INTRODUCTION
TO DATA SCIENCE

This lecture is
based on course by E. Fox and C. Guestrin, Univ of Washington



Regression for predictions

Simple regression

Multiple regression

Accesing performance

Ridge regression

Feature selection and lasso regression

Nearest neighbor and kernel regression
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What is regression?
.

From features to predictions

Regression - Intelligence

Data

|np3tx; l I

features derived | earn x%y

from data relationship Predict y:

continuous “output” or
‘response’ to input
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Case study
=m

Predicting house prices

Regression - Intelligence

+ house

attributes (x) house size
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input output
sq.ft, y; = 9)
SQ.ft, y, = S)

Input vs output
* vy is quantity of interest

* assume y can be predicted from x
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Model: assume functional relationship

y A ?6{) »Essentially, all models are

wrong but some are usefull.”
mhp George Box, 1987.
bexween
X ond Y

Regression model.
fis PO te;

E[el 0 e-c.qw” “Qly

square feet (sq.ft) X 4
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Task 1:

A e
Which model to fit?
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Task 2:
B

For a given model f(x) estimate function ﬂx)

from data

T
y A q"b‘i‘: b&,‘p g&&;t
@w"ﬁ?%“ ) ¢ !
A

ﬁ‘SUﬂ'ﬂ- MOA'—{ 'Fb() iS
a qM{LﬁC‘ Fuﬂ {_,.'EIM

><‘l"

square feet (sq.ft.)
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How it works: baseline flow chart

Feature
extraction

Quality
metric
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SIMPLE LINEAR REGRESSION

15/10, 22/10 2019



Simple linear regression model

11|
y yi — W0+W1 Xi + Ei
_ \ ) :
)
O
=

'\\ :

f(x) = wo+w, X

square feet (sq.ft.) X
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The cost of using a given line

z Residual sum of squares (RSS)

RSS(w,,w,) =
(shouse 1 [W0+W15q-ft-house 1])2
T (shouse 2" [W0+W15q-ft-hou5e 2])2

T (Shouse 3 [WO+W15q'ft'house 3])2
+ ...[linclude all training houses]
’;f—:

—

square feet (sq.ft.) X

price (S)
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Find ,,best” line

V4 Minimize cost over all
possible Wy, W,

\

RSS(w,y=1. 1\%1_0 8)=¥
RSS(w,=0.98,w,=0.87)
——RSS(w(=0.97,w,=0.85}-4

—

square feet (sq.ft.) X

price (S)
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Predicting size of house you can afford

Estimated
parameter

flx) = W, + W, X

Regression model:
Yi = WotW X T &

Best quess of size of
house you can afford:

. A -
(g o+ 5
square feet (sq.ft.) "\K /
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Interpreting the coefficients

15|
Y1 y =+ Wy X
& | Predicted $ )
< of house with E Wo,
L:) slq.ft,:o when X=0
5 (Just land)
net very Meaningfu|

square feet (sq.ft.) X
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Interpreting the coefficients

predicted
change in $

|

1sq. ft.

—
square feet (sq.ft.) X

Magnitude of fit parameters
depend on the units of both

features and observations

$ﬂ°\ q.a.- 1000 8.4,
z %_\. W, + 106] sg.A.
— (o 01000 3g.K)
A
=W,
m;lgm] change in he oukputr

?u' unit d‘”‘ﬁﬁ LT
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ML algorithm: minimasing the cost

3D plot of RSS with tangent plane at minimum

g ™
[]*
1
2% Minimize function
[2 over all possible wy,w;
e L Tl » ] -
: 2 {500 ' - ’
5 o min Z(yi [Wo+w,xi])
FiE o [y Wo Wiji=1
| =200 ' '
~1500004000000% y o RSS(wg,wy) Is a function
o WQJJD 00001060tt” of 2 variables = g (Wo,w,)
; ,
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Convex/concave function

18|
A CONCAVE CONVEX
g(b)
' a(“QPn) HYw)
g(a)l--A _ ; ol
1
. 0 Y bW
NEITHER
owo¥® (
: ]
,':., S‘“’ :' 4 b
-
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Finding max/min analytically

19|
CONCAVE CONVEX
Pt
'j'” \/
< iy Example:
mox a(w) min 4()
NEITHER ’ o) = S-{w-A0L
) : <1, z0
%o o .w\\l-*‘;\‘.-\\p&-\"b %‘-;l) = \)- Z(UJ"_|0)| - |

——

rﬁ\ % Xu z “Ww+20
1 Set derivake = 0 )
§1 2w+ =0
- ) w= \0
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Finding the max via hill climbing
I

Sign of the derivative is saying me
what I want to do :move left or right
or stay where I am

How do we know whether to move
W o I"Itbh-l-.' or left 7 7
(1nc. or def. the value of m,)

whl\:, not w\uvﬁzcl

& W/L? *ﬂi—iﬁ%
X

itedon " glepsizé
4
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Finding the min via hill descent

When duivALive is POSVRVE, we
want- 10 decreote W

and when denivekive TS n&gﬁl’;w_,
We winte 42 InzaSe W

Algorithm:

while not conyerged
W(t+1) & W(’E)On dg
dw

wit
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Choosing the step size (stepsize schedule)

T =
Fixed Varying

Works well for strongly
convex functions

Common choices:

_ A

ﬂ{- I- ["l\- d

he \ Try not to decrease
AR —— n too fast

15/10, 22/10 2019



Convergence criteria
I

For convex functions,
optimum occurs when

3:33‘1)-.-.0

. Algorithm:
In practice, stop when ’
4 [w)\ .
1S while not converged
" &g);: wittl) & with - N dg
That will be ,,go0d enough” dW
value of ¢ depends on the data we are looking at wit

15/10, 22/10 2019



Moving to multiple dimensions
B

30 plot of RSS with tangent plane at minimum

2 4 (?.'H) -dimentional
' Vettor

o defvatwe
= s like a OFrivate
| [c[ 200 With fespect 0
=15000QQ0030®500000 . 53@@“‘*4@{) 'l:(mﬁn ﬂ." 0‘&\&‘
WO 1000 Varlagol« ag Congtant
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Gradient example
B

3D plot of RSE with tangent plane at minimum

_— g

7
[

" 5Rss g(W) = 5W0+]‘__QW0W1 + 2W12

4
3
Z
; %l 54 IBw,

800

100
2= 00, i
0,

2004
0
O e — /:200 54 [DUh
W

0 0 soontogppl Va(w) = D, + Y
o'l'
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Contour plots

Fﬂ'h" &\’L \ﬁw

3D plot of RSS with tangent plane at minimum

:l'_-'-" — Contour plot cormrespending te 3D plot of RES
RS
¢ o N
5RsS :\\ \\\:
: N
2
1
0
800
'600
400
________________ 20051
~13000090000005gap00 o

5000001000005

woO

3 (wo,w,)
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Gradient descent

'""'*-._H““ | . l \\\\Q\\\\ &g 'g‘
N \ Algorithm:
. while not converged

t+1 éw

nV g()
: : /ﬁ
e } -1 1 Convesgente:
11 [ "Vg(wl]ée

200 m

1000000 500000 0 500500
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Compute the gradient
I

N
RSS(Wo,Wy) = ¥ (y-[Wotwix])2
1=1

Putting it together:

VRSS(wy,w, ) =

—

-2 ;[yi — (Wo+w,x))]

-2 i} ly; = (wo+w x))lx;

Taking the derivative w.rt. wy
i (A (‘{au 'Iw.m.’(ﬂ)'- (—-l)

= —'Zi (4 ~Lwotwi ¥;7)
4%\

Taking the derivative w.r.t. w;,
N
2 20y beerwiXidY - (-Xy)
= =7 ‘JZ_ (\’A - [ wetw, KQ} Xs
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Approach 1: set gradient to O

