 3D)
« Different binning (or even dimensionality) for measured and truth
« Option to include or exclude histogram under/overflow bins in the unfolding

Supports different methods for error computation (simple switch). In order of
increasing CPU time:

- No error calculation (uses VN)
« bin-by-bin errors (no correlations)

« full covariance matrix from the propagation of measurement errors in the
unfolding, or

« covariance matrix from MC toys
» useful to test error propagation and when it is inaccurate

These details are handled by the framework, so don’t need to be implemented for
each algorithm

19



RooUnfold testing

- Calculates resolutions, pulls, and

* Includes a toy MC test framework, allowing selection of different
PDFs and PDF parameters

binning

1D, 2D, 3D tests

unfolding methods and parameters

Test procedures for the regularisation parameter and errors
and plotting results from a single command

20



RooUnfold classes

Training truth | TH1D

Training measured | TH1D

Response matrix | TH2D

Measured data | TH1D

Or use TH2D/TH3D for
truth and/or measured
distributions

Unfolded distribution
and errors

Training

for (i=0;

if (measured[i])

i<N; i++)

or R->Fill (measured[i], truth[i]) ;
else
R->Miss (truth[i]) ;
RooUnfoldResponse |< :-

RooUnfold 4~

THID |  or

- RooUnfoldSvd

TVector

Subclasses of RooUnfold

__ — - RooUnfoldBayes

RooUnfold TUnfold
RooUnfoldInvert

RooUnfoldBinByBin

Test programs

RooUnfoldExample
RooUnfold Test

TMatrix

RooUnfoldTest2D
RooUnfoldTest3D




RooUnfold example (Bayes)
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RooUnfold example (Bayes)
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RooUnfold algorithms: Iterative Bayes

« Uses the method of Giulio D'Agostini (1995), implemented by Fergus Wilson
and Tim Adye

- Uses repeated application of Bayes’ theorem to invert the response matrix

« Regularisation by stopping iterations before reaching “true” (but wildly
fluctuating) inverse

« Regularisation parameters is the number of iterations, which in principle
has to be tuned according to the statistics, number of bins, etc.
In practice, the results are fairly insensitive to the precise setting.

+ Implementation details:
« Initial prior is taken from training truth, rather than a flat distribution

« Does not bias result once we have iterated, but perhaps reach optimum
faster

« Takes account of multinomial errors on the data sample but not, by default,
uncertainties in the response matrix (finite MC statistics), which is very slow

« Does not normally do smoothing (can be enabled with an option)
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RooUnfold algorithms: SVD

« Uses the method of Andreas Hécker and Vato Kartvelishvili

« Obtains inverse of response matrix using singular value decomposition
« Use number-of-events matrix to keep track of MC uncertainties

+ Regularisation with a smooth cut-off on small singular value contributions (these
correspond to high-frequency fluctuations)

- Replaces? —s2/(s2+5,2)
* [k determines the relative contributions of MC truth and data
* k too small — result dominated by MC truth

* [ too large — result dominated by statistical fluctuations

» k needs to be tuned for the particular type of distribution, number of bins, and
approximate sample size

+ Unfolded error matrix includes effect of finite MC training statistics (usually small)
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RooUnfold algorithms: TUnfold

Uses the TUnfold method implemented by Stefan Schmitt and included in ROOT
+ RooUnfold includes an interface to this class

Performs a matrix inversion with 0-, 1-, or 2-order polynomial regularisation of
neighbouring bins
» RooUnfold automatically takes care of packing 2D and 3D distributions and
creating the appropriate regularisation matrix required by TUnfold

TUnfold can determine an optimal regularisation parameter (z) by scanning the
“L-curve” of log(x?) vs logo(7).
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RooUnfold algorithms: Unregularised

« Very simple algorithms
» using bin-by-bin correction factors, with no inter-bin migration

* using unregularised matrix inversion with singular value removal
(TDecompSVD)

are included for comparison — and to demonstrate why they should not be used in
most cases!
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RooUnfold algorithms: comparison

TUnfold and unregularised matrix inversion require the number of bins,

Nmeasured 2 Ntrue

« TUnfold claims best results if N ..cireqd = Niwe: €9- N = 2N

measured ~ true

« This is a common general recommendation from unfolding experts, but
perhaps is most relevant to these types of algorithms with explicit
regularisation

» This is an implicit additional regularisation, since we are “smoothing” two
bins into one

SVD implementation and bin-by-bin methods only support N, casured = Nirue
« SVD implementation also only works well for 1D distributions
The choice of the SVD regularisation parameter has to be done by the user
« TUnfold can often do this automatically
« Can we do something similar for the SVD method?

« The performance of the Bayes method is relatively insensitive to the
regularisation parameter (number of iterations)
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RooUnfold with Bayes algorithm (3 iterations)
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RooUnfold with SVD algorithm ( k=30 )

Gaussian smearing,
systematic translation, and
variable inefficiency
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RooUnfold with TUnfold algorithm ( t=0.004 )
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Unregularised matrix inversion

— PDF
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Simple correction factors
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Unfolding errors

+ All methods return a full covariance matrix of the errors on the unfolded histogram
due to uncertainties on the measured distribution.

« This is often calculated by propagation of errors

» but not always possible if there are non-linearities or other problems,
eg. the iterations in the Bayes method are not handled in D'Agostini’s
formalism:

o Unfolding errors ]

% o Errors from toy MC
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+ RooUnfold allows the covariance matrix to be calculated from toy MC instead

» provides a cross-check of the error propagation or replace it if there are
problems
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Bin-to-bin correlations

Regularisation introduces inevitable correlations between bins in the unfolded
distribution

 To calculate a correct ¥4, one has to invert the covariance matrix:
Xz = (Xm_xt)T V-1 (Xm_xt)
However, in many cases, the covariance matrix is poorly conditioned, which
makes calculating the inverse problematic

* Inverting a poorly conditioned matrix involves subtracting large, but very
similar numbers, leading to significant effects due to the machine precision

In any case, y? may not be the best figure of merit

- could improve ¥? by relaxing regularisation — larger errors, but also larger
residuals

+ |s there a better figure of merit?
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Which Method To Choose?

There i1s no "pest” method. Depends on the analysis.

Main questions:
How to choose regularization parameters?
After how many iterations to stop in the iterative Bayesian unfolding?

Danger: Regularization and early stopping in iterative unfolding introduce a bias

Don't forget:
it some cases it is most useful to publish folding matrix with the result
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