INTRODUCTION TO DATA SCIENCE

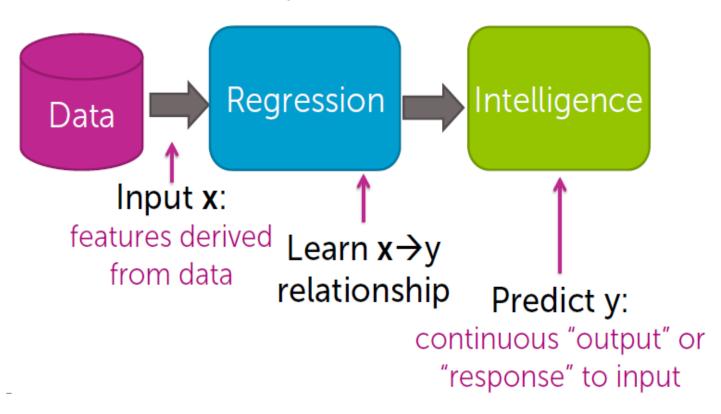
This lecture is based on course by E. Fox and C. Guestrin, Univ of Washington

Regression for predictions

- Simple regression
- Multiple regression
- Accesing performance
- Ridge regression
- Feature selection and lasso regression
- Nearest neighbor and kernel regression

What is regression?

From features to predictions



Case study

Predicting house prices

input output $(x_1 = \text{sq.ft.}, y_1 = \$)$

$$(x_2 = sq.ft., y_2 = \$)$$

$$(x_3 = sq.ft., y_3 = \$)$$

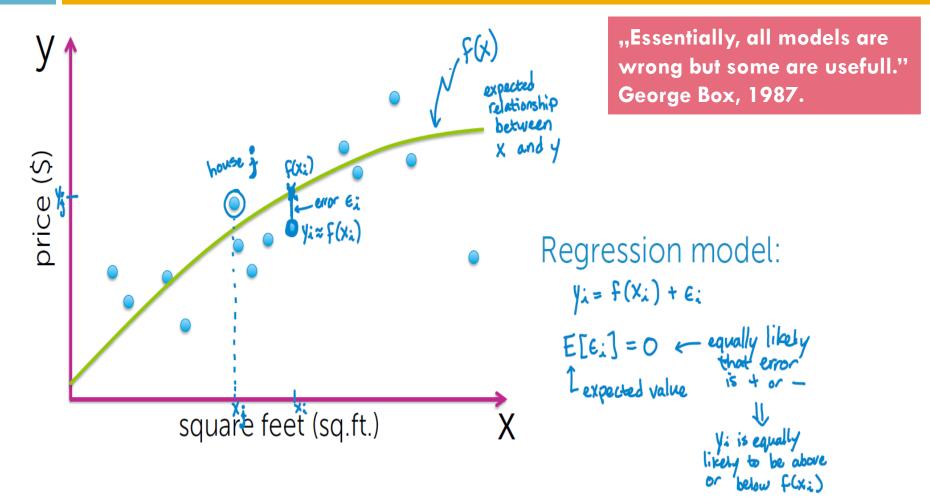
$$(x_4 = sq.ft., y_4 = \$)$$

$$(x_5 = sq.ft., y_5 = \$)$$

Input vs output
y is quantity of interest
assume y can be predicted from x

:

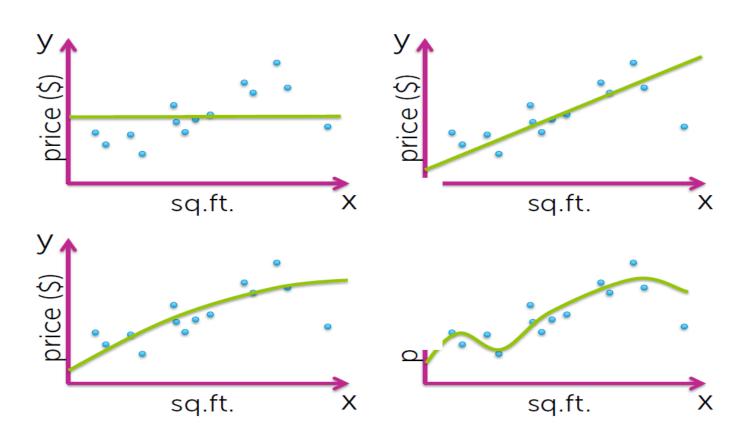
Model: assume functional relationship



15/10, 22/10 2019

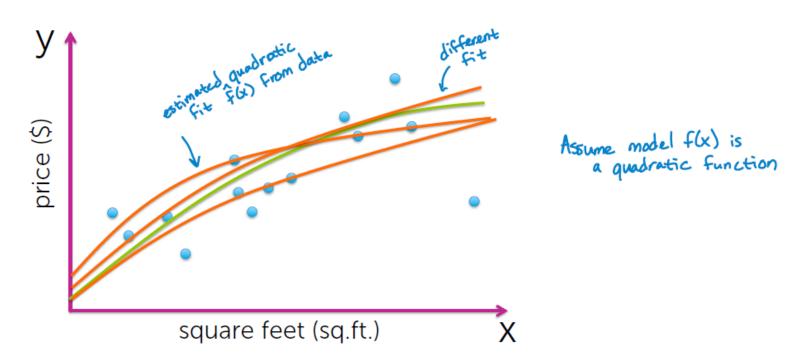
Task 1:

Which model to fit?

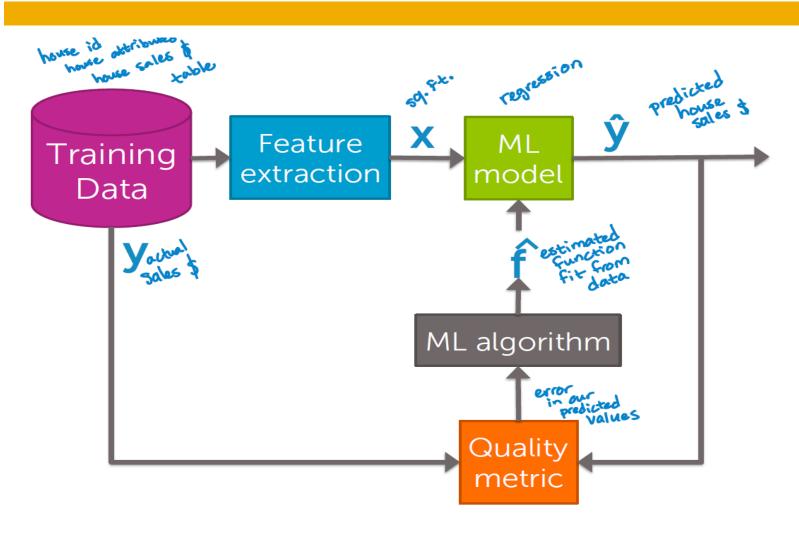


Task 2:

For a given model f(x) estimate function $\hat{f}(x)$ from data

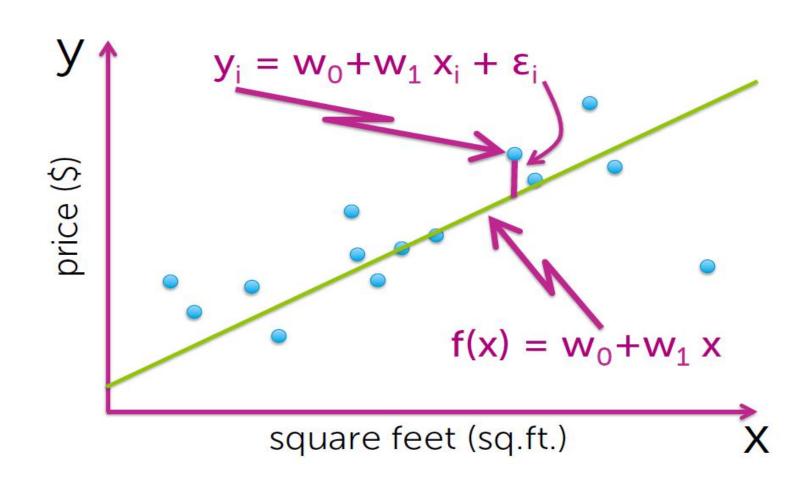


How it works: baseline flow chart

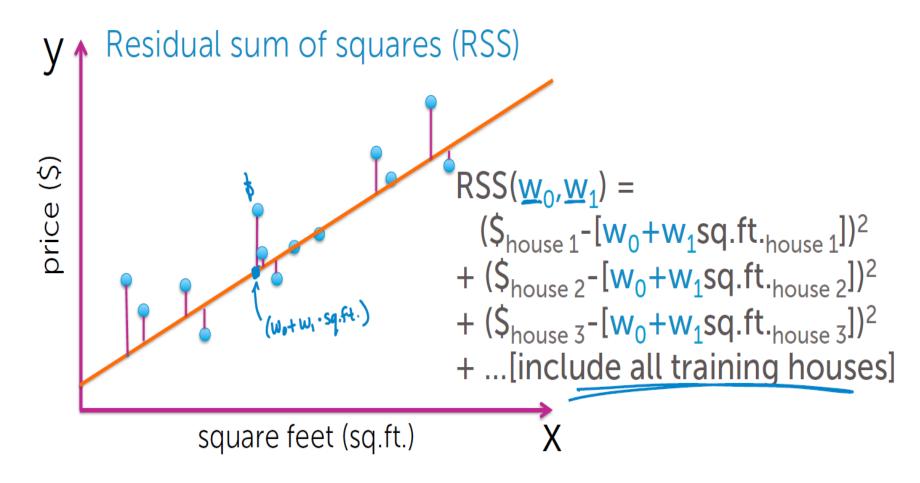


SIMPLE LINEAR REGRESSION

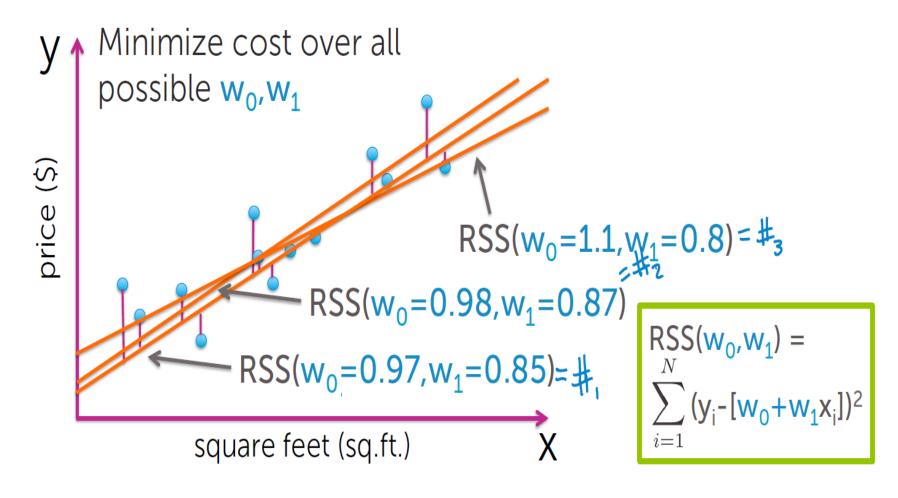
Simple linear regression model



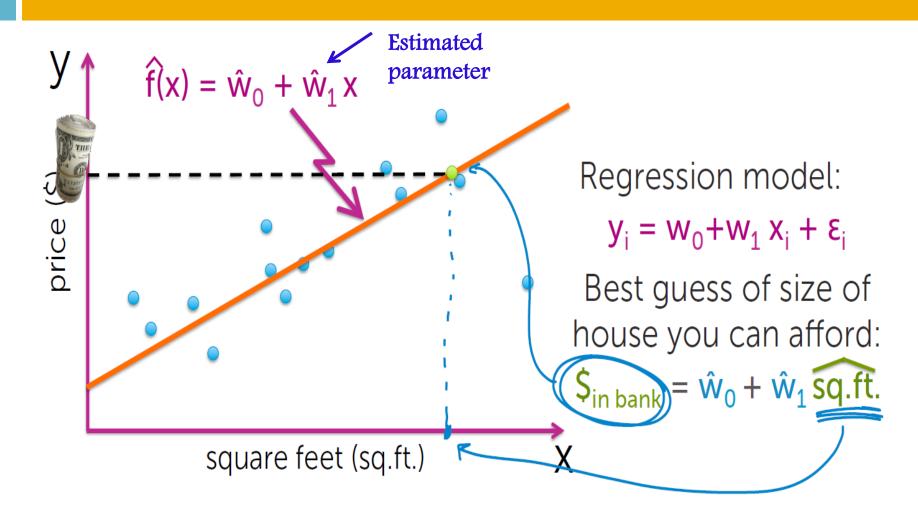
The cost of using a given line



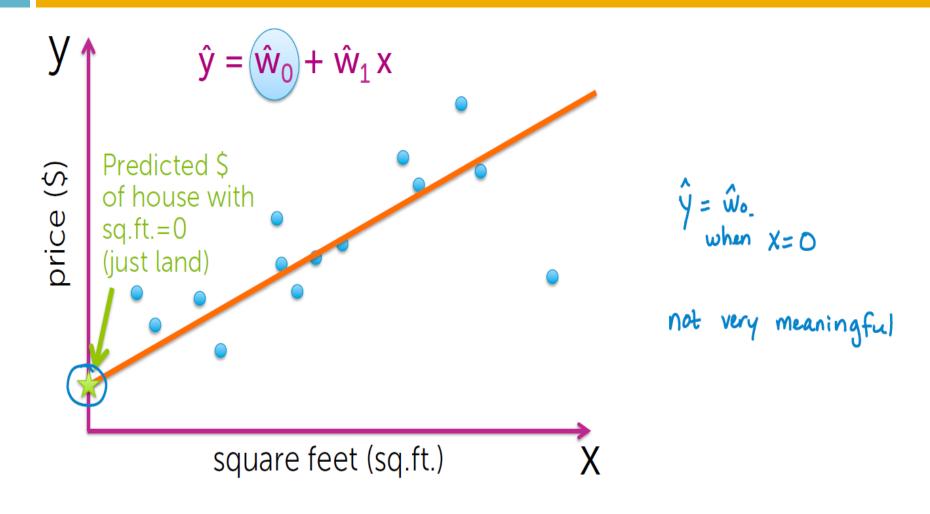
Find "best" line



Predicting size of house you can afford

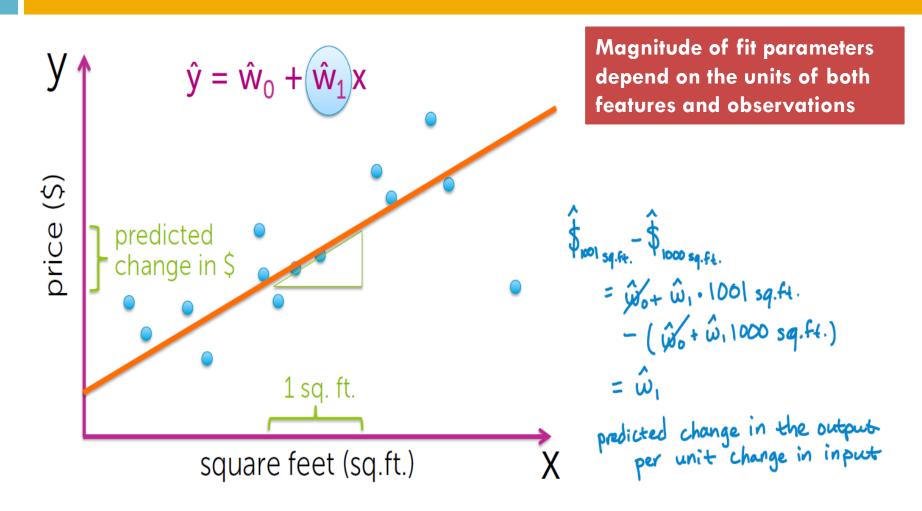


Interpreting the coefficients

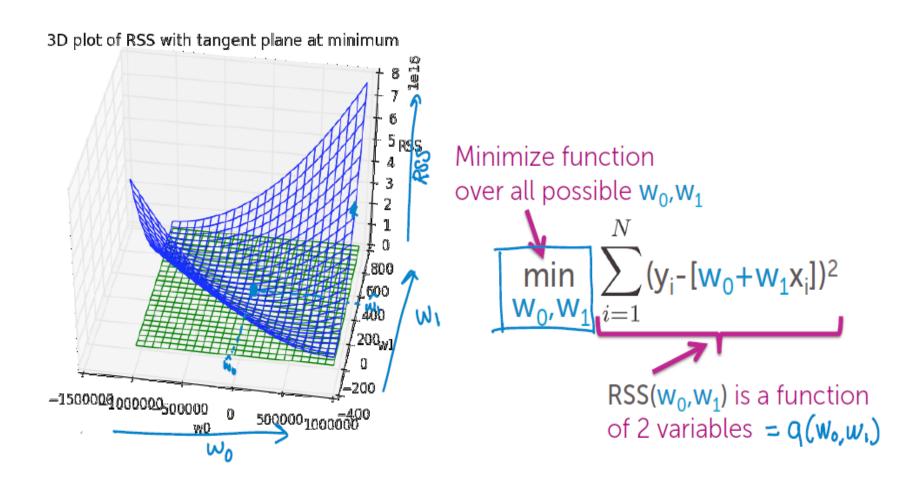


15/10, 22/10 2019

Interpreting the coefficients

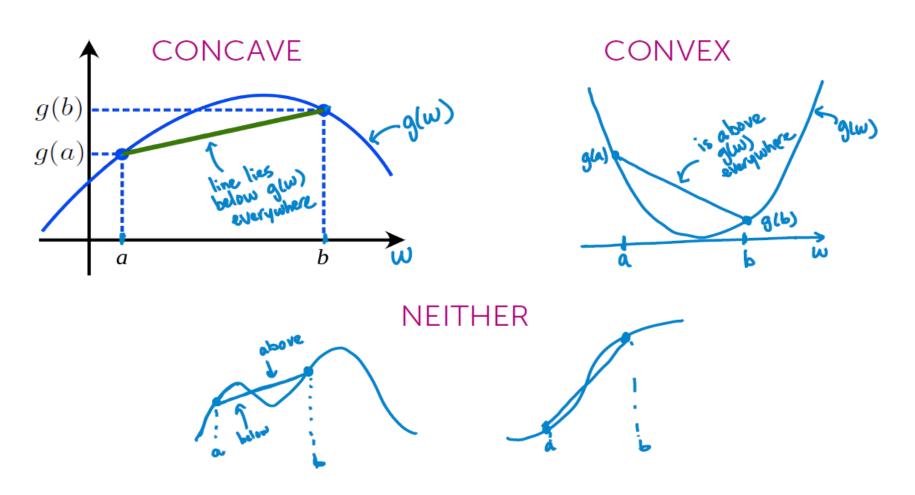


ML algorithm: minimasing the cost

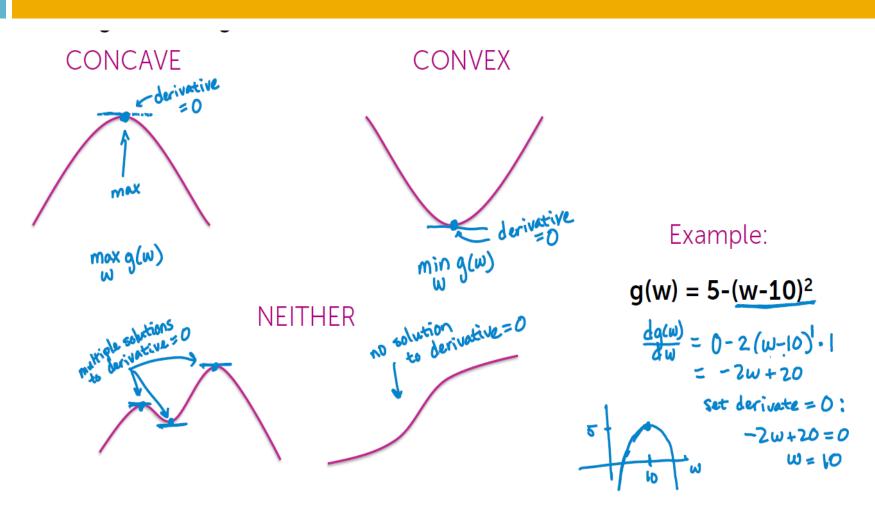


15/10, 22/10 2019

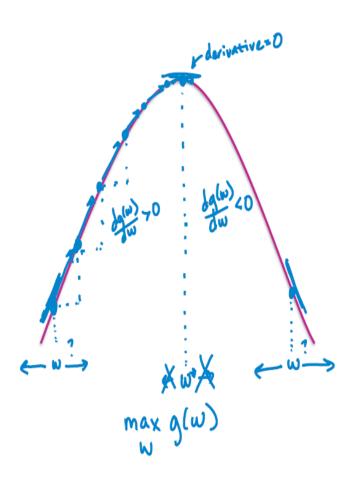
Convex/concave function



Finding max/min analytically



Finding the max via hill climbing



Sign of the derivative is saying me what I want to do :move left or right or stay where I am

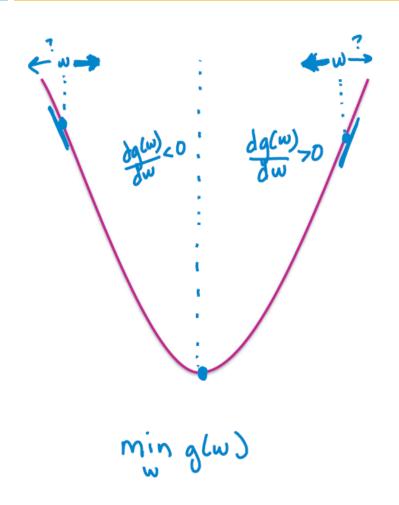
How do we know whether to move
$$w$$
 to right or left? (Inc. or dec. the value of w ?)

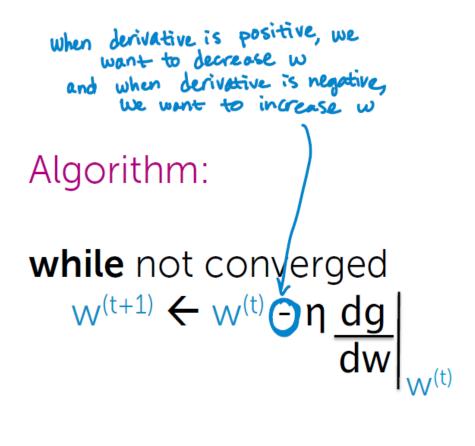
While not converged

 $w^{(r+1)} \leftarrow w^{(t)} + 1 \frac{dg(w)}{dw}$

iteration stepsize

Finding the min via hill descent

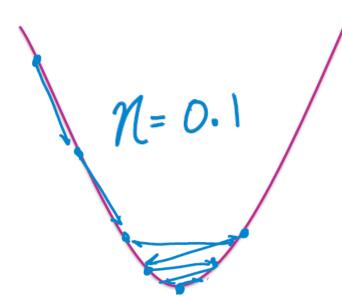




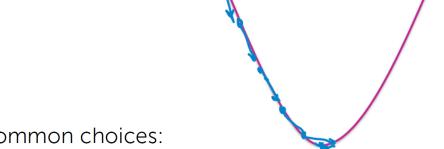
Choosing the step size (stepsize schedule)

Fixed

Works well for strongly convex functions



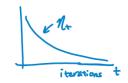
Varying



Common choices:

$$\eta_{t} = \frac{\alpha}{4}$$

$$\eta_{t} = \frac{\alpha}{4}$$



Try not to decrease η too fast

Convergence criteria

For convex functions, optimum occurs when

$$\frac{dq(w)}{dw} = 0$$

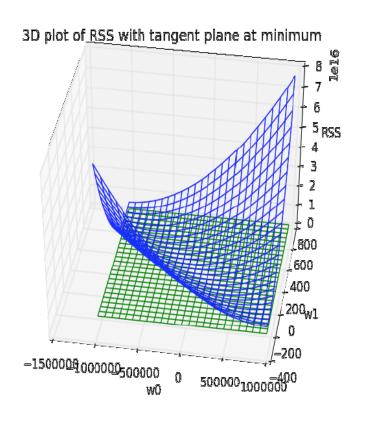
In practice, stop when

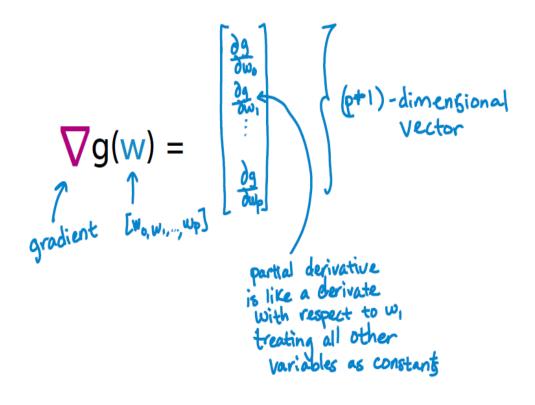
That will be "good enough" value of ϵ depends on the data we are looking at

Algorithm:

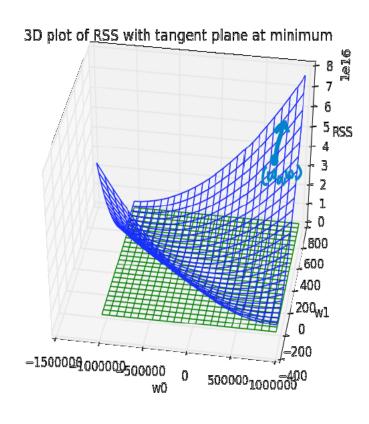
while not converged
$$w^{(t+1)} \leftarrow w^{(t)} - \eta \frac{dg}{dw}\Big|_{w^{(t)}}$$