- N
2y -y_ _ (WO +W1X-)' This method is called
— — | I’ .
VRSS(WO,Wl ) = S | ,,Closed form solution”
- 1= - '{ﬂ"
3D plot of RSS w_itt.h_tangentl plg@ aj: lrr.ﬂ.rnl.mum . toQ -tum /o‘!lg:::;#u/ vk]‘v:::f‘b
f8a N A _ e %
[/ — \‘:l T &) - wl;-¥1 L -
I s °EN ~ Nokte:
L 4 N
1 v A Zx—:; zy'}._o Ft]
,ac?g Q‘A ZY‘; X4 - wo 1 | 1 - ZX‘
600 ) ’___v A i a zy‘_‘ zx{ 4%
5;.:.;: =an =l Izﬂgﬂl ml = ZY x" N iyix;
A ' ii . 441
Zxd - BHTX 2y

-15000n&00a00_05g0a00
wp 50000035050 " .
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Approach 2: gradient descent
B

o0 A
nterpreting the gradient. Ao ()

/ / -\\ (W -
VRSS(w,,w, ) = 'Zz[yi - (Wotw,x) -2§[yi - §i{wow)

-2 Xj; ly; = (wotwx)Ix| |-2 f} ly; = Vilwo wi)lx

- b= 1= -
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Approach 2: gradient descent

31|
-2 21y, = §ilwo w,)

VRSS(w,,w, ) =

2
-22_[y; = Yilwg wilx

wmﬂ. not C"“Wﬁﬁd (—'D'l'n)

MR Y A N
wp&*') ¢ [ %ﬂ [Y{ - y-\. ng : Wllt)J.S
[wf”n < ["’?“\ +ln Lg‘[‘ii" il wswi)ly;

I overall, wndtr Prd?m‘v'ﬂ q; , then f_[\[;-l?.;] Is positive
s : . —> UJD s 30‘109 0 \ncrease
1008000 500000 0 503000 ﬁﬁ:‘ﬁf ihﬂh‘t’fbn be w‘J bw W‘ﬁ("‘l 51 x&
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Comparing the approaches
B

 For most ML problems,
cannot solve gradient = O

 Even if solving gradient = 0O
IS feasible, gradient descent
can be more efficient

« Gradient descent relies on
choosing stepsize and
convergence criteria
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Symmetric cost function

V¢ Residual sum of squares (RSS)

price (S)

Assumes error of overestimating
sales price is the same as
underestimating it

square feet (sq.ft.)
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Asymmetric cost functions

We can weight differently
y 0 positive and negative errors

different s [ut|on in RSS calculations.
M) mﬂ\ﬂﬂ? I

What if cost of listing house
too high has bigger cost?

Too high = no offers (5=0)
Too low = offers for lower S

square feet (sq.ft.) X
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What you can do now
I

Describe the input (features) and output (real-valued
predictions) of a regression model

Calculate a goodness-of-fit metric (e.g., RSS)

Estimate model parameters to minimize RSS using
gradient descent

Interpret estimated model parameters
Exploit the estimated model to form predictions
Discuss the possible influence of high leverage points

Describe intuitively how fitted line might change
when assuming different goodness-of-fit metrics
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MULTIPLE REGRESSION
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Multiple regression

Fit more complex
relationships than
just a line

Incorporate
more inputs

— Square feet
x[2] — # bathrooms
— # bedrooms
— Lot size

— Year built
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Polynomial regression

Model:
Vi = Wo + Wy Xi+ W5 X2 + ... + W, XP + g

NL—

treat as different features

feature 1 = 1 (constant) parameter 1 = w,
feature 2 = x parameter 2 = w;
feature 3 = x° parameter 3 = w,

feature p+1 = xP parameter p+1 = w,
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1 Trends In time series

log(Price)

12.5

13.5 14.0

13.0

12.0

[:.
~—
~—

y. = $ of i house sale ga

t. = month of i" house sale . i

= > W
N’ﬁ,rANN w n ::19;7401 1999-01 2001-01 2005;701 ‘ 2005-01 2007-01 2009-01 2011-01 2013-01

Month
AW
NMV'J\'
./") This trend can be modeled with
polynomial function.
1997-01 1999-01 2001-01 2003-01 2005-01 2007-01 2009-01 2011-01 2013-01

Other functional forms of one input

14.0

13.5

= P
ith

ric
ti

L
me

Month €= House sales recorded monthly
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Other functional forms of one input
o

1 Seasonality

1 Most houses listed in summer

14.0

13.5
|
[

s00d houses sell quickly

1
{
J

log(Price)

12.5
|

" Few homes listed in N
+

Transactions often leftover i
. or special circumstance

[
1997-01 1999-01 2001-01 2003-01 2005-01 2007-01 2009-01 2011-01 2013-01

Month

OV.

12.0
|

ry

11.5
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Example of detrending

I e
Model:

Vi =Wy + W, t+ w,sin(2Ttt, /12 - D) + €
\ Unknown phase/shift

Linear trend Seasonal component =
Sinusoid with period 12

(resets annually)

AVAVAVAVA

Trigonometric identity: sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
=2 sin(2ttt; / 12 - @) = sin(2T11t; / 12)cos(®P) - cos(2T1tt; / 12)sin(P)
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Example of detrending

2
Equivalently,
Vi = Wq + w, t+ w,sin(2Ttt, / 12)
+ ws cos(2Ttt; / 12) + €

Fit polynomial trend and
sinusoidal'seasonal component

feature 1 = 1 (constant) L
feature 2 =t
feature 3 — Sln(znt/lz) 5th order polynomial

feature 4 = cos(2T1Tt/12) i iialidit

N
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Other examples of seasonality

Weather modeling
(e.g., temperature, rainfall)

nd forecasting |
>t purchases) |

US Flu Rate

Y 100 200 300 aio 500 00

Week

Motion capture data ,

el
L I I SN | S oy L .
20 40 60 80 100 120 140 160 180 200
A timesteps
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Generic basic expansion
=

Model:
yi — WOhO(Xi) + Wl hl(Xi) + ... + WD hD(XI)+ S

D
§=0

feature 1 = h,(x)...often 1 (constant)
feature 2 = h(x)... e.g., X
feature 3 = h,(x)... e.g., x? or sin(2T1Tx/12)

feature D+1 = hy(x)... e.g., xP
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More realistic flow chart
B

—— X h)

1(X
— Feature W% y
extraction

—) S
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Incorporating multiple inputs

Only one bathroom,
not same as my

3 bathrooms

square feet (sq.ft.)ﬁ X
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Incorporating multiple inputs
2

f(x) = wy + wy sq.ft.

