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Regression for predictions 
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 Simple regression 

 Multiple regression 

 Accesing performance 

 Ridge regression 

 Feature selection and lasso regression 

 Nearest neighbor and kernel regression 

 

 

 



What is regression? 
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Case study 
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Data 
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Input vs output 

• y is quantity of interest 

• assume y can be predicted from x 



Model: assume functional relationship 
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 „Essentially, all models are  

wrong but some are usefull.” 

George Box, 1987. 



Task 1: 
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Which model to fit? 



Task 2:  
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For a given model f(x) estimate function  

from data  



How it works: baseline flow chart 
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SIMPLE LINEAR REGRESSION 



Simple linear regression model 
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The cost of using a given line 
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Find „best” line 
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Predicting size of house you can afford 
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Estimated  
parameter 



Interpreting the coefficients 
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Interpreting the coefficients 
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 Magnitude of fit parameters   

depend on the units of both  

features and observations 



ML algorithm: minimasing the cost 
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Convex/concave function 
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Finding max/min analytically 
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Finding the max via hill climbing 
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 Sign of the derivative is saying me  
what I want to do :move left or right 
or stay where I am 



Finding the min via hill descent 
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Choosing the step size (stepsize schedule) 

15/10,  22/10 2019 

22 

Fixed                                               Varying 
Works well for  strongly  
convex functions 

Try not to decrease  
h too fast 



Convergence criteria 
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That will be „good enough” 
value of e depends on the data we are looking at 



Moving to multiple dimensions 
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Gradient example 
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Contour plots 
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Gradient descent 
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Compute the gradient 
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Approach 1: set gradient to 0 
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 This method is called 

„Closed form solution” 



Approach 2: gradient descent 
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Approach 2: gradient descent 
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Comparing the approaches 
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Symmetric cost function 
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Assumes error of overestimating 

sales price is the same as 

underestimating it 



Asymmetric cost functions 
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 We can weight differently 

positive and negative errors 

in RSS calculations. 



What you can do now 
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MULTIPLE REGRESSION 



Multiple regression 
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Polynomial regression 
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Other functional forms of one input 
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 Trends in time series 

This trend can be modeled with 

polynomial function. 



Other functional forms of one input 
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 Seasonality 



Example of detrending 
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Example of detrending 
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Other examples of seasonality 
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Generic basic expansion 
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More realistic flow chart 
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Incorporating multiple inputs 
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Only one bathroom, 

not same as my  

3 bathrooms 



Incorporating multiple inputs 
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Many possible inputs 



Reading your brain 
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Whole collection of  inputs 



General notation 
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Simple hyperplane 
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 Noise term 



More generally: D-dimensional curve 
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Interpreting coefficients 
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Interpreting coefficients 
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Interpreting coefficients 
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For fixed  

# sq.ft.! 

But… 

increasing #bathrooms  

for fixed #sq.ft will make 

your bedrooms smaller  

and smaller. 

Think about interpretation. 



Interpreting coefficients 
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Can’t hold 

other  

features 

fixed 

Then …  

can’t interpret 

coefficients 



Interpreting coefficients 

15/10,  22/10 2019 

56 

But… 

increasing #bedrooms  

for fixed #sq.ft will make 

your bedrooms smaller  

and smaller. 

You can end with negative  

coefficient. Might not be so 

if  you removed #sq.ft from  

the model. 

Think about interpretation 

in context of  the model 

you put in. 



Fitting in D-dimmensions 
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Look  now at  

this block 



Rewriting in vector notation 

15/10,  22/10 2019 

58 

 

ei ei + + 



Rewriting in matrix notation 
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Here is our  

ML algorithm 



Fitting in D-dimmensions 
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Look now at   

this block 



Cost function in D-dimmension 
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RSS in vector notation 



Cost function in  D-dimmension 
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RSS in matrix notation 



Regression model for D-dimmension 
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RSS in matrix notation 



Regression model for D-dimmension 
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Gradient of RSS  



Regression model for D-dimmension 
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Approach 1: set gradient to zero 

Closed form solution 



Closed-form solution 
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This matrix might not be invertible. 