Moving to multiple dimensions





Gradient example



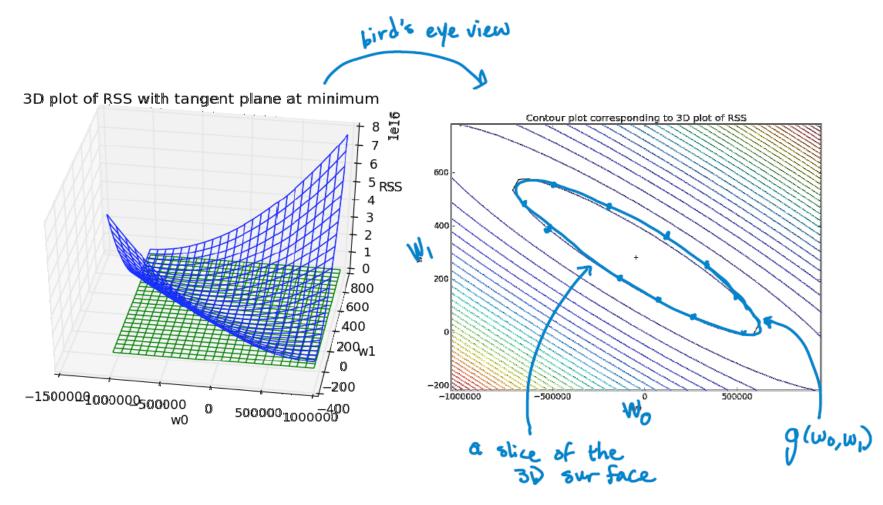
$$g(w) = 5w_0 + 10w_0 w_1 + 2w_1^2$$

$$\frac{\partial g}{\partial w_0} = 5 + 10w_1$$

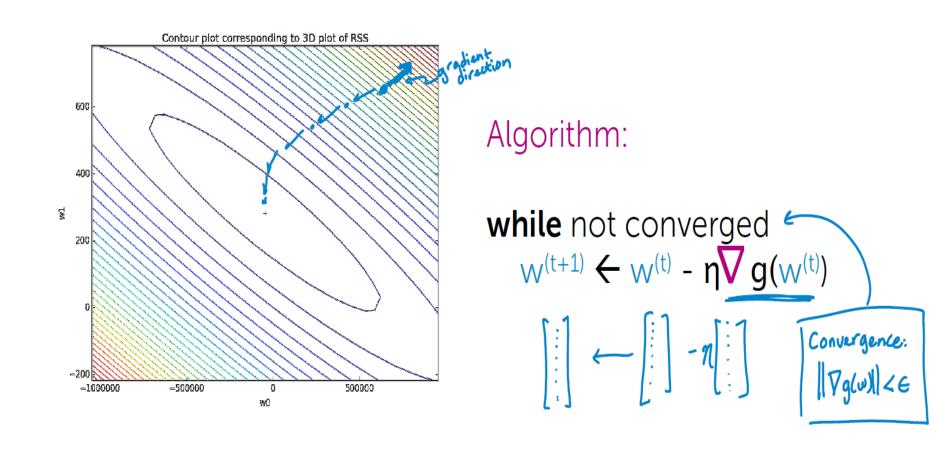
$$\frac{\partial g}{\partial w_1} = 10w_0 + 4w_1$$

$$\nabla g(w) = \begin{bmatrix} 5 + 10w_1 \\ 10w_0 + 4w_1 \end{bmatrix}$$

Contour plots



Gradient descent



Compute the gradient

$$RSS(\mathbf{w}_0, \mathbf{w}_1) = \sum_{i=1}^{N} (\mathbf{y}_i - [\mathbf{w}_0 + \mathbf{w}_1 \mathbf{x}_i])^2$$

$$= \sum_{i=1}^{N} (\mathbf{y}_i - [\mathbf{w}_0 + \mathbf{w}_1 \mathbf{x}_i])^2 + (-1)$$

$$= -2 \sum_{i=1}^{N} (\mathbf{y}_i - [\mathbf{w}_0 + \mathbf{w}_1 \mathbf{x}_i])^2 + (-1)$$

Putting it together:

$$\nabla RSS(w_0, w_1) = \begin{bmatrix} -2 \sum_{i=1}^{N} [y_i - (w_0 + w_1 x_i)] \\ -2 \sum_{i=1}^{N} [y_i - (w_0 + w_1 x_i)] x_i \end{bmatrix}$$
Taking the derivative w.r.t. w_1

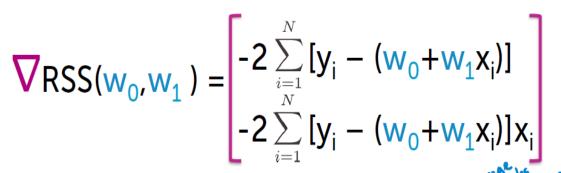
$$\sum_{i=1}^{N} 2(y_i - [w_0 + w_1 x_i]) \cdot (-x_i)$$

$$= -2 \sum_{i=1}^{N} (y_i - [w_0 + w_1 x_i]) \cdot (-x_i)$$

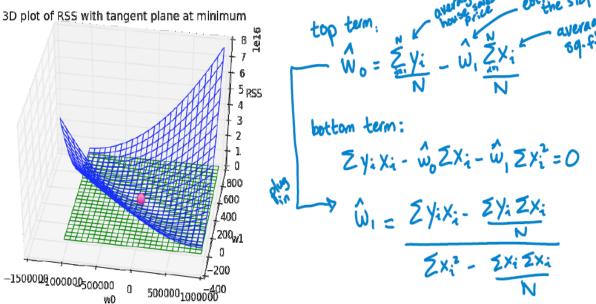
$$\sum_{i=1}^{N} 2(\underline{y_i} - [w_0 + w_1 \times_i]) \cdot (-X_i)$$

$$= -2 \sum_{i=1}^{N} (y_i - [w_0 + w_1 \times_i]) \times_i$$

Approach 1: set gradient to 0



This method is called "Closed form solution"

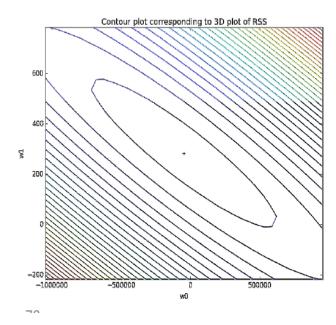


Approach 2: gradient descent

Interpreting the gradient:
$$\nabla_{RSS}(w_0, w_1) = \begin{bmatrix} -2\sum_{i=1}^{N} [y_i - (w_0 + w_1 x_i)] \\ -2\sum_{i=1}^{N} [y_i - (w_0 + w_1 x_i)]x_i \end{bmatrix} = \begin{bmatrix} -2\sum_{i=1}^{N} [y_i - \hat{y}_i(w_0, w_1)] \\ -2\sum_{i=1}^{N} [y_i - (w_0 + w_1 x_i)]x_i \end{bmatrix}$$

Approach 2: gradient descent

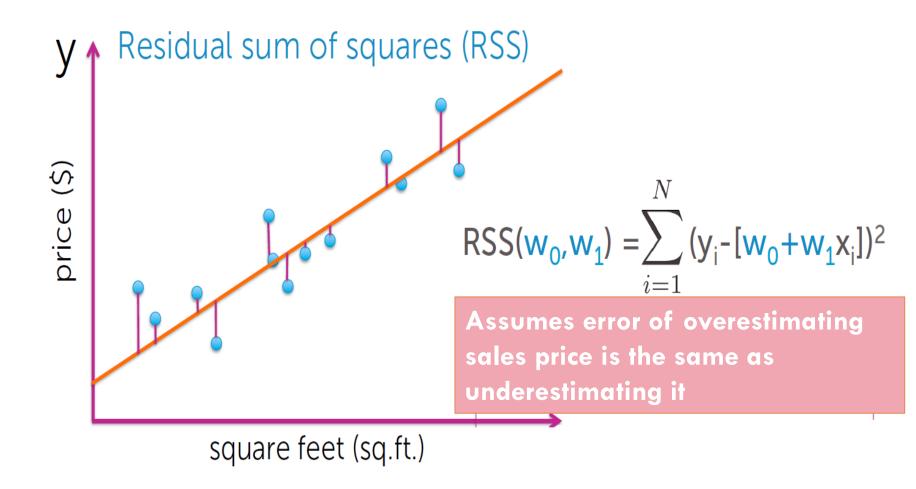
$$\nabla RSS(\mathbf{w}_{0}, \mathbf{w}_{1}) = \begin{bmatrix} -2 \sum_{i=1}^{N} [\mathbf{y}_{i} - \hat{\mathbf{y}}_{i}(\mathbf{w}_{0}, \mathbf{w}_{1})] \\ -2 \sum_{i=1}^{N} [\mathbf{y}_{i} - \hat{\mathbf{y}}_{i}(\mathbf{w}_{0}, \mathbf{w}_{1})] \mathbf{x}_{i} \end{bmatrix}$$



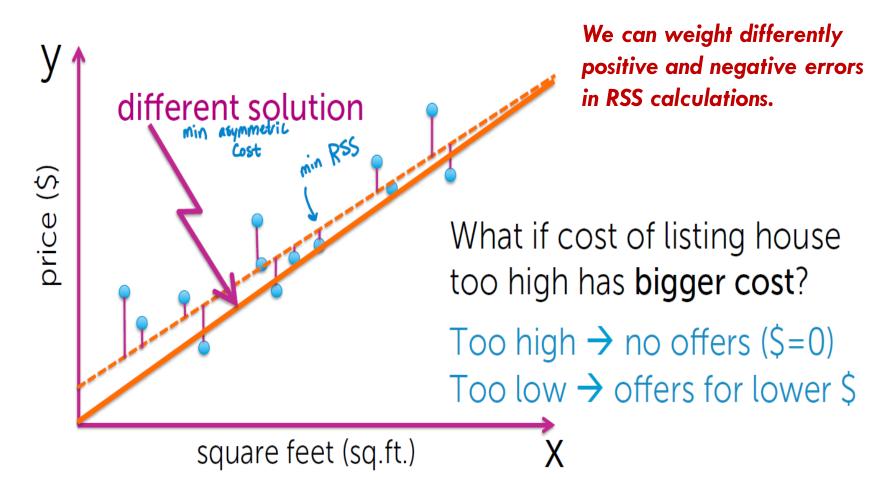
Comparing the approaches

- For most ML problems, cannot solve gradient = 0
- Even if solving gradient = 0
 is feasible, gradient descent
 can be more efficient
- Gradient descent relies on choosing stepsize and convergence criteria

Symmetric cost function



Asymmetric cost functions

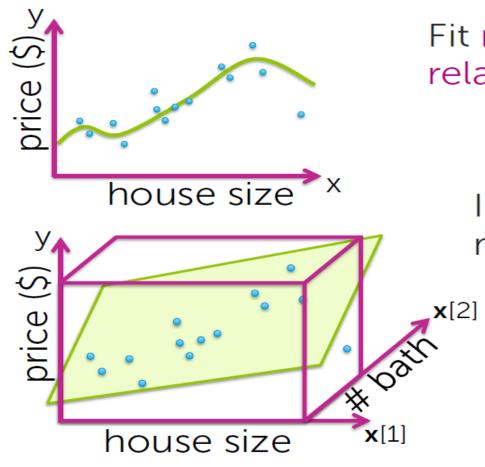


What you can do now

- Describe the input (features) and output (real-valued predictions) of a regression model
- Calculate a goodness-of-fit metric (e.g., RSS)
- Estimate model parameters to minimize RSS using gradient descent
- Interpret estimated model parameters
- Exploit the estimated model to form predictions
- Discuss the possible influence of high leverage points
- Describe intuitively how fitted line might change when assuming different goodness-of-fit metrics

MULTIPLE REGRESSION

Multiple regression



Fit more complex relationships than just a line

Incorporate more inputs

- Square feet
- # bathrooms
- # bedrooms
- Lot size
- Year built
- ...

Polynomial regression

Model:

$$y_i = w_0 + w_1 x_i + w_2 x_i^2 + ... + w_p x_i^p + \varepsilon_i$$

treat as different **features**

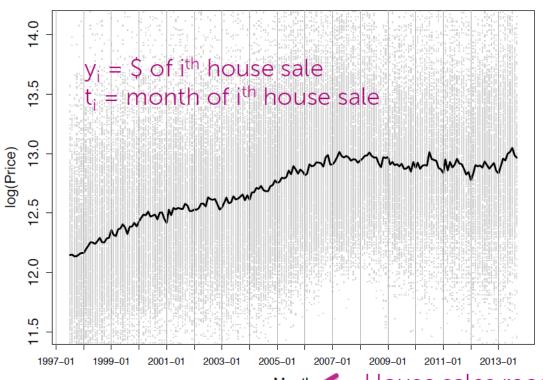
feature
$$1 = 1$$
 (constant) parameter $1 = w_0$
feature $2 = x$ parameter $2 = w_1$
feature $3 = x^2$ parameter $3 = w_2$
...