+ w, #bath
X[2]
Many possible inputs
- Square feet

— # bathrooms
- # bedrooms

- Lot size
square feet (sq.ft.) x[1] - Year built

15/10, 22/10 2019



Reading your brain

Whole collection of inputs

very sad very happy

Features are

brain region
Intensities
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General notation
B

Output: y & Scalar

Inputs: x = (x[1],x[2],..., x[d])
d-dim vector

Notational conventions:
x[j] = " input (scalar)
hi(x) = j*" feature (scalar)
X, = input of it" data point (vector)

xi[j] = j*" input of i" data point (scalar)
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Simple hyperplane
N

MOdel: Noiseterm/
V. = Wy + w, x[1] + ... + w,x[d] + €

feature 1 =1
feature 2 = x[1] ... e.q., sq. ft.
feature 3 = x[2] ... e.q., #bath

feature d+1 = x[d] ... e.qg., lot size
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More generally: D-dimensional curve

Model: More on notation
Yi= Vgo ol + W ylx) + ..+ wp gl + & # observations (x,y.) : N
_ Z W hj(xi) te z:cnputs x[j] : d |
i=0 eatures hj(x) D
feature I = hy(x) ... e.g. 1
feature 2 = hy(x) ... e.g., x[1] = sq. ft.
feature 3 = h,(x) ... €.q., x[2] = #bath

or, log(x[7]) x[2] = log(#bed) x #bath

feature D+1 = hp(x) ... some other function of x[1],..., x[d]
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Interpreting coefficients

Simple linear regression
Y1 0 = Wo +0Wx
o+l

— [
14
o R
o ] 0
1sq. ft.
—p"
square feet (sq.ft.) X
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Interpreting coefficients

Two _linear_featu res
fix

<

price (S)

square feet X[1]
(sq.ft.)
15/10, 22/10 2019



Interpreting coefficients

_ 54
Two linear features But...
) = W + Wilx[1]]+ \?P’X[Z] increasing #bathrooms
y = Wo i @ for fixed #sq.ft will make
. fix your bedrooms smaller
y and smaller.
5 . Think about interpretation.
8 p;}edicteld Si
sl o For fixed
‘ 1 bathroom # Sq.ﬂ'.!
——

=
# bathrooms X[2]
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Interpreting coefficients
R

Polynomial regression
= Wy + WiX +... @J o+ W XP

Then ...
can’t interpret
Can’t hold coefficients
other
features
fixed
square feet X
(sa.ft)
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Multiple linear features

.

fix | fix

n *
8 ¢ g )([2]
" — = U Q )
E’. "] @ "U ¢ ﬁ
o . Q,iis\
X
square feet X[1]

(sq.ft.)

i 4
p

fix

T Wy

X[d]
fix

Interpreting coefficients

But...

increasing #bedrooms

for fixed #sq.ft will make
your bedrooms smaller
and smaller.

You can end with negative
coefficient. Might not be so
if you removed #sq.ft from
the model.

Think about interpretation
in context of the model
you put in.
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Fitting in D-dimmensions

~ v
N h(x y

Look now at

S ! this block
y W
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Rewriting in vector notation
m

For observation |

2)
T (%) w
by & | = | . o +| &
) hahiy - hltw) (W
Wy b) , )
. = | 0w + W[ Q) w0y -+ -
' * (ki )wp té
hpb‘a) Wp
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Rewriting in matrix notation

For all observations together
f\U\ |

) €,
Ya ¢,
é
Y"' ’ Here is our
: ) ML algorithm
X
A ey
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Fitting in D-dimmensions

Look now at

this block

ML algorithm

Quality
metric

46 2015 Emily Fox & Carlos Guestrin Machine Learning Specialization

15/10, 22/10 2019



Cost function in D-dimmension
o

RSS in vector notation
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Cost function in D-dimmension
e

RSS in matrix notation
N

RSS(W) = Y _ (y:- h(x)Tw)>?
1=1
= (y=Hw)" (y-Hw)

.
Why? (part 1) 1, b .
3 I 5 Ve wa {f.,sﬁ'.‘,q*
= wp (h&"&l
(Y_\.lwb (Y ‘I) —[ﬂ-s le,]
A residuwel
\L
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Regression model for D-dimmension

_ 63|
RSS in matrix notation
N
RSS(W) =) [y~ hix)Tw)? &
7

= (y-Hw)'(y-Hw)

Why? (part 2) t"\/

residualy | residual, | residuals residualy

residualy

residual,

residuals

residualy

2 1
dual Tk residualy + -
(re ul + cesidual iy D
= = Z ﬁ.sidw.l;
& RIS (W)
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Regression model for D-dimmension

e |
Gradient of RSS

VRSS(w) = VI(y-Hw)T(y-Hw)]
= -2H(y-Hw)

Why? By analogy to 1D case:
d h.,,)(..,_.l-,...-) -
//‘

Sgn.\ﬂr.s
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Regression model for D-dimmension

e J
Approach 1: set gradient to zero

3D plot of RSS with tangent plane at minimum Closed fOrm SOIUHO"

VRSS(w) = -2HT(y-Hw) = 0

Solve for w:
Ay /WU =0
HTH:J = HTY
(Ray % - (W7
= (WY Wy
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Closed-form solution
7

This matrix might not be invertible.

|_|_|'
‘I’ M v "’“hw*"-‘
9 R iﬂln:izibiislf}sth
w
N {N A Complexity of inverse:
0(v)

This might not be CPU feasible.
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Regression model for D-dimmension

2 1 —
Approach 2: gradient descent

Contour plot carrespending to 3D plot of RSS

m"*‘“*--..,__‘_‘. N »Q«‘“ R N
AN

We initialise our solution somewhere

and then ...

while not converged
wtH) & wit - n\/ RSS(w)

|
-2H'(y-Hw)
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Gradient descent
I

N
RSS(W) =) {y;- hix)Tw)2
1=1 1
. > . ophol) -t BC)-- - wph (x))
:.Zﬂ(\"‘ " " Update to j™ feature weight:
v Y T \f ®
Partial with respecttow, Wj(t+1) <w - n(-lé.'"““*“‘!f{‘fﬂf ) )

\ Jilw®
i 2.(YR"WDLJ(K{)-W\LJY{)'*--"‘)PLJ&)) Y )
Az ) (_M)

N
=z '2.2_.\ hy ) (Ya- W) w)
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Regression model for D-dimmension

69
Interpreting elementwise

S
Y 2 bathrsms
i Upsate o Teawrugny,
§ Wj(t+1) é WJ(t) + 2n;(yl_yl(w(t)))
Q &{u 18

I undwestimating impack of Hloath (w; it 2
Lhen (Y:.- \}i(wl")) on ovaraqt
weighted by # bath  will be pesicive

square feet x[1] = w'f“‘) 7 WY (memase)
(sq.ft.)
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Summary of gradient descent
B

Extremely useful algorithm in several applications

wl

~200 5

Contour plot corresponding ta 30 plot
R

400

200

e e e ey ey e ,
~1000000 500000 ] 300000

“ “\‘ Whlle |VR SW(t | >W

INit W__O. (or randomly, or smartly =1

ln“

forj=0,..D

partialljl =- ZZh y.(w'))
w0 € w r] part|al[J]
t<et+1
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What you can do now
B

Describe polynomial regression
Detrend a time series using trend and seasonal components

Write a regression model using multiple inputs or features
thereof

Cast both polynomial regression and regression with multiple
inputs as regression with multiple features

Calculate a goodness-of-fit metric (e.g., RSS)

Estimate model parameters of a general multiple regression
model to minimize RSS:

- In closed form
- Using an iterative gradient descent algorithm

Interpret the coefficients of a non-featurized multiple
regression fit

Exploit the estimated model to form predictions

Explain applications of multiple regression beyond house
price modeling
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ACCESSING PERFORMANCE
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Assessing performance

Make predictions, get S, right??

Model + algorithm
-2 fitted function

Predictions
- decisions =2 outcome
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Assessing performance
B

Or, how much am | losing?

Example: Lost S due to inaccurate listing price
- Too low = low offers
- Too high = few lookers + no/low offers

How much am | losing compared to perfection?

Perfect predictions: Loss = 0
My predictions: Loss = 777
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‘Remember that all models are
wrong; the practical question is

MeCISU I‘ing IOSS how wr'ong do they have to be to

not be useful.” George Box, 1987.