This might not be CPU feasible. 



Regression model for D-dimmension 
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Approach 2: gradient descent 

We initialise our solution somewhere 

and then … 



Gradient descent  
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Regression model for D-dimmension 

15/10,  22/10 2019 

69 

Interpreting elementwise 



Summary of gradient descent  
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Extremely useful algorithm in several applications 



What you can do now 
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ACCESSING PERFORMANCE 



Assessing performance 
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Assessing performance 

15/10,  22/10 2019 

74 

 



Measuring loss 
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Symmetric loss  

functions 



Accessing the loss 
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Use training data 



Compute training error 
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Training error 
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Convention is to take  

average here 



Training error 
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More intuitive is to take RMSE, same units as y 



Training error vs. model complexity 
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Descrease as you increase  

your model complexity. 

Very intuitive why it is  

like that. 



Is training error a good measure? 
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Is there something particularly wrong 

about having xt square feet ??? 



Generalisation (true) error 
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Distribution over house 
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 Popularity 

of  a given  

#sq.ft. 



Generalisation error definition 
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Generalisation error (weighted with 

popularity) vs model complexity 

15/10,  22/10 2019 

85 

1s  popularity area 



Generalisation error vs model 

complexity 
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However … in contrast to the training 

error, in practice we cannot really compute  

true generalisation error. We don’t have  

data on all possible houses in the area. 



Forming a test set 
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 We want to approximate   

generalisation error. 

Test set: proxy for  

„everything you might see” 



Compute test error 
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Training, true and test error vs. model 

complexity. Notion of overfitting. 
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Test error: noisy version due 

to limited statistics. 



Training/test splits 
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Three sources of errors 
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Data are inherently noisy 
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There is some true relatioship 
between sq.ft and value of  the 
house, specific to the given house. 

We cannot reduce it by chosing 

better model or procedure, 

It is beyond our control. 



Bias contribution 
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This contribution we can control. 



Bias contribution 

15/10,  22/10 2019 

94 

Average over all 

possible fits 



Bias contribution 
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Variance contribution 
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Variance contribution 
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Variance of high complexity models 
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For each train remove 

few random houses 



Bias of high complexity models 
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For each train remove 

few random houses 

High complexity models are very flexible,  

pick better average trends. 



Bias –variance tradeoff 
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MSE = mean square error 

Machine Learing 

is all about this tradeoff 

But…. 



Errors vs amount of data 
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The regression/ML workflow 
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Hypothetical implementation 
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Hypothetical implementation 
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Hypothetical implementation 
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Practical implementation 
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Practical implementation 
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Typical splits 
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What you can do now 
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RIDGE REGRESSION 



Flexibility of high-order polynomials 
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Symptoms for overfitting: often associated with very large 
value of  estimated parameters  



Overfitting with many features 
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How does # of observations influence 

overfitting? 
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How does # of inputs influence 

overfitting? 
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How does # of inputs influence 

overfitting? 
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Lets improve quality metric blok 
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Desire total cost format 
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Measure of fit to training data 
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Measure of magnitude of regression 

coefficients  

15/10,  22/10 2019 

119 

 

But … the coefficients 

are very large 



Consider specific total cost 
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Consider resulting objectives 
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Ridge regression: bias-variance tradeoff 
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Ridge regression: coefficients path 
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features  

scaled to 

unit norm sweet spot 



Flow chart 
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Ridge regression:  cost  in matrix notation 
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Gradient of ridge regresion cost 
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Ridge regression:  closed-form solution 
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Ridge regression:  gradient descent 
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Summary of ridge regression algorithm 
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How to choose l 
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How to choose l 
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How to choose l 
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How to choose l 
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How to choose l 
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What value of K 
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How to handle the intercept 

15/10,  22/10 2019 

136 

Recall multiple regression model 



Do we penalize intercept? 
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Do we penalize intercept? 
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 Option 1: don’t penalize intercept 

 

 

 

 Option 2: Center data first 

 



What you can do now 
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FEATURES SELECTION  

&  

LASSO REGRESSION 

 

 



Why features selection? 
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Sparcity 
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Sparcity 
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Find best model of size: 0  
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Find best model of size: 1  
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Find best model of size: 2  
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Note: not necessarily nested! 