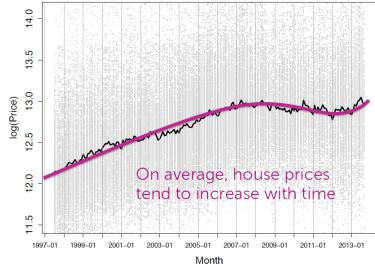
feature $p+1 = x^p$ parameter $p+1 = w_p$

15/10, 22/10 2019

Other functional forms of one input

□ Trends in time series

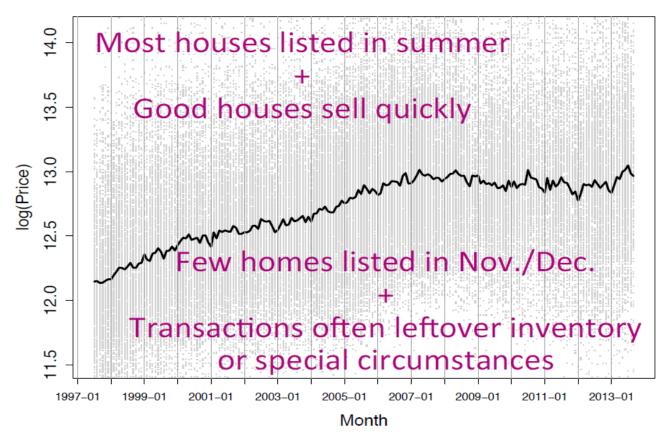




This trend can be modeled with polynomial function.

Other functional forms of one input

Seasonality



Example of detrending

Model:

$$y_i = w_0 + w_1 t_i + w_2 \sin(2\pi t_i / 12 - \Phi) + \epsilon_i$$
 Unknown phase/shift
 Linear trend Seasonal component = Sinusoid with period 12 (resets annually)

Trigonometric identity: sin(a-b)=sin(a)cos(b)-cos(a)sin(b)

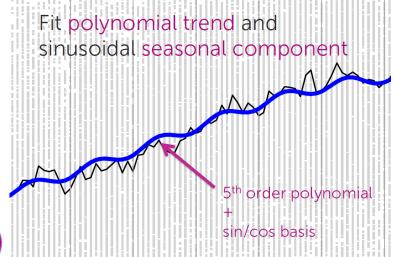
```
\rightarrow \sin(2\pi t_i / 12 - \Phi) = \sin(2\pi t_i / 12)\cos(\Phi) - \cos(2\pi t_i / 12)\sin(\Phi)
```

Example of detrending

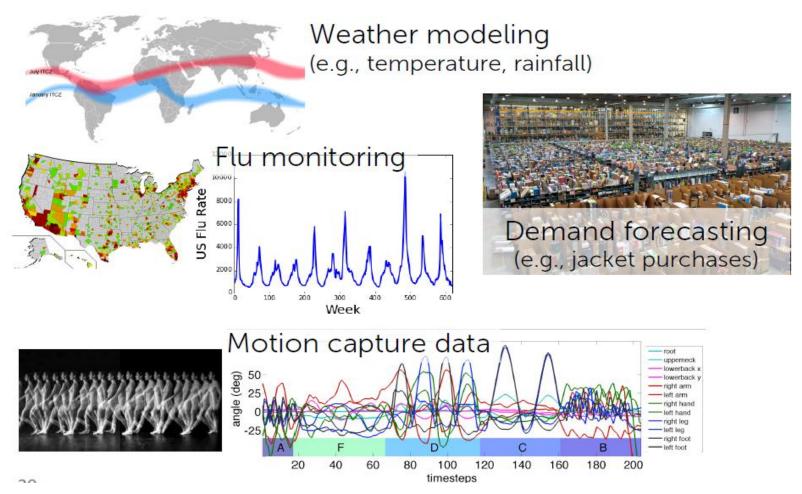
Equivalently,

$$y_i = w_0 + w_1 t_i + w_2 \sin(2\pi t_i / 12) + w_3 \cos(2\pi t_i / 12) + \epsilon_i$$

feature 1 = 1 (constant) feature 2 = tfeature $3 = \sin(2\pi t/12)$ feature $4 = \cos(2\pi t/12)$



Other examples of seasonality



Generic basic expansion

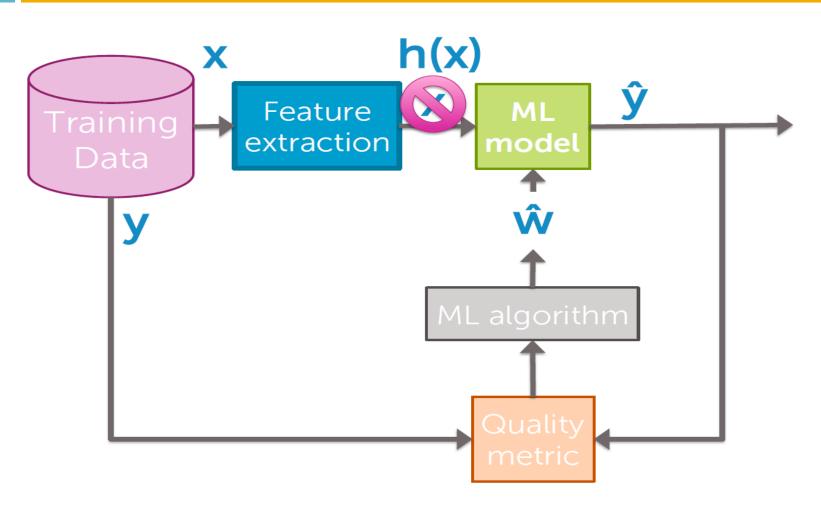
Model:

$$y_{i} = \underset{D}{w_{0}}h_{0}(x_{i}) + \underset{1}{w_{1}}h_{1}(x_{i}) + ... + \underset{D}{w_{D}}h_{D}(x_{i}) + \varepsilon_{i}$$
$$= \sum_{j=0}^{D} w_{j} h_{j}(x_{i}) + \varepsilon_{i}$$

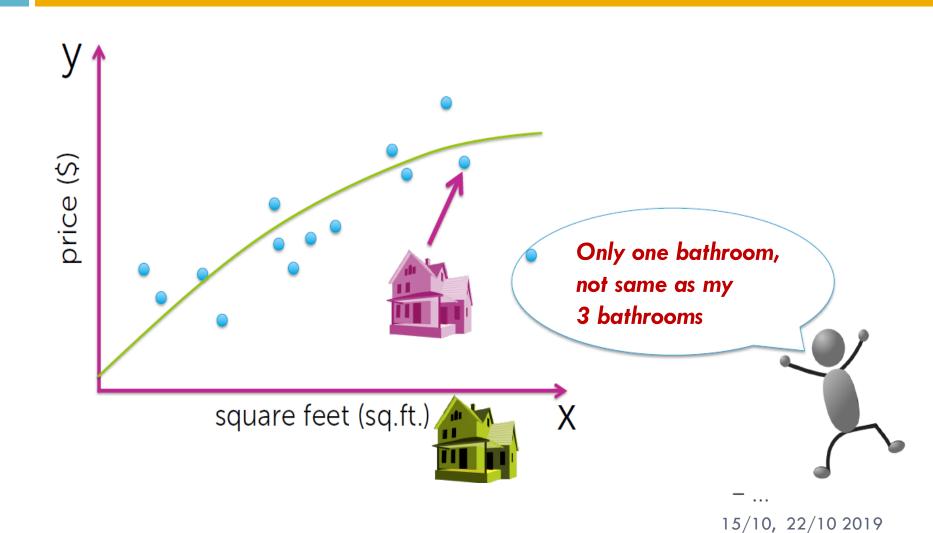
```
feature 1 = h_0(x)...often 1 (constant)
feature 2 = h_1(x)... e.g., x
feature 3 = h_2(x)... e.g., x^2 or sin(2\pi x/12)
```

feature $D+1 = h_D(x)... e.g., x^p$

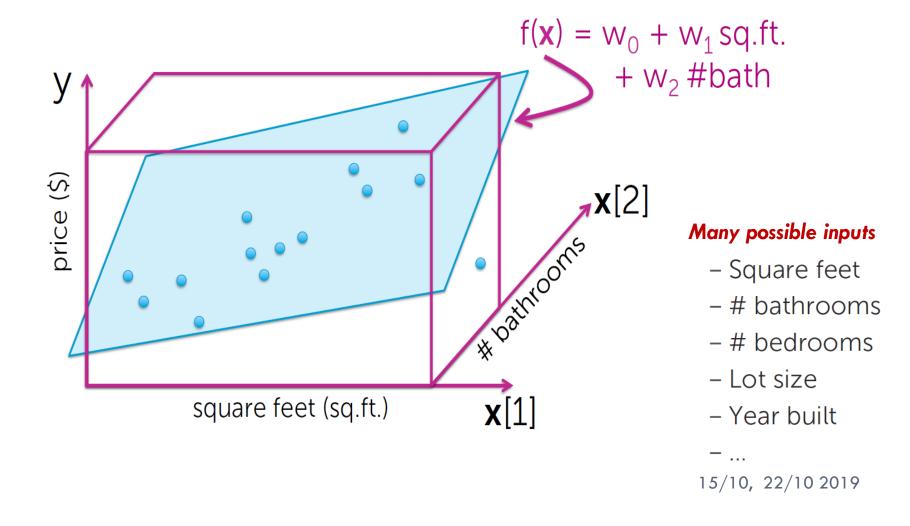
More realistic flow chart



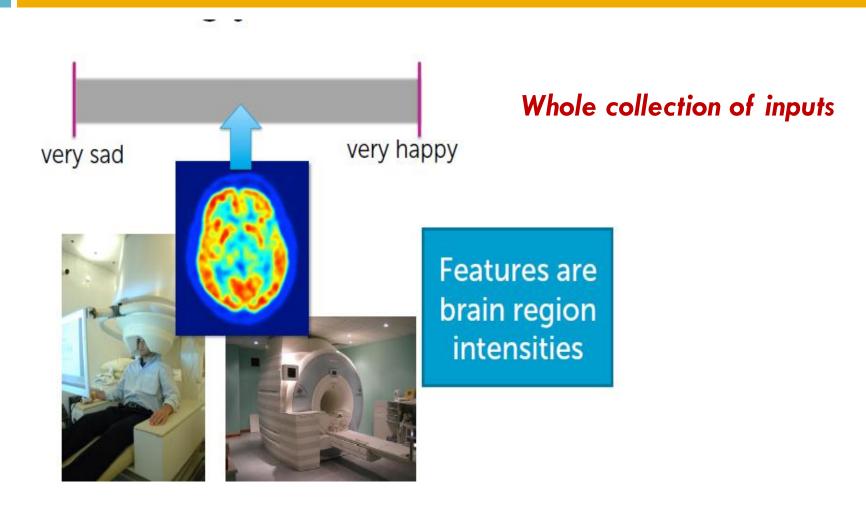
Incorporating multiple inputs



Incorporating multiple inputs



Reading your brain



General notation

Output: y 🛩 scalar

Inputs: $\mathbf{x} = (\mathbf{x}[1], \mathbf{x}[2], ..., \mathbf{x}[d])$

```
Notational conventions:

\mathbf{x}[j] = j^{th} \text{ input } (scalar)

h_j(\mathbf{x}) = j^{th} \text{ feature } (scalar)

\mathbf{x}_i = \text{ input of } i^{th} \text{ data point } (vector)

\mathbf{x}_i[j] = j^{th} \text{ input of } i^{th} \text{ data point } (scalar)
```

Simple hyperplane

```
Noise term
Model:
y_i = w_0 + w_1 x_i[1] + ... + w_d x_i[d] + \varepsilon_i
feature 1 = 1
feature 2 = x[1] ... e.g., sq. ft.
feature 3 = x[2] ... e.g., #bath
feature d+1 = x[d] ... e.g., lot size
```

More generally: D-dimensional curve

Model:

$$y_i = \underset{i=0}{\text{W}_0} h_0(\mathbf{x}_i) + \underset{i=1}{\text{W}_1} h_1(\mathbf{x}_i) + \dots + \underset{i=0}{\text{W}_D} h_D(\mathbf{x}_i) + \epsilon_i$$
$$= \sum_{i=0}^{D} \underset{i=0}{\text{W}_i} h_i(\mathbf{x}_i) + \epsilon_i$$