Loss function: Cost of using w at x
L(y,fw(x)) wheny is true
\_'_l

a4
actua ~ . .
value f(x)= predicted value y
Symmetric loss
Examples: functions
(assuming loss for underpredicting = overpredicting)
Absolute error: L(y,f (X)) = |y-f(X)]

Squared error: Ly, f;(x )) = (y-f,(x))?
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Accessing the loss

Use training data

y A
O
%
)]
O
oy 0
W minimizes
RSS of
training data
>

square feet (sq.ft.) X
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Compute training error
I

1. Define a loss function L(y,f;(x))
— E.qg., squared error, absolute error,...

2. Training error
= avg. loss on houses In training set

=% 2= LW )
- AN

fit using training data
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Training error

I
Use squared error loss (y-f (x))?

A
y Convention is to take
O average here X

Training error (W) = 1/N *
[(Stram 1 1:w(sq ft. “train 1))2
+ Stram 2 -fy (Sq ft. “train 2))
+ (Stram 3 fw(sq ft. "train 3))

+ ... Include all
— . .
square feet (sq.ft.) X  training houses]
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Training error
2

More intuitive is to take RMSE, same units as y

'z
O
%
v Trainijpg error (W) =
= 1
Q N E‘fw(xl))z
=1
e RMSE -
N
1
square feet (sq.ft.) J ~ Z
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Training error vs. model complexity
o

Descrease as you increase
your model complexity.
Very intuitive why it is
like that.

Error

y‘[ .. Model complexity y]; 1
."" X I 4 . y
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Is training error a good measure?

Issue: Training error Is overly optimistic
because W was fit to training data
y A Is there something particularly wrong
N about having x, square feet ???

%

v

5 Small training error #> good predictions

/; unless training data includes everything you
might ever see
Xt
square feet (sq.ft.) X
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Generalisation (true) error
e

Really want estimate of loss
over all possible (#8,5) pairs

Lots of houses
INn neighborhood,
but not In dataset
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Distribution over house

_ 83 |
In our neiéhborhood, houses of what P;Puk{"'fy
# sq.ft. (18) are we likely to see? #sq.fi
........ |||I||||”|” ‘ | HH“"“IIHH....... >

square feet (sq.ft.)

For houses with a given £ sq.ft. (),
what house prices $ are we likely to see?

For fixed
# sq.ft.

price (S)
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Generalisation error definition
7

Really want estimate of loss
over all possible (#2,9) pairs
average over all possible

(X,y) pairs weighted by
how likely each is

Formally:

generalization error = Ex'!’y[L(y,fw(x))]

/

fit using training data
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Generalisation error (weighted with

opularit

price (S)

square feet (sq.ft.) X

vs model complexit

lo popularitw:
Ya f.

s
square feet (sqg.ft.) X
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Generalisation error vs model

complexit
mb

A However ... in contrast to the training
error, in practice we cannot really compute
true generalisation error. We don’t have
data on all possible houses in the area.

Error

Can't

compute!

S

Y4 . Model complexity y;l; 1
o x X
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Forming a test set

We want to approximate

Hold out some (@,S) that are

not used for fitting the model
Test set: proxy for
,»everything you might see”

Training set

hhhHAAA

generalisation error.

Test set
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Compute test error

Test error

= avg. loss on houses In test set

1
Niest Z L(yirfﬁ,(xi))

T 7 in test set \
# test points fit US'”

has never seen
test data!
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Training, true and test error vs. model

complexity. Notion of overfitting.
EH

\ Test error: noisy version due
to limited statistics.

Ut
of " S A

Error

Overfitting if:

W thee 2usts a mP 'w'
A estimote) params w’

/UO such that
@ {:ra.nmo Lol (W)

> £ kraining tiof (w')

Model complexity VY 0) trwe wrvor Lw)
} brwe el LUO.)

tranin 5 uror

X

15/10, 22/10 2019



Training /test splits

Training

Test
set

Test set

Training set
Too few = w poorly estimated Too few = test error bad approximation
of generalization error

Training set Test set

set

Typically, just enough test points to form a
reasonable estimate of generalization error

If this leaves too few for training, other
methods like cross validation (will see later...)
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Three sources of errors

BT
In forming predictions, there

are 3 sources of error:

1. Noise
2. Bias

3. Variance
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Data are inherently noisy

There is some true relatioship
between sq.ft and value of the
house, specific to the given house.

Y4 Yi = fw(true)(xi)_l@/
variance __)‘[ ¢ /

of noise
Irreducible —

error

We cannot reduce it by chosing
better model or procedure,
It is beyond our control.

2
square feet (sq.ft.) X
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Bias contribution
=n

This contribution we can control.

Assume we fit a constant function

N house N other house

sales (#%,9) sales (#,5)

|

w(trainl)

orice (S)
orice ($)

fﬁm(trainZ)

> >
square feet (sqg.ft.) X square feet (sq.ft.) X
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Bias contribution

94|
Over all possible size N training sets,

what do | expect my fit to be?

1:\.If‘s.»'(trair13) f .

orice ($)

Average over all

possible fits square feet (sqg.ft.)
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Bias contribution
N

_ |s our approach flexible
Bias(x) = f true( X) - fﬁ,( X) «— enough to capture f, e’
If not, error In predictions.

low complexity
9

price ($)

square feet (sq.ft.) X
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Variance contribution

How much do specific fits
vary from the expected fit?

fW(traiHB)

L)y \
(«D)]

@]

g

O

f\ﬁ!(traihl)

square feet (sqg.ft.) X
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Variance contribution

How much do specific fits
vary from the expected fit?

Can specific fits
vary widely?
V4 If so, erratic

fW(trainB) f

predictions

& W(trainl,
Q
O '
= low cogplexwy
f. | f_ low variance
W(train2) W
e——————————————————
square feet (sq.ft.) X
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Variance of high complexity models

L I —
Assume we fit a high-order polynomial

For each train remove

few random houses f
W(tpainl glle]g
Y4 l complexity
fv“\l(trainZ) - 7

high variance

% \
0]
Y .
S R fW
fv“v(trai n3
—
square feet (sq.ft.) X
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Bias of high complexity models

I .,
Assume we fit a high-order polynomial

For each train remove

few random houses f high
l (tfainl complexity
y¢ ¢ >
R {V(tl’aiHZ) - low bias /fw(true)
U
0]
U —
5 R fw fa
fv“v(trairpB >
S square feet (sq.ft.) X
square feet (sq.ft.) 4 X

High complexity models are very flexible,

pick better average trends.
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Bias —variance tradeoff
B

2 \ance
N xNo€

A “5€"

MSE = mean square error
Machine Learing
is all about this tradeoff

But....

TJust \like widh
Opnecalization eor
WL cannox cmeu_.te,

—
VE _:) Model complexity VI 1E bias and variance
— X X
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Errors vs amount of data

A
fﬂ “g%”"
¢/ “@Q@“?“nﬁ ety eV
\¢ ool
/L/ ¥ ke
5 l eccof
L &
N &)
b‘* nD.i%
, . . N .
# data points in xue (Binsnp £

training set
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The regression/ML workflow
N

1. Model selection
Often, need to choose tuning
parameters A controlling model
com plexity (e.g. degree of polynomial)

2. Model assessment
Having selected a model, assess
the generalization error
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Hypothetical implementation
N

Training set Test set

1. Model selection

For each considered model complexity A :

. Estimate parameters w, on training data
Ii.  Assess performance of w, on test data
. Choose A" to be A with lowest test error

2. Model assessment

Compute test error of w,. (fitted model for selected
complexity A") to approx. generalization error
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Hypothetical implementation
N

Training set Test set

1. Model selection

For each considered model complexity A :

. Estimate parameters w, on training data
Ii.  Assess performance of w, on test data
. Choose A" to be A with lowest test error

W
2. Model assessment Overly optimistic!

Compute test error of w,. (fitted model for selected
complexity A) to approx. generalization error
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Hypothetical implementation
N

Training set Test set

Issue: Just like fitting w and assessing its
performance both on training data
A was selected to minimize test error

(i.e., \" was fit on test data)

* |f test data is not representative of the whole
world, then w,. will typically perform worse than
test error indicates
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Practical implementation
N

Validation Test
set set

Training set

Solution: Create two "test” sets!