Find best model of size: N 
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 Which model complexity to choose?  

Certainly not that with the smalest training error! 



Choosing model complexity 
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Complexity of „all subsets” 
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Greedy algorithm 
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Visualizing greedy algorithm 
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Visualizing greedy algorithm 
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Visualizing greedy algorithm 
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 Notice… it is suboptimal .  
Adding next best thing, fit is nested now. 



Visualizing greedy algorithm 
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When do we stop? 
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Complexity of forward stepwise 
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Other greedy algorithms 
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Using regularisation for features selection 
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Thresholding ridge coefficients? 
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Thresholding ridge coefficients? 
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Thresholding ridge coefficients? 
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Thresholding ridge coefficients? 
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Remember:  
this is linear model. If we assume that #showers = #bathrooms and remove one of them 
from the model, coefficients will sum up. 



Thresholding ridge coefficients? 
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Try this cost instead of ridge … 

15/10,  22/10 2019 

164 

 



Lasso regression 

15/10,  22/10 2019 

165 

 



Coefficient path: ridge 
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Coefficient path: lasso 
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Visualising ridge cost in 2D 
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Visualising ridge cost in 2D 
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Visualising ridge cost in 2D 
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Visualising lasso cost in 2D 
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Visualising lasso cost in 2D 
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Visualising lasso cost in 2D 
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We are  getting sparce solution, 
the w0= 0 



How we optimise for objective 
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Optimise for lasso objective 
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Coordinate descent 
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Comments on coordinate descent 
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Normalizing features 

15/10,  22/10 2019 

178 

 



Optimising least squares objective 
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One coordinate at a time 



Optimising least squares objective 
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One coordinate at a time 



Coordinate descent for least squares regression 
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Measure of the correlation between wj 
and the residual without this feature. 



How to access convergence 
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Soft thresholding 
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Convergence criteria 
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Other lasso solvers 

15/10,  22/10 2019 

185 

 



How do we chose l 
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How do we chose l 
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How do we chose l 
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Impact of feature selection and lasso 

15/10,  22/10 2019 

189 

 



What you can do now 
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NONPARAMETRIC  

 REGRESSION 

 



Fit globaly vs fit locally 
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Parametric models Below … 
f(x) is not really  
a polynomial function 

linear constant 

quadratic 



What alternative do we have? 
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Nearest Neighbor & Kernel Regression 

(nonparametric approach) 
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 Simple implementation,  flexibility increases as we have more data) 



Fit locally to each data point 
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What people do naturally… 
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1-NN regression more formally 
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Transition point 



Visualizing 1-NN in multiple dimensions 
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Distance metrics: Notion of „closest” 
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Weighting housing inputs 
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Scaled Euclidan distance 
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Different distance metrics 
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Performing 1-NN search 
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1-NN algorithm 
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1-NN in practice 
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1-NN  sensitive to noise in the data 

function 

1-NN fit 



Get more „comps” 
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K-NN regression more formally 
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K-NN more formally 
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K-NN algorithm 
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K-NN in practice 
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All k-NN for 
a specific  
red point 



K-NN in practice 
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Issues with discontinuities 
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Weighted k-NN 
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How to define weights 
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Kernel weights for d=1 
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Kernel drives how the weights 

will decay, if  at all, as a function 

of  the distance. 



Kernel regression 
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Kernel regression in practice 
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Choice of bandwith l  
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Choosing l (or k on k-NN) 
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Contrasting with global average 
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Contrasting with global average 
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Local linear regression 
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Local regression rules of thumb 
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Nonparametric approaches 
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Limiting behaviour of NN 
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Limiting behaviour of NN 
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Error vs amount of data 
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Limiting behaviour of NN 
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Issues: NN and kernel methods 

15/10,  22/10 2019 

229 

 



Issues: Complexity of NN search 
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We discussed how to 
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Summarising 
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