More on notation

```
# observations (\mathbf{x}_i, \mathbf{y}_i): N
# inputs \mathbf{x}[j]: d
# features \mathbf{h}_i(\mathbf{x}): D
```

```
feature 1 = h_0(\mathbf{x}) ... e.g., 1

feature 2 = h_1(\mathbf{x}) ... e.g., \mathbf{x}[1] = \mathrm{sq.} ft.

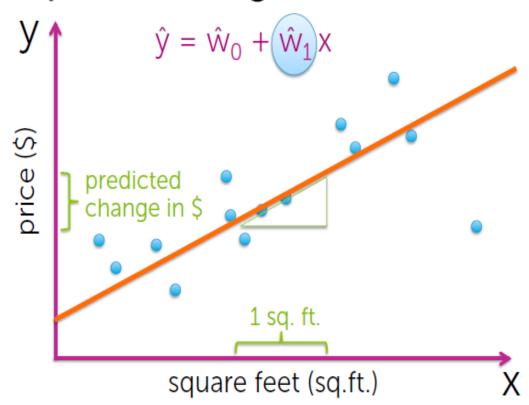
feature 3 = h_2(\mathbf{x}) ... e.g., \mathbf{x}[2] = \mathrm{\#bath}

or, \log(\mathbf{x}[7]) \mathbf{x}[2] = \log(\mathrm{\#bed}) x \mathrm{\#bath}

...

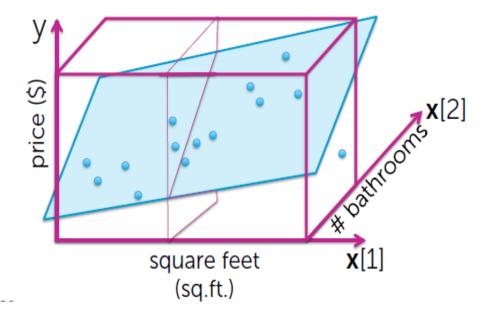
feature D+1 = h_D(\mathbf{x}) ... some other function of \mathbf{x}[1],..., \mathbf{x}[d]
```

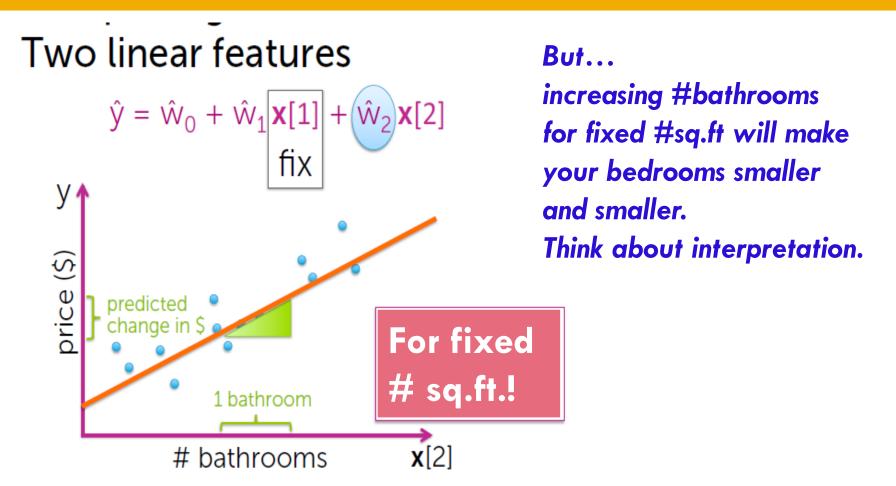
Simple linear regression



Two linear features

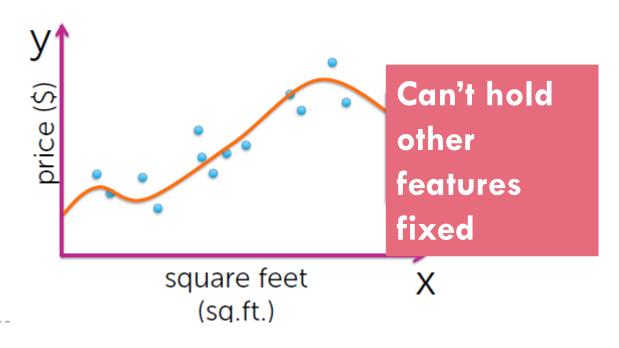
$$\hat{\mathbf{y}} = \hat{\mathbf{w}}_0 + \hat{\mathbf{w}}_1 \mathbf{x}[1] + \hat{\mathbf{w}}_2 \mathbf{x}[2]$$
fix





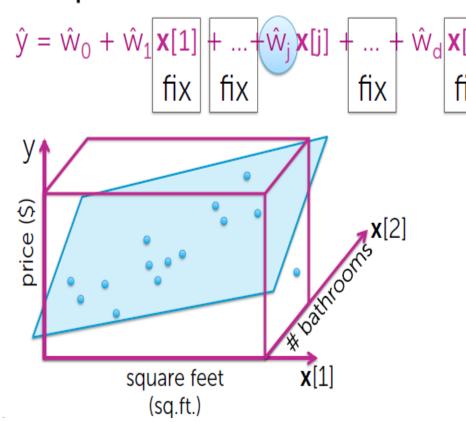
Polynomial regression

$$\hat{y} = \hat{w}_0 + \hat{w}_1 x + ... + \hat{w}_j x^j + ... + \hat{w}_p x^p$$



Then ... can't interpret coefficients

Multiple linear features



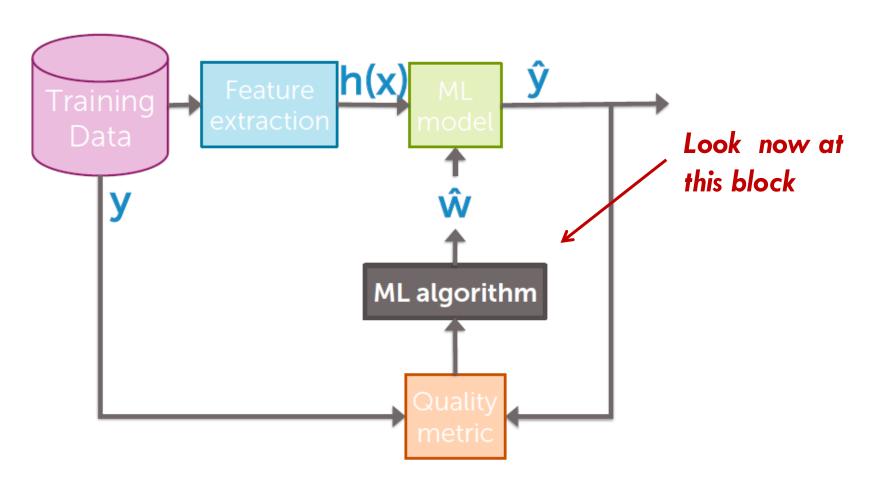
But...

increasing #bedrooms for fixed #sq.ft will make your bedrooms smaller and smaller.

You can end with negative coefficient. Might not be so if you removed #sq.ft from the model.

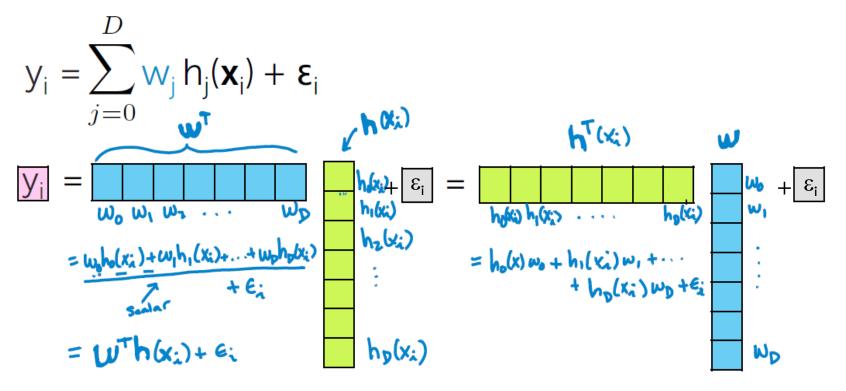
Think about interpretation in context of the model you put in.

Fitting in D-dimmensions

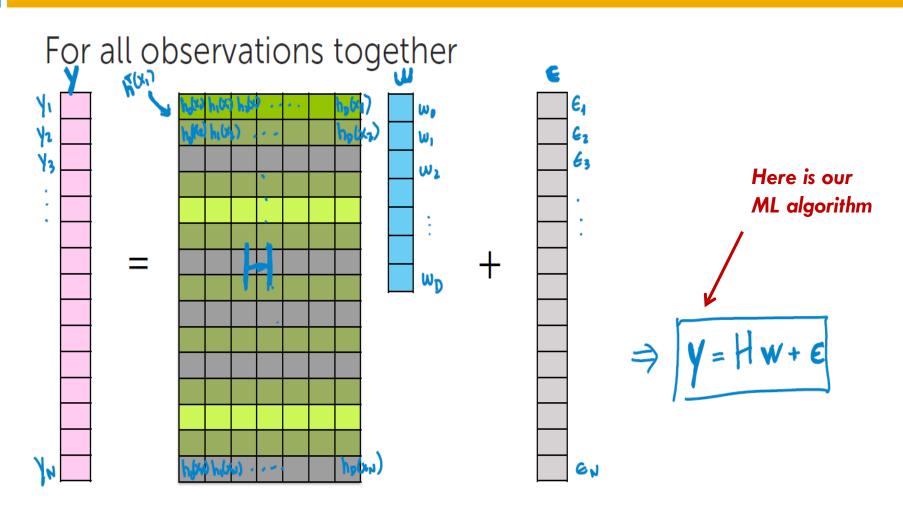


Rewriting in vector notation

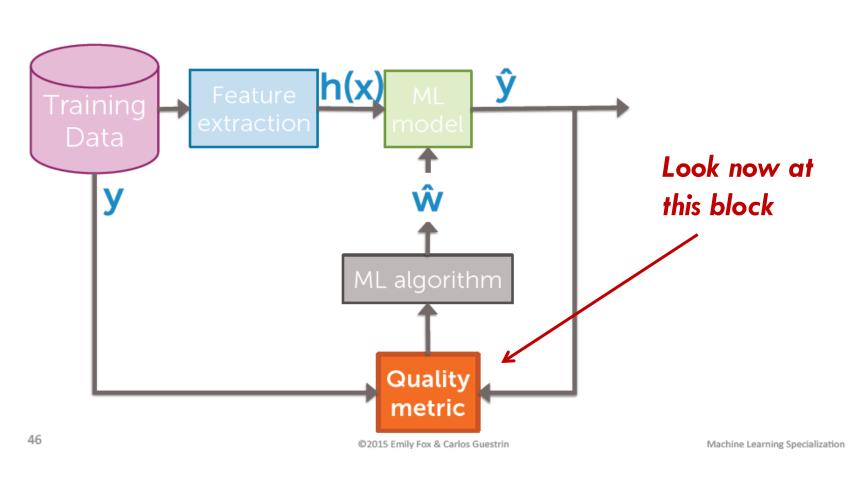
For observation i



Rewriting in matrix notation

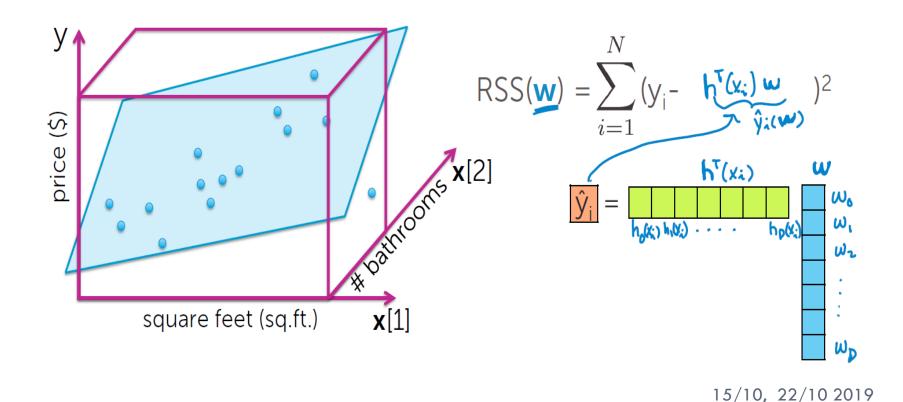


Fitting in D-dimmensions



Cost function in D-dimmension

RSS in vector notation



Cost function in D-dimmension

RSS in matrix notation

$$RSS(\mathbf{w}) = \sum_{i=1}^{N} (y_i - h(\mathbf{x}_i)^T \mathbf{w})^2$$

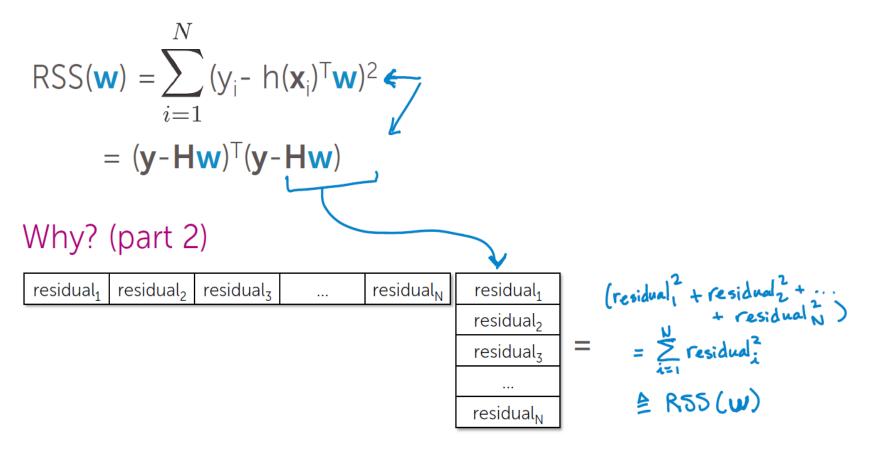
$$= (\mathbf{y} - \mathbf{H} \mathbf{w})^T (\mathbf{y} - \mathbf{H} \mathbf{w})$$