1. Select A" such that w,. minimizes error on
validation set

2. Approximate generalization error of W, . using
test set
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Practical implementation

Validation Test
set set

Training set

4;
fit W, T
test performance
of W, to select A"
assess
generalization
error of w, .
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Typical splits

Validation Test
set set

Tralning set
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What you can do now
n, [

« Describe what a loss function is and give examples

- Contrast training, generalization, and test error

« Compute training and test error given a loss function
» Discuss issue of assessing performance on training set
* Describe tradeoffs in forming training/test splits

« List and interpret the 3 sources of avg. prediction error
- Irreducible error, bias, and variance

« Discuss issue of selecting model complexity on test data
and then using test error to assess generalization error

« Motivate use of a validation set for selecting tuning
parameters (e.g., model complexity)

» Describe overall regression workflow
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RIDGE REGRESSION
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Flexibility of high-order polynomials
L

— 2
Yi = Wp + W X;+ Wy Xi© + .0+ Wp)(ip-l— &

<
>
—

price ($)
.

square feet (sq.ft.) X

Symptoms for overfitting: often associated with very large

n

value of estimated parameters W
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Overfitting with many features
TN

Not unique to polynomial regression,
but also if lots of inputs (d large)

- Square feet

Or, generically, - # bathrooms
lots of features (D large) - # bedrooms

- Lot size
Yi= ; Wi hj(xi) T & - Year built
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How does # of observations influence

overfitting?
m_

Few observations (N small)
= rapidly overfit as model complexity increases

Many observations (N very large)
- harder to overfit

Yy Yy o/ ¥
% f. o s
g " '
o ol
> >
square feet (sq.ft.) \X square feet (sq.ft.) X
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How does # of inputs influence
overfitting?

Linput (e.qg., sq.ft):

Data must include representative examples of
all possible (sq.ft., S) pairs to avoid overfitting

>

price (S) <<

square feet (sq.ft.)
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How does # of inputs influence

overfitting?
m_

d inputs (e.qg., sq.ft, #bath, #bed, lot size, year,...):

Data must include examples of all possible
(sq.ft., #bath, #bed, lot size, year,...., S) combos

to avoid overfitting

>

price (S) ‘<
x,
o

square feet (sq.ft.) X[1]
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Lets improve quality metric blok

@]TF-1114Y
metric
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Desire total cost format
w7 f
Want to balance:
. How well function fits data
II. Magnitude of coefficients

tReasse quality of fit
Total cost = & ~.

measure of fit + measure of magnitude
f  of coefficients
small # = good fit to T
training data small # = not overfit

15/10, 22/10 2019



Measure of fit to training data

N
% ’i;l rf 4. v‘\uwu!nms
.é = E’y i(W))2

1=1

small RSS —> mModed bitting ‘raining

daxa well
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Measure of magnitude of regression

coefficients
T |

What summary # Is indicative of
size of regression coefficients?

But ... the coefficients
are very large

- SUM?  Wes 4,520,300 w,=-1,605283 e
Wy 4 W, = smal| &

- sumof absolute value? 5 |
el s s twphs Z 1wyl & Hll, - Lomen - disus men s
J*0

neve Module,

- Sum of squares (L, norm)
Wy + W + ...-\-UU":ZW --“W“ L norm .. Vbﬂu:o@’cts |

Wiod e
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Consider specific total cost
L [

Total cost =
measure of fit + measure of magnitude

‘_S;ﬁﬁoefﬁuerts
R R
2

Iwll;

15/10, 22/10 2019



Consider resulting objectives
B

What If W selected to minimize - ifelol-Re=le le=3 (018

RSS(w) + )\HWHZZ (a.k.a L, reqularization)

N tuning parameter = balance of fit and magnitude

If A=0:

reduiss s marizing RES (), o behore (614 solwion) 3 W' Seage squaes

If A=o0;

%or @lwﬁons where &:{:0 y hen okl cosb T o0 )
¢ 020, then il oxk = RI(0)  — solwkion is W=D

X in between: a0 2 Lol 10
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Ridge regression: bias-variance tradeoff
B

Large A:
high bias, low variance
SORMUBOCESION | essence, A
controls model
Small A: complexity

low Dbias, high variance

(e.g., standard least squares (RSS) fit of
high-order polynomial for A=0)
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Ridge regression: coefficients path

What happens if we refit our high-order
polynomial, but now using ridge regression?

_ )i —o— Beflhrooms
— . —o— bathroomg
= S50 —o— sqft_livin features
S g || o - St
N S —~ floors scaled to
4 | —=— yr_built 1 it
yr _renova unit norm
C 38 sweet spot waterfront
QL 8-
O
J—
A . o -
)
o
O 8
o
O —
(=] I I I I
i »0000 100000 150000 200000
w
N hy A >
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Flow chart

O A
n h(x y :
¥-/ T Model for all N observations together
y W
+

T LT
I

LTI en [T
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Ridge regression: cost in matrix notation

S
In matrix form, ridge regression cost is:

RSS(wW) + Allwlls
= (y-Hw)T(y-Hw) + A\wTw

2
wll, = w2 + w2 + w, 2 + .+ wp?

% "| u'lv - wp IIJl
W,
Wy,

ww

I
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Gradient of ridge regresion cost
N

v[RSS(W) + 7\||w||22] =v[(y—Hw)T(y—Hw) + AwTw]

=‘M—HW)T(y— Hw)] +;)\ lWVTW
| Y
-2HT(y-Hw) 2W

Why? By analogy to 1d case...

w'w analogous to w? and derivative of w2=2w
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Ridge regression: closed-form solution

3D plot of RSS with tangent plane at minimum

.‘?.
r.ss
+1

Vcostiw) = -ZHT(y-Hw) +2\w= 0
L Solve forfur HTHW 4 A Tw =0
500 H‘HQ*)I\T_;:HTY
M (FHeATY @ = HYy
Ao (T T H’ry

S i e
- - -
-------...
- iy iy

~15000080000005 00
0 0 50000010005t°
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Ridge regression: gradient descent

+2 W-(t.)_]- ‘ Nt
J i, omee”
M:.md- fon ¥ ot »V
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Summary of ridge regression algorithm
BT

NIt W(1)=O (or randomly, or smartly), t=1
while || VRSS(w?)[| > €

for |=0,...,.D

partial[j] =-2 @x- (y;- ¥ (w't))
w, & (1-2nN)w, Y — n partial]]
tet+1
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How to choose A

N
If sufficient amount of data...

Validation Test
set set

ﬁt*\i‘v;\ T |

test performance |
of W, to select A’
assess
generalization
error of w,,-

Training set
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How to choose A

IR e
K-fold cross validation

error,(A) W,

For k=1,...,K
1. Estimate w,® on the training blocks
2. Compute error on validation block: error,(A)
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How to choose A
T
K-fold cross validation

)

error,(\) Wy@

For k=1,...,K
1. Estimate w, ™ on the training blocks
2. Compute error on validation block: error,(A)
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How to choose A

e [
K-fold cross validation

errors(A)

1. Estimate w, ¥ on the training blocks
2. Compute error on validation block: error, (A)

K
Compute average error: CV(A) =% > error (N
k=1
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How to choose A

I e
K-fold cross validation

Valid

set

Repeat procedure for each choice of A
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What value of K

Formally, the best approximation OCCUrs
for validation sets of size 1 (

leave-one-out
Cross validation

Computationally intensive

— requires computing N fits of model per A

-fol V
Joically, K5 or 10
10-fold CV

15/10, 22/10 2019




How to handle the intercept

sy
Recall multiple regression model

Model:

D |
j=0

feature 1 = hy(x)...often 1 (constant)
feature 2 = h,(x)... e.g., x[1]
feature 3 = h,(x)... e.g., x[2]

feature D+1 = hy(x)... e.g., x[d]
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Do we penalize intercept?

