
Pricipal Component Analysis

Principal Component Analysis is a method to reduce a dimensionality
of the dataset, while preserving most of the information which it
carries. It can be seen then as a compression technique.

Key idea: some features are correlated, so their presence is redundant.

Solution: Rotate the feature space in such a way, that the new space
basis corresponds to new, uncorrelated features. Reduce the new
basis down to N vectors which account for as much of the variability
in the dataset as possible. Project dataset onto these vectors,
obtaining an approximated representation of N dimensions.
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Principal Component Analysis

For a toy example above, vectors e ′1 and e ′2 were chosen as a new basis.
We see, that vector e ′1 accounts for much higher variability than vector e ′2.
If we were to represent points from the dataset with a single number
(1D feature space), the value which is the most distinguishable for dataset
points is their projection onto vector e ′1.
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Silhouette Metric

Let dataset X be a set divided into n clusters Cj . For every element
xi ∈ Cj we will define:

a(xi ) =
1

1− |Cj |
∑
xk∈Cj

dist(xk , xi ),

b(xi ) = min
l 6=j

1

|Cl |
∑
xk∈Cl

dist(xk , xi ).

Then we can define a single element silhouette metric as:

s(xi ) =
b(xi )− a(xi )

max(a(xi ), b(xi ))
.

And total clustering metric:

a({Cj}) =
1

|X |
∑
xk∈X

s(xk).
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Silhouette Metric

a(xi ) =
1

1− |Cj |
∑
xk∈Cj

dist(xk , xi ), b(xi ) = min
l 6=j

1

|Cl |
∑
xk∈Cl

dist(xk , xi ).

s(xi ) =
b(xi )− a(xi )

max(a(xi ), b(xi ))
, a({Ci}) =

1

|X |
∑
xk∈X

s(xi ).

Interpretation:

For given element xi , the value a(xi ) tells us, how close it is to other
elements of the cluster.

The value b(xi ) indicates, what is the distance to the closest other
cluster.

With good clustering, clusters should be compact (which implies
small a(xi )) and distinct (which implies high b(xi )).

We define the metric s(xi ), which approaches 1 for a(xi )� b(xi ) and
−1 for a(xi )� b(xi ).
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Further reading

Theory:

http://people.duke.edu/ hpgavin/SystemID/References/Gillies-PCA-
notes.pdf

Example applications:

https://blog.insito.me/why-pca-and-genetics-are-a-match-made-in-
heaven-6042ea027cf0

https://www.aanda.org/articles/aa/abs/2013/05/aa20961-
12/aa20961-12.html

https://pdfs.semanticscholar.org/
30f1/ceb3139129f0a96b0638e999113f46b32e7d.pdf

Kacper Lasocha, Jagiellonian University, Institute of Physics. 5 / 5