$$\text{Why? (part 1)} \quad \hat{\mathbf{y}}_i$$

$$= \mathbf{w}_i$$

$$\mathbf{y} = \mathbf{H} \mathbf{w}_i$$

RSS in matrix notation



Gradient of RSS

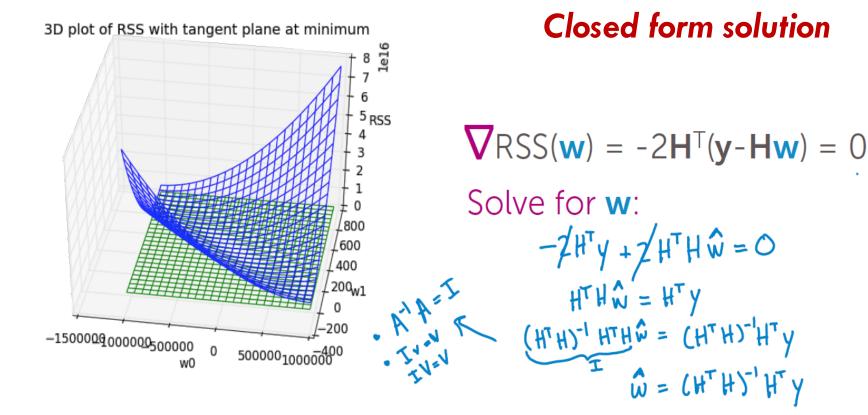
$$\nabla$$
RSS(w) = ∇ [(y-Hw)^T(y-Hw)]
= -2H^T(y-Hw)

Why? By analogy to 1D case:

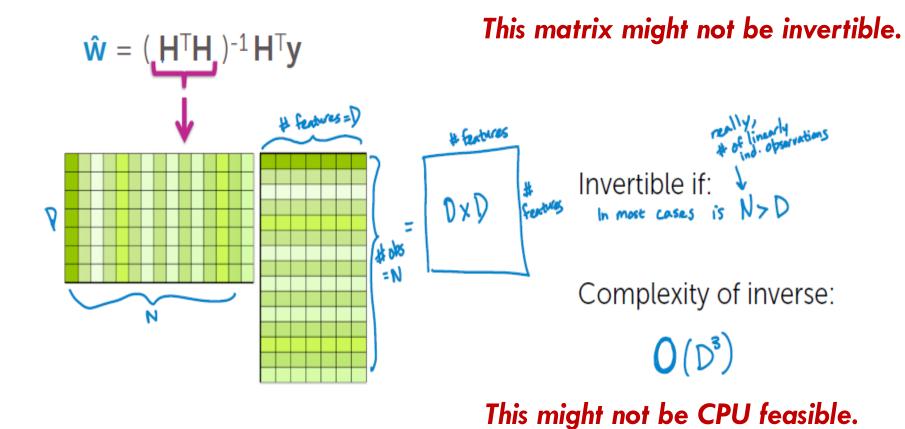
$$\frac{d}{d\omega} (y-h\omega)(y-h\omega) = \frac{d}{d\omega} (y-h\omega)^2 = 2 \cdot (y-h\omega)^1 (-h)$$

$$= -2h(y-h\omega)$$

Approach 1: set gradient to zero

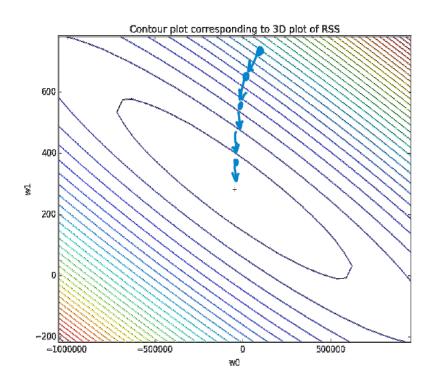


Closed-form solution



15/10, 22/10 2019

Approach 2: gradient descent



We initialise our solution somewhere and then ...

while not converged
$$\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} - \eta \nabla RSS(\mathbf{w}^{(t)})$$

$$-2\mathbf{H}^{\mathsf{T}}(\mathbf{y} - \mathbf{H}\mathbf{w})$$

$$\leftarrow \mathbf{w}^{(t)} + 2\eta \mathbf{H}^{\mathsf{T}}(\mathbf{y} - \mathbf{H}\mathbf{w}^{(t)})$$

$$\tilde{\gamma}(\mathbf{w}^{(t)})$$

Gradient descent

$$RSS(\mathbf{w}) = \sum_{i=1}^{N} (y_i - h(\mathbf{x}_i)^T \mathbf{w})^2$$

$$= \sum_{i=1}^{N} (y_i - w_0 h_0(\mathbf{x}_i) - w_1 h_1(\mathbf{x}_i) - \dots - w_0 h_0(\mathbf{x}_i))^2$$

$$\sum_{i=1}^{N} 2(y_i - w_0h_0(x_i) - w_1h_1(x_i) \dots - w_0h_0(x_i))^{1} \cdot (-h_j(x_i))$$

$$= -2\sum_{i=1}^{N} h_j(x_i)(y_i - h_i(x_i)^T w)$$

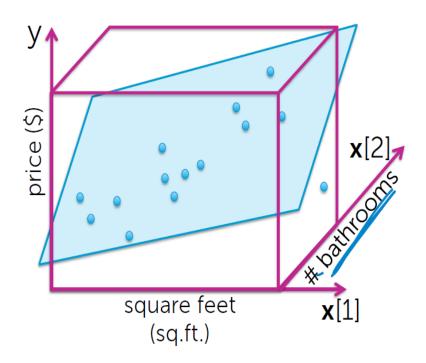
$$RSS(\mathbf{w}) = \sum_{i=1}^{N} (y_i - h(\mathbf{x}_i)^T \mathbf{w})^2$$

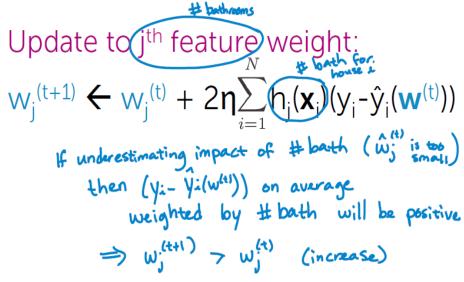
$$= \sum_{i=1}^{N} (y_i - \omega_0 h_0(\mathbf{x}_i) - \omega_1 h_1(\mathbf{x}_i) - \cdots - \omega_0 h_0(\mathbf{x}_i)^2)$$
Update to jth feature weight:
$$W_j^{(t+1)} \leftarrow W_j^{(t)} - \eta(-2\sum_{i=1}^{N} h_j(\mathbf{x}_i)(y_i - h^T(\mathbf{x}_i)\omega^{(t)})$$

$$= -2\sum_{i=1}^{N} h_j(\mathbf{x}_i)(y_i - h(\mathbf{x}_i)^T \omega)$$

$$= -2\sum_{i=1}^{N} h_j(\mathbf{x}_i)(y_i - h(\mathbf{x}_i)^T \omega)$$

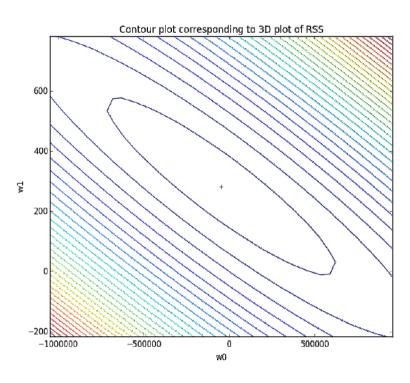
Interpreting elementwise





Summary of gradient descent

Extremely useful algorithm in several applications



init
$$\mathbf{w}^{(1)} = 0$$
 (or randomly, or smartly), $t = 1$

while $\|\nabla RSS(\mathbf{w}^{(t)})\| > \varepsilon$

for $j = 0,...,D$

partial[j] = $-2\sum_{i=1}^{N} h_{j}(\mathbf{x}_{i})(y_{i} - \hat{y}_{i}(\mathbf{w}^{(t)}))$
 $\mathbf{w}_{j}^{(t+1)} \leftarrow \mathbf{w}_{j}^{(t)} - \eta$ partial[j]

 $\mathbf{t} \leftarrow \mathbf{t} + 1$

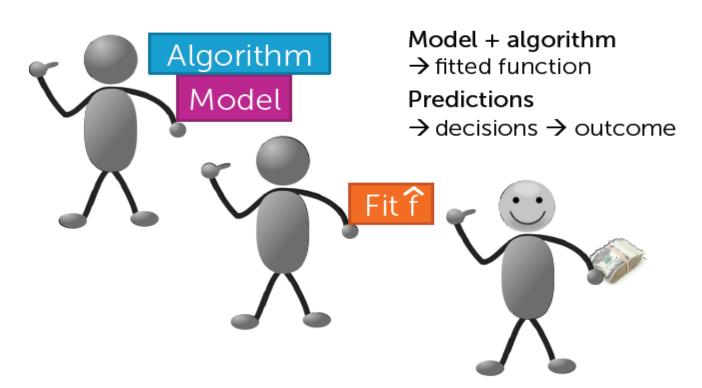
What you can do now

- Describe polynomial regression
- Detrend a time series using trend and seasonal components
- Write a regression model using multiple inputs or features thereof
- Cast both polynomial regression and regression with multiple inputs as regression with multiple features
- Calculate a goodness-of-fit metric (e.g., RSS)
- Estimate model parameters of a general multiple regression model to minimize RSS:
 - In closed form
 - Using an iterative gradient descent algorithm
- Interpret the coefficients of a non-featurized multiple regression fit
- Exploit the estimated model to form predictions
- Explain applications of multiple regression beyond house price modeling

ACCESSING PERFORMANCE

Assessing performance

Make predictions, get \$, right??



Assessing performance

Or, how much am I losing?

Example: Lost \$ due to inaccurate listing price

- Too low → low offers
- Too high → few lookers + no/low offers

How much am I losing compared to perfection?

Perfect predictions: Loss = 0

My predictions: Loss = ???

Measuring loss

"Remember that all models are wrong; the practical question is how wrong do they have to be to not be useful." George Box, 1987.

Examples:

(assuming loss for underpredicting = overpredicting)

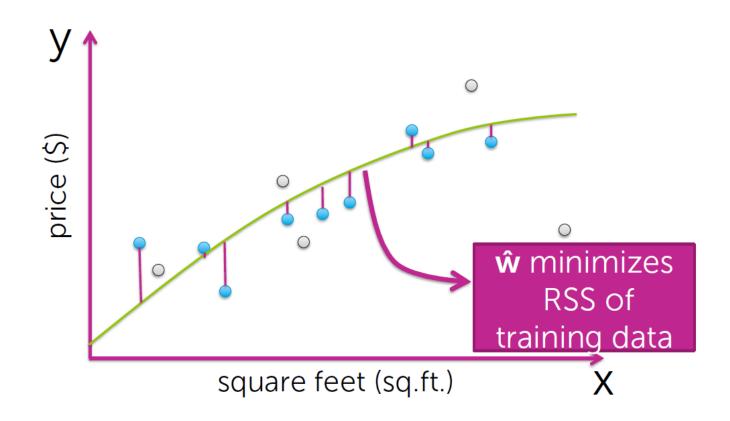
Absolute error: $L(y, f_{\hat{\mathbf{w}}}(\mathbf{x})) = |y - f_{\hat{\mathbf{w}}}(\mathbf{x})|$

Squared error: $L(y,f_{\hat{\mathbf{w}}}(\mathbf{x})) = (y-f_{\hat{\mathbf{w}}}(\mathbf{x}))^2$

Symmetric loss functions

Accessing the loss

Use training data



Compute training error

- 1. Define a loss function $L(y,f_{\hat{w}}(x))$
 - E.g., squared error, absolute error,...