Standard ridge regression cost:

2
RSS(w) + A [lwl|,

N strength of penalty

Encourages intercept w, to also be small

Do we want a small intercept?
Conceptually, not indicative of overfitting...

15/10, 22/10 2019



Do we penalize intercept?

Option 1: don’t penalize intercept
Modified ridge regression cost:

2
RSS(Wo W) + Mw, .5

Option 2: Center data first

If data are first centered about O, then
favoring small intercept not so worrisome

Step 1: Transform y to have O mean

Step 2: Run ridge regression as normal
(closed-form or gradient algorithms)

15/10, 22/10 2019



What you can do now

« Describe what happens to magnitude of estimated
coefficients when model is overfit

« Motivate form of ridge regression cost function

 Describe what happens to estimated coefficients of
ridge regression as tuning parameter A is varied

* |nterpret coefficient path plot

« Estimate ridge regression parameters:
- In closed form
- Using an iterative gradient descent algorithm

 Implement K-fold cross validation to select the
ridge regression tuning parameter A
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FEATURES SELECTION

&
LASSO REGRESSION
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Why features selection?

ey
Efficiency:
- If size(w) = 100B, each prediction is expensive
- If W, computation only depends on # of non-zeros

\many Zeros

yi =Z Wj hj(Xi)
w;#0

Interpretability:

- Which features are relevant for prediction?
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Sparcity

Housing application

Lot size

Single Family

Year built

Last sold price

Last sale price/sqft
Finished sqgft
Unfinished sqgft
Finished basement sqft
# floors

Flooring types
Parking type
Parking amount
Cooling

Heating

Exterior materials
Roof type
Structure style

Dishwasher
Garbage disposal
Microwave
Range / Oven
Refrigerator
Washer

Dryer

Laundry location
Heating type
Jetted Tub

Deck

Fenced Yard
Lawn

Garden
Sprinkler System
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Sparcity
R

R'eadin-g your mind

very sad very happy

Activity in which
brain regions

can predict
happiness?
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Find best model of size: O

e e e
= ot § s
.‘.L% :‘,’w“" N0 (ealoress # bedroom
¥a) ﬂ\#b"\ ‘il’ é.:.
ad T
neise

# of features
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Find best model of size: 1

RSS(w)

o bese f’:’:‘: '::{”:lm_ fume - # bedrooms

- - # bathrooms

- sq.ft. lot
- floors

- year built

5~ Yearrenovated

1 - waterfront

# of features
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Find best model of size: 2

Note: not necessarily nested!
moA.J of siee k

A (‘h M‘-L not mn*ﬁlﬂ

© 8

- | - # bedrooms

- # bathrooms

€ - sq.ft. living

- sq.ft. lot

- floors

- year built
> - year renovated

0 1 2 - waterfront

)

<

oo @

RSS(

# of features
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Find best model of size: N

RSS(wW)

Which model complexity to choose?

. Certainly not that with the smalest training error!

# bedrooms

# bathrooms
sq.ft. living
sg.ft. lot

floors

year built

- year renovated
- waterfront

# of features
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Choosing model complexity
N

Option 1: Assess on validation set
Option 2: Cross validation

Option 3+: Other metrics for penalizing
model complexity like BIC...
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Complexity of ,,all subsets”

L =
How many models were evaluated?

m!l

ey
- each indexed by features included r:°~“~‘ * 5
Pl ...
A 28 = 256
Yi=§ 000..000] 2% = 1,073,741,824
Y = Wohglx) + & 100..000] 21000 =1,071509 x 10%0
| . 21008 = HUGE!!!
Yi = wihy(x) + € 010..000] 2D‘H
: : -
Y, = Wohg(x) + Wi hy(x) + € 110..000] _
e Typically,
Y, = Woholk) + i hyl) o+ Wohole+ g 1111 111] computationally
1202~ Infeasible
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Greedy algorithm

N
Forward stepwise algorithm

1. Pick a dictionary of features {h,(x),....n )}
— e.g., polynomials for linear regression

2. Greedy heuristic:

I.  Start with empty set of features F, = &
(or simple set, like just hy(x)=1 =2 y.= w,+&)

ii. Fit model using current feature set F, to get w¥

. Select next best feature hj*(x)

- e.g. hx) resulting in lowest training error
when learning with F, + {h,(x)}

v. Setf,., €& F + {hj*(x)}
V. Recurse

15/10, 22/10 2019



Visualizing greedy algorithm

)

S # bedrooms

# bathrooms
sq.ft. living
sq.ft. lot

- floors

- year built

- year renovated

- waterfront

RSS(

# of features
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Visualizing greedy algorithm

RSS(W)

# bedrooms
# bathrooms

¢ 2
P
to
2 "
disoan @ o
oL@ O
i 00
Qi
©

o sq.ft. living
I sq.ft. lot
\ floors
WAS o \ - year built
v - year renovated
E ‘ 5 4 > 6 78 - waterfront

# of features

15/10, 22/10 2019



Visualizing greedy algorithm

® Nofice... if is subopfimal .
i Adding next best thing, fit is nested now.

g.

| - sq.ft. living ]

- sqg.ft. lot
- floors

RSS(W)
X 0

o 1 2 3 4 5 6 /7 8 - waterfront
# of features
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Visualizing greedy algorithm

error never increases

_I_
solutions eventually meet

<

# bedrooms

# bathrooms
sq.ft. living
sq.ft. lot

floors

year built

year renovated
waterfront

RSS(

# of features
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When do we stop?
NER

When training error is low enough?

When test error is low enough?

No!

Use validation set or cross validation!
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Complexity of forward stepwise

How many models were evaluated?

- Iststep, D models

- 2"dstep, D-1 models (add 1 feature out of D-1 possible)
- 3dstep, D-2 models (add 1 feature out of D-2 possible)

How many steps?
- Depends
- At most D steps (to full model)

O(D?) << 2P

for large D
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Other greedy algorithms

Instead of starting from simple model
and always growing...

Backward stepwise:

Start with full model and iteratively remove
features least useful to fit

Combining forward and backward steps:

In forward algorithm, insert steps to remove
features no longer as important

Lots of other variants, too.
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Using regularisation for features selection
sy

Instead of searching over a discrete set of
solutions, can we use reqularization?

- Start with full model (all possible features)

- "Shrink” some coefficients exactly to O
* |.e., knock out certain features

- Non-zero coefficients indicate “selected” features
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Thresholding ridge coefficients?
BN

Why don't we just set small ridge coefficients to 07

®® ) o o \3‘\& ’@’b 006 QS& !Q,'(\Q' e O{\K
X SN\ G CHE\ PSRN R P S S A
& x\ \ & C;O" @,’bi o \6‘3 Qe} ’{\e’ c;'\\o ,&‘@'
% \\]@’b \%CJ C

15/10, 22/10 2019



Thresholding ridge coefficients?
N

Selected features for a given threshold value

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

) <
o(da o((& @i@g Q&_\D o > \0\)"\‘“ ° R 905& ,b!ézu‘:‘q \3@(‘% Q o™
S\O N CREPT e S \ o {\Oq \E%Q R 2
0GB 3@ @ & %7 G
X %O 2 A O
QF’ \o (&
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Thresholding ridge coefficients?
T

Let's look at two related features...

""""""" L'_'_'_'lf_'_'_'.l'_f_f_' B T

0 T e

Nothing measuring bathrooms was included!
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Thresholding ridge coefficients?
BTN

If only one of the features had been included...