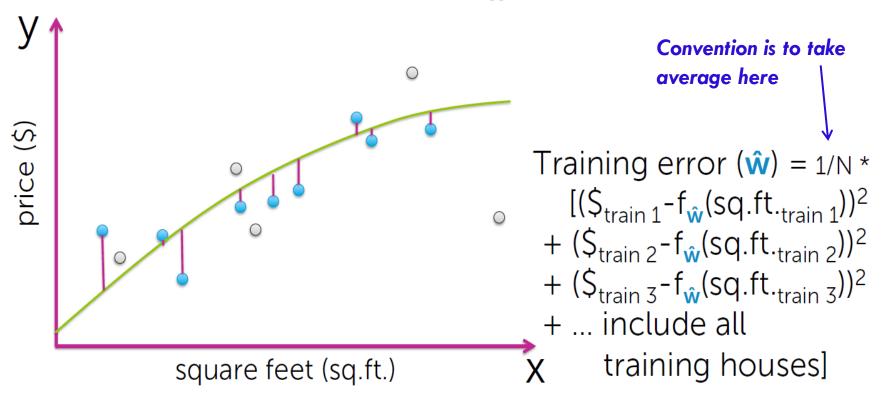
- 2. Training error
 - = avg. loss on houses in training set

$$= \frac{1}{N} \sum_{i=1}^{N} L(y_i, f_{\hat{\mathbf{w}}}(\mathbf{x}_i))$$

fit using training data

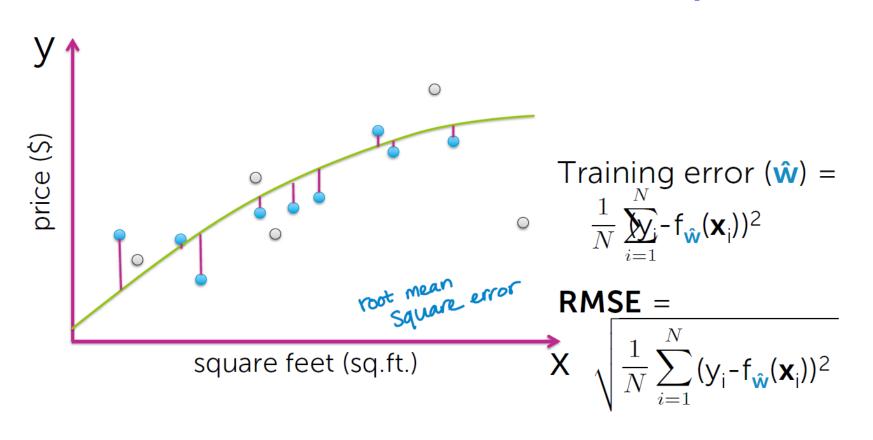
Training error

Use squared error loss $(y-f_{\hat{w}}(x))^2$

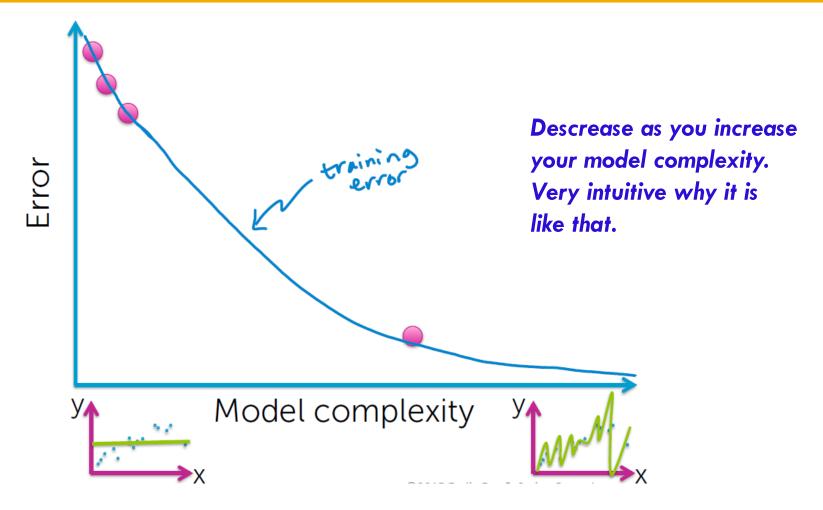


Training error

More intuitive is to take RMSE, same units as y



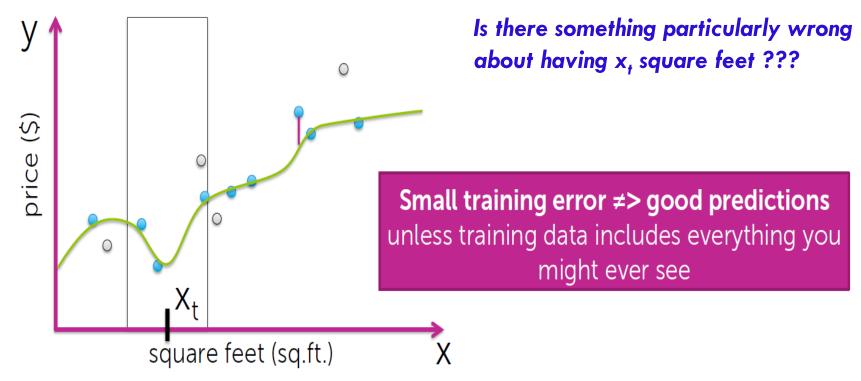
Training error vs. model complexity



Is training error a good measure?

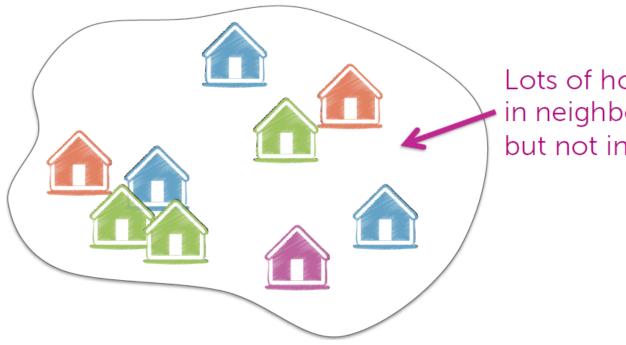
Issue: Training error is overly optimistic

because www was fit to training data



Generalisation (true) error

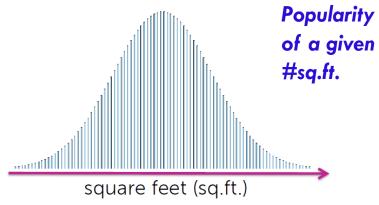
Really want estimate of loss over all possible (1,\$) pairs



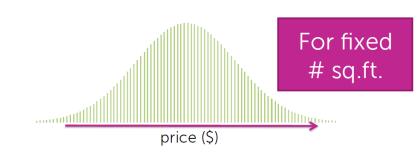
Lots of houses in neighborhood, but not in dataset

Distribution over house

In our neighborhood, houses of what # sq.ft. (1) are we likely to see?



For houses with a given # sq.ft. (1), what house prices \$ are we likely to see?



Generalisation error definition

Really want estimate of loss over all possible (1,\$) pairs

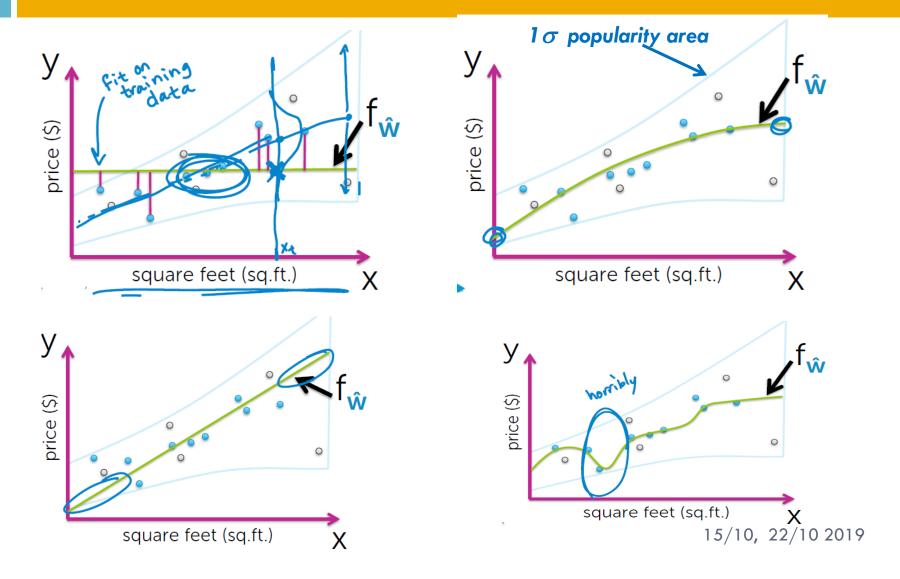
Formally:

average over all possible (**x**,y) pairs weighted by how likely each is

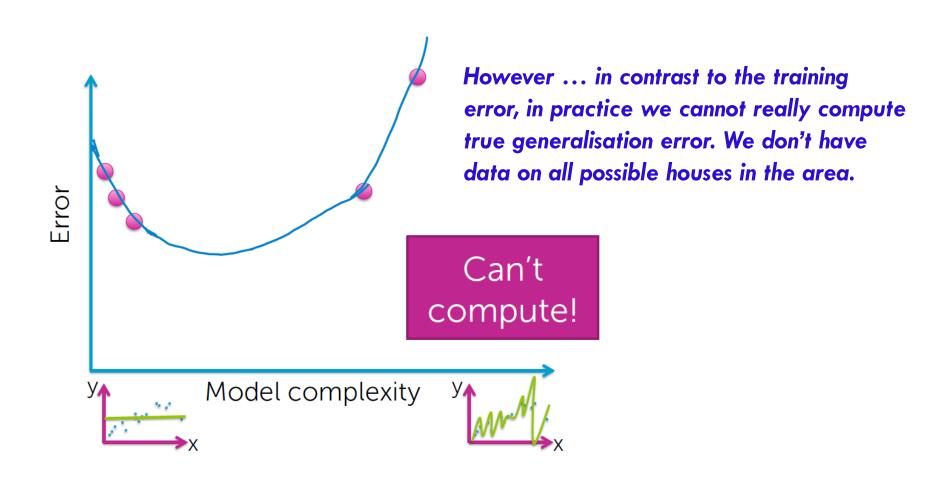
generalization error = $E_{\mathbf{x},y}^{\downarrow}[L(y,f_{\hat{\mathbf{w}}}(\mathbf{x}))]$

fit using training data

Generalisation error (weighted with popularity) vs model complexity



Generalisation error vs model complexity



Forming a test set

We want to approximate generalisation error.

Test set: proxy for ,,everything you might see"

Training set

Test set

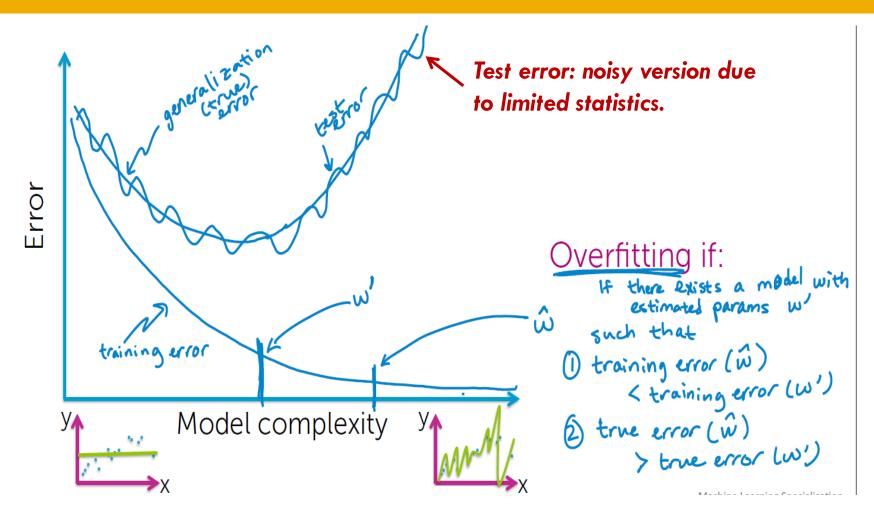
Compute test error

Test error

= avg. loss on houses in test set

has never seen test data!

Training, true and test error vs. model complexity. Notion of overfitting.



Training/test splits

Training set Test set

Typically, just enough test points to form a reasonable estimate of generalization error

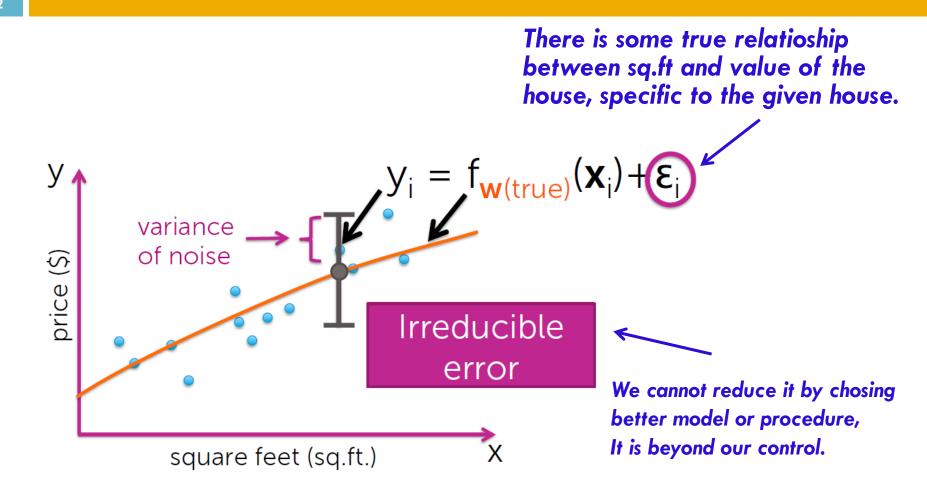
If this leaves too few for training, other methods like **cross validation** (will see later...)