@ O 0 O ed (F & (O &
3
Remembper:

this is Iinear model If we assume thart #showers = #bathrooms and remove one of them
from the model, coefficients will sum up.

15/10, 22/10 2019



Thresholding ridge coefficients?
N

Would have included bathrooms in selected model

Can reqgularization lead directly to sparsity?
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Try this cost instead of ridge ...
N

Total cost =
measure of fit + A measure of magnitude

——ofbefficients
RSS(W) ‘ i l

[[wlli=Iwol+...+|wp]
LN

: Leads to
Lasso regression sparse

(a.k.a. L, reqularized regression) gEeUsN
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Lasso regression

Just like ridge regression, solution is
governed by a continuous parameter A

RSS(w) + Allwl],
N tuning parameter = balance of fit and sEarsitx
|f A=O: ﬁﬂoﬂ a’“ (umz.aulo.f‘i%-eg\ Solwl:‘;on) |
fA=oo; ™20

f\in between: ¢ 2]l £ W°],

15/10, 22/10 2019



Coefficient path: ridge

4 9 —— Ee?hrooms
— o —=— bathroomg
S —= sqft_livin
‘B g 4 — ﬁgﬁ_lot J
—— floors
_ltg &~ @ —=— yr_built
o yr_renovat
- o . — waterfront
S W
L 8 t R
p— | ~o \ .
O 7 ey e ¥
N O—aa -~ o e s &
| - o A -" = - —
S
O 8
o
S | «
o | | | | |
T 0 50000 100000 150000 200000

A
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Coefficient path: lasso

167

| —— bedrooms
‘— o —e— ba]:[_thrloomc
o —=— sqft_living
‘; S — —— sqft_lot
o —— floors
w s TS —= yr_built
N TS I _renovat
C 8 e —e— uyvaterfront
L 3
= S
QO |
J—
Jg— o
5
O 8
o
18_ B I I ]
| 100000 150000 200000

A
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Visualising ridge cost in 2D
s

v, th,} ¥ oSS tuUMS = cangtant

Lo * Wy
é\{l’ ,pﬁ* w

7 Gesures Gor yiswalizodion sake

ho()(i)—Wlhl(}(i))2 + A (W02+W12)
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Visualising ridge cost in 2D

el
cire\e

RSS(W) + MW = D (y-wohgx)-w;hy(x))2 +

i=1 -

Wa + w? = constant
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Visualising ridge cost in 2D

for a specific A \““""'Q*;
ges and llwlly

RSS(w)

2
+ Allwll3

=Z(yi—wgh (%.)-w,h,(x ))2 + A (W02+W1 )

1=1
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Visualising lasso cost in 2D

RS contowss -Qaf'

losso wre exactly
he same a3
those Cor f"?tlﬁﬂ',-

171
S Co
5
b
\
LY
= \\
o Y \\\“---..._‘___
i \
.
10 x
10 -5

RSS(w) + Allw||, =

Z(yi_woho(xi)_wlhl(xi))2 + A (|W0|+|W1|)
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Visualising lasso cost in 2D

/ d .

10 //

5///

|

N

N

RSS(W) + Allwll; = D (y-woholx)-w hy(x))2 +
1=1
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Visualising lasso cost in 2D

for o SP‘;F:c value of ,\/

Y

e/’\')’\?‘ﬂs——/ﬁ We are getting sparce solution,
s the W0=0
N
RSS(W) + Awll; =1 (y-woho ) -wih, ()2 + A (Jwe|+w )
1=1
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How we optimise for objective

To solve for w, previously took gradient
of total cost objective and either:
1) Derived closed-form solution

2) Used in gradient descent algorithm
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Optimise for lasso objective

Lasso total cost: RSS(w) + )\Hle

2 1o3;)
Issues: v

1) What's the derivative of |w[?

;)
r a;qnhﬂ.
&iﬁdEH\V__ el %\ J’.pqc,
bt T N
A\ ) }y gradients - subgradients

2) Even if we could compute derivative, no closed-form solution

can use subgradient descent
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Coordinate descent

176

Goal: Minimize some function g
O §(u,w,, . /Wp)

m\Ln 5&»)

wﬂ %"‘“

Often, hard to find minimum for all coordinates, but easy for each coordinate

Coordinate descent:

Initialize w = 0 (or smartly...) "
: G e
while not converged \‘.tw‘f,u-‘t;__ﬁ.,w“

pick a coordinate | m
A

“ v A A A
A %ﬂ 5[ Wy, -7 W1, O ""j*‘r‘v\“o)
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Comments on coordinate descent

How do we pick next coordinate?

- Atrandom (“random” or “stochastic” coordinate descent),
round robin, ...

No stepsize to choose!

Super useful approach for many problems

- Converges to optimum in some cases
(e.g., “strongly convex”)

- Converges for lasso objective
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Normalizing features

&.-Q &.\‘ xﬂ' \,-Q
<<e?’ Qe‘b <(€:b - <<®’b

Normalizing features

Scale training columns (not rows!)
as:

. Normalizer:
>_h(x)?

Apply same training scale factors
to test data:

h.(x,) Normalizer:

N .
apply to/ \/Zhj(xi)z % summing over
i=1

test point training points




Optimising least squares objective

One coordinate at a time

N
D
RSS(w) Z(nyth,(x,))z
i=1 J=0 —-—*narmotlt{;ﬂs
Fix all coordinates w_jand take partial w.r.t. w; «
‘[_/-w.\\ Wy For k-h (3 At’xf;n rdinote

- RSSw) = -2Zh 0y - ZthJ )

= -—22!:0!)(% Zuh 00 - wh)) g 8K b

Z ' =1
- -'12-"-‘;0‘3(9* %whk PRY .m.w% (x\
4= 3

—

- .

Ps
= —-ZPJ r2 h
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Optimising least squares objective

Set partial = O and solve

0
W\JJ_ RSS(w) = _ZEJ +/éwj =0
;= 1)
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Coordinate descent for least squares regression

Initialize w = O (or smartly...)
while not converged
forj=0,1,...D b i

without feature |

|
1

N
2_hyx)ly; - (W)

compute: pj

set Wj = Pj prediction
r\ without feature |

Measure of the correlation between W,
and the residual without this feature.
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How to access convergence
132

Initialize w = 0 (or smartly...)

while not converged
forj=0,1,...D

compute: ZHJ = ¥i(Ww)))

p,t A2 ifp,<-A2
set: W, = 0 ifpjin[-A/2,A/2]
“N2ifp > A2
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Soft thresholding

ez |
p; + A/2 if p;<-A/2

W, 0 if p;in [-A/2, A/2]
p, — N2 if p; > A/2
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Convergence criteria
N

When to stop?

For convex problems, will
start to take smaller and
smaller steps

Measure size of steps
taken in a full loop over
all features

- stop when max step < €
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Other lasso solvers
T

Classically: Least angle regression (LARS) [Efron et al. '04]

Then: Coordinate descent algorithm
[Fu ‘98, Friedman, Hastie, & Tibshirani ‘08|

Now:
« Parallel CD (e.qg., Shotgun, [Bradley et al. ‘11])

» Other parallel learning approaches for linear models
- Parallel stochastic gradient descent (SGD) (e.g., Hogwild! [Niu et al. 11])
- Parallel independent solutions then averaging [Zhang et al. "12]

* Alternating directions method of multipliers (ADMM) [Boyd et al. '11]

15/10, 22/10 2019



How do we chose A

Cas |
If sufficient amount of data...

Validation Test
set set

ﬁtt;‘u)\ T [

test performance
of W, to select A
assess
generalization
error of W,

Training set
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How do we chose A

K-fold cross validation

W, ) errors(A)

For k=1,...,K
1. Estimate W, on the training blocks
2. Compute error on validation block: errork()\)

Compute average error: CV(A) == Z error, (N
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How do we chose A

Choosing A via cross validation

Cross validation is choosing the A that
provides best predictive accuracy

Tends to favor less sparse solutions, and
thus smaller A, than optimal choice for
feature selection

c.f., "Machine Learning: A Probabilistic Perspective”,
Murphy, 2012 for further discussion
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Impact of feature selection and lasso
B

Lasso has changed machine learning,
statistics, & electrical engineering

But, for feature selection in general, be careful
about interpreting selected features

- selection only considers features included

- sensitive to correlations between features

- result depends on algorithm used

- there are theoretical guarantees for lasso under
certain conditions
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What you can do now
N

» Perform feature selection using “all subsets” and "forward
stepwise” algorithms

« Analyze computational costs of these algorithms
« Contrast greedy and optimal algorithms
- Formulate lasso objective

« Describe what happens to estimated lasso coefficients as
tuning parameter A is varied

* Interpret lasso coefficient path plot
« Contrast ridge and lasso regression
» Describe geometrically why L1 penalty leads to sparsity

- Estimate lasso regression parameters using an iterative
coordinate descent algorithm

* |Implement K-fold cross validation to select lasso tuning
parameter A
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NONPARAMETRIC

REGRESSION
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Fit globaly vs fit locally

o2y
Parametric models
Below ...
y4 1(x) is noft really
a polynomial function

price ($)

<

finear consfant

4

=<V

sq.ft.

<V

sq.ft.

@
@
@
g '\
Y4 a i
quadratic
sq.ft. :X

price ($)

<V

sq.ft.

sq.ft. X
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What alternative do we have?
B

If we:

- Want to allow flexibility in f(x) having
local structure

— Don't want to infer “structural breaks”

What's a simple option we have?
- Assuming we have plenty of data...
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Nearest Neighbor & Kernel Regression

(honparametric approach)

]
YA

price (S)

Simple implementation, flexibility increases as we have more data)

2
&
‘;{9
e.x
o & -
A el o
@ o
Q‘(:Qépq
o
© Here, this is the
9 & closest datapoint
LSO
5O I
L&
L 1
1
house size X
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Fit locally to each data point

195
Predicted value = "closest” v,
1 nearest neighbor
Y (1-NN)
regression
Uy A 5 o
- @fb O e,&
O X ".\‘*—
O & Lo [
— hEd O y Here, this is
Q. k ‘\ & — 6 the c’losest
q‘ﬂ? §§ datapoint
Lo 88
(RN
2 >
sq.ft. X
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What people do naturally...
Cise

Real estate agent assesses value by
finding sale of most similar house

S = 850k

'\
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1-NN regression more formally

197

Dataset of (1,5) pairs: (X Y1), (%5,Y5)... (XY

e ————————

Query point: X, « 4= §7

il }’}m“.;\hﬂ“"
1. Find "closest” x, in dataset

Xy — M distence(Xi,Xg)  yA Transition point

. ——
e,
b . o
N ,;o\"eg}
Lo &.& \?‘é \C"J &
~
: o

2. Predlct

Here, this is
the closest
datapoint

-<
-
Y
z
zT -
S
2L
%*
price (S)
&@'
Ay Yo
o*c;{o%
%0,
A,
o
SG'S?‘ -
¢ 3
I
"“?o
<>
—a
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Visualizing 1-NN in multiple dimensions

e
, . SR

U “1 Voronoi tesselation
(or diagram):

; N - X clser +o X,
O e
. Afr e N ’ X, fr it
N, 0“""‘Emontainingldatapoint ’
| - Defined such that any
X inregion is “closest’

to region’s datapoint

Don't explicitly form!
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Distance metrics: Notion of ,,closest”
N

In 1D, just Euclidean distance:

distance(x,x,) = [x-X,|

In multiple dimensions:
- can define many interesting distance functions

- most straightforwardly, might want to weight
different dimensions differently
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Weighting housing inputs
oo

Some inputs are more relevant than others

# bedrooms
# bathrooms
sq.ft. living
sq.ft. lot

floors

year built

year renovated
waterfront
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Scaled Euclidan distance

2y
Formally, this is achieved via

distance(x; x,) =
Vaig[l-x,[1)2 + .. + a(x[d]-x,[d])?

welight on each input
(defining relative importance)

Other example distance metrics:

— Mahalanobis, rank-based, correlation-based,
cosine similarity, Manhattan, Hamming, ...
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Different distance metrics
3

Euclidean distance Manhattan distance

- L]
‘ ‘
L] L]

15/10, 22/10 2019



Performing 1-NN search

* Query house:

e Dataset:

» Specify: Distance metric
* Output: Most similar house
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1-NN algorithm
I

closest house

Initialize Dist2NN = oo, & = @
Fori=1,2,..,N /qg
Compute: d = distanc:c:—z(ﬁi ,ﬁq)
If O < Dist2ZNN

set  #%

set Dist2ZNN = 0
Return most similar house @/

closest house
to query house

i
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1-NN in practice
e [

Nearest Neighbors Kernel (K = 1)
T T T

Nearest Neighbors Kernel (K= 1) 14
14 T T T
121

1.2+ -

| I-NN fit
08
06

Fit looks good for data Not great at interpolating
04 .
- ; over large regions...
dense in x and low noise
02r
) ) ) ) ) ) ) ) ) 00 0‘1 0‘2 DI3 0‘4 0‘.5 OIG 0‘7 0‘8 0‘9 1
UU 01 0z 03 04 05 06 07 08 09 1

Nearest Neighbors Kemel (K = 1)
T T T

Fits can look quite wild...
Overfitting?

1-NN sensitive to noise in the data

oo ez e  os w06 o7 o5 o5 1 15/10, 22/10 2019



Get more ,,comps”

More reliable estimate if you base estimate

off of a larger set of comparable

gﬁ $ = 850k
|

NOomes
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K-NN regression more formally

Query point: x,

1. Find k closest x: in dataset
(xmﬂux'lﬂ; XNNk') ‘Su.bl'\ -Hf\ﬁ-* -For a..ny xi néx N nearest hﬂﬁl\w S&

diStW\Cl'( x‘l-; ﬂD Z d S*'MMCXNN;, xq,)

2. Predict
1y’ l;fvw Fusne+ Yy

¥
- |
gt
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K-NN more formally

 Query house:

e Dataset:

* Output: Most similar houses

- Specify: Distance metric g;‘ ‘

L em—
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K-NN algorithm
T

sort first k houses
by distance to query house

Initialize Dist2KNN = sort(5,,...,8,) < list of sorted distances
= SO@ _____ @1 @ <— list of sorted houses
For i= |'(+1 N «— Query house

Compute 0= dlstance(@,,@ ﬁ

If & < Dist2kNN|K]
find j such that O > Dist2kNNIJj-1] but d < Dist2kNN{j]
remove furthest house and shift queue:
G+ = ki
,s‘.,{",é Dist2kNN[j+1:k] = Dist2kKNN|[j:k-1]
et Dist2kNNJj] = & and

. . closest houses 4
Return k most similar houses @*“ to query house 5-1-& &-
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K-NN in practice
o[

Nearest Neighbors Kernel (K = 30)

Much more reasonable fit
INn the presence of noise

Boundary & sparse region
Issues
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K-NN in practice
N

Mearest Neighbors Kernel (K = 30)

15F O o © .

Discontinuities!
Neighbor either in or out
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Issues with discontinuities
3

Overall predictive accuracy might be okay,
but...

For example, in housing application:

- |If you are a buyer or seller, this matters

- Can be a jJump In estimated value of house going just
from 2640 sqg.ft. to 2641 sq.ft.

- Don't really believe this type of fit
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