Three sources of errors

In forming predictions, there are 3 sources of error:

- 1. Noise
- 2. Bias
- 3. Variance

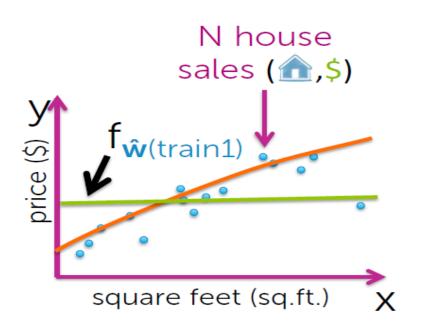
Data are inherently noisy

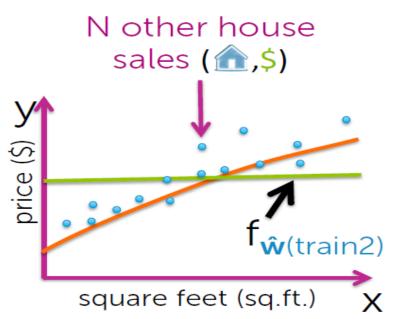


Bias contribution

This contribution we can control.

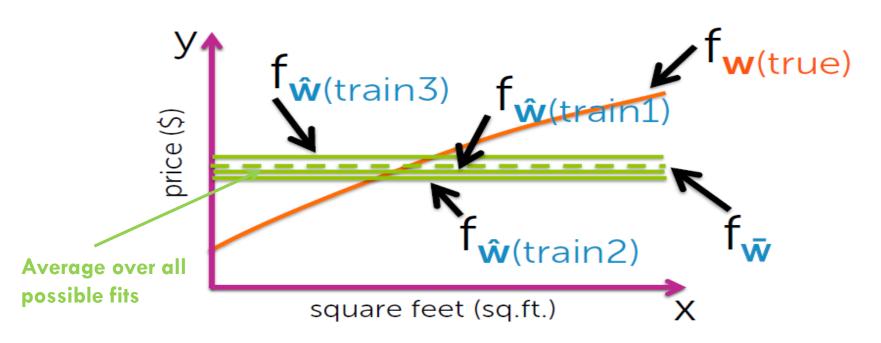
Assume we fit a constant function



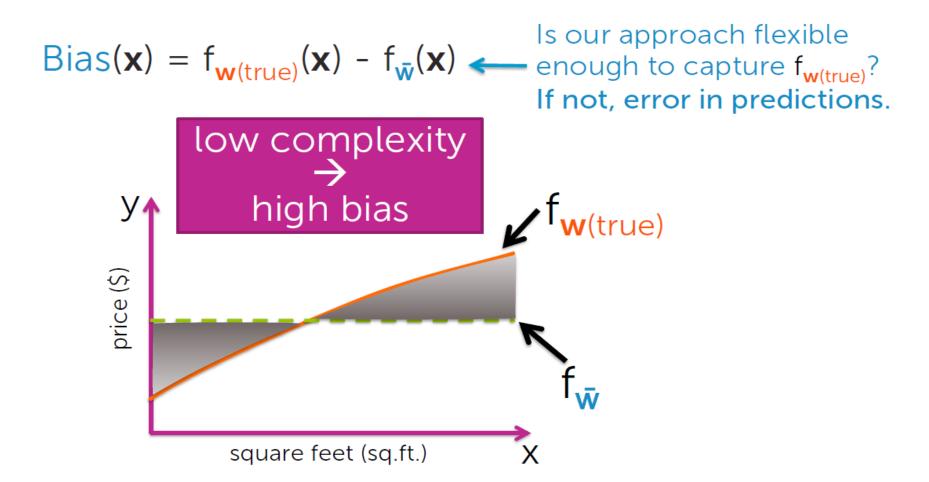


Bias contribution

Over all possible size N training sets, what do I expect my fit to be?

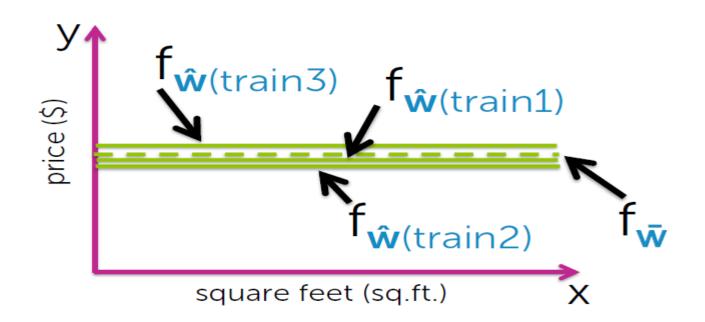


Bias contribution



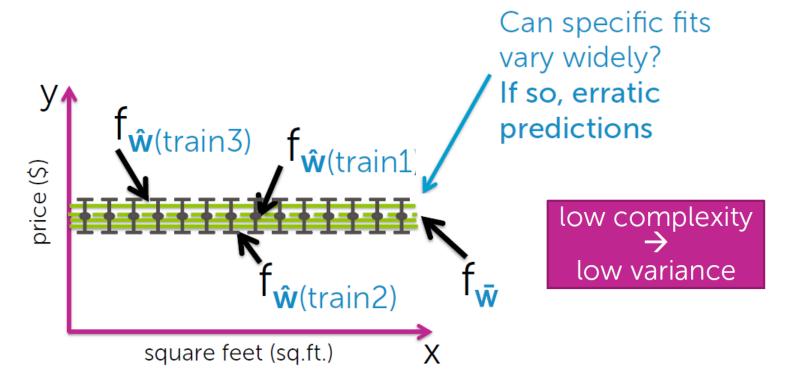
Variance contribution

How much do specific fits vary from the expected fit?



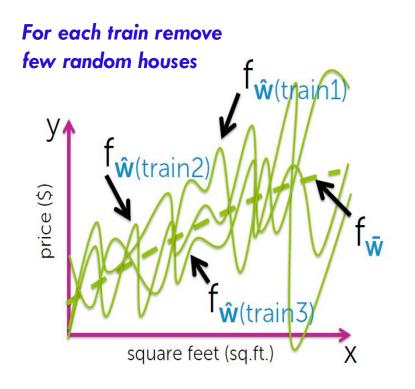
Variance contribution

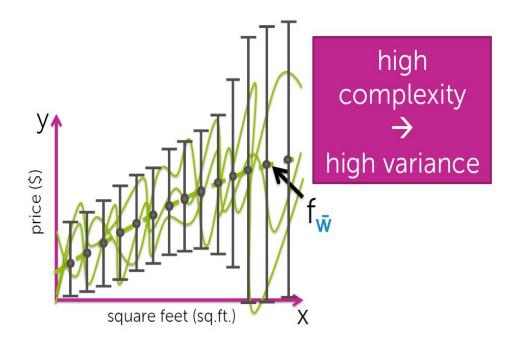
How much do specific fits vary from the expected fit?



Variance of high complexity models

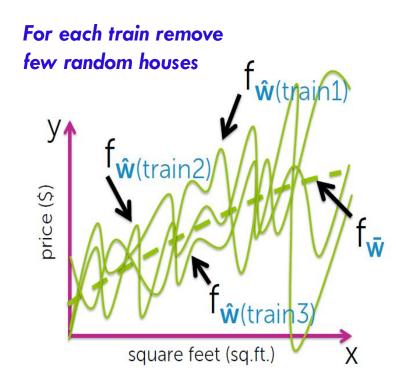
Assume we fit a high-order polynomial

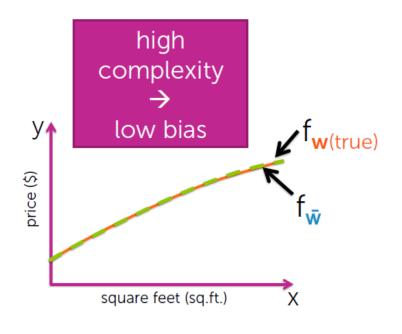




Bias of high complexity models

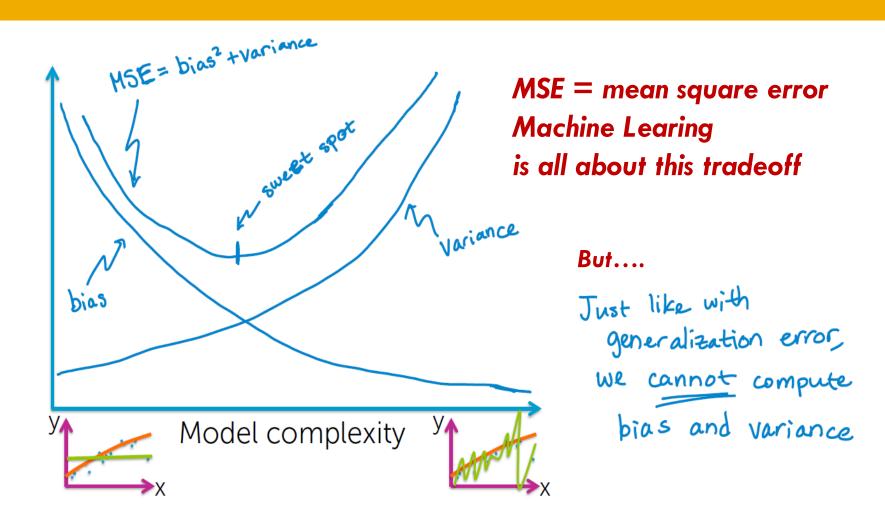
Assume we fit a high-order polynomial



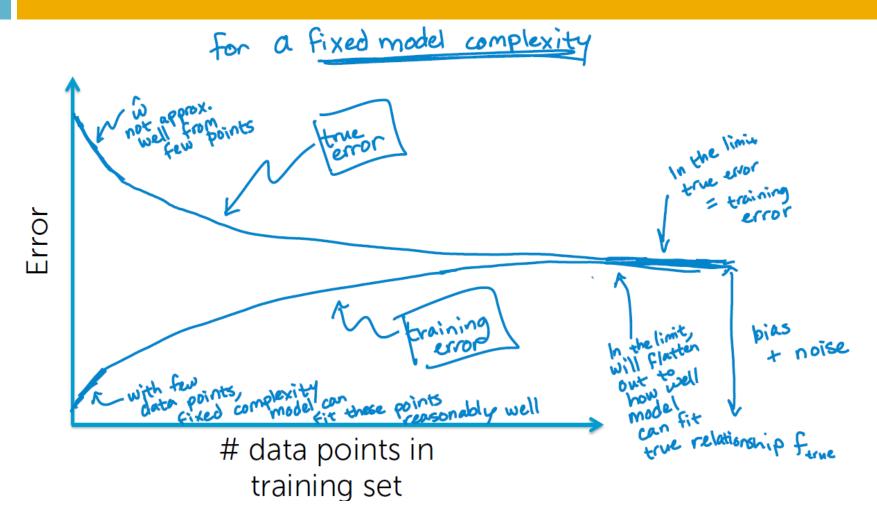


High complexity models are very flexible, pick better average trends.

Bias -variance tradeoff



Errors vs amount of data



The regression/ML workflow

Model selection
 Often, need to choose tuning parameters λ controlling model complexity (e.g. degree of polynomial)

Model assessment Having selected a model, assess the generalization error

Hypothetical implementation

Training set

Test set

Model selection

For each considered model complexity λ :

- i. Estimate parameters $\hat{\mathbf{w}}_{\lambda}$ on training data
- ii. Assess performance of $\hat{\mathbf{w}}_{\lambda}$ on test data
- iii. Choose λ^* to be λ with lowest test error

Model assessment

Compute test error of $\hat{\mathbf{w}}_{\lambda^*}$ (fitted model for selected complexity λ^*) to approx. generalization error

Hypothetical implementation

Training set

Test set

Model selection

For each considered model complexity λ :

- i. Estimate parameters $\hat{\mathbf{w}}_{\lambda}$ on training data
- ii. Assess performance of $\hat{\mathbf{w}}_{\lambda}$ on test data
- iii. Choose λ^* to be λ with lowest test error

2. Model assessment

Overly optimistic!

Compute test error of $\hat{\mathbf{w}}_{\lambda^*}$ (fitted model for selected complexity λ^*) to approx. generalization error

Hypothetical implementation

Training set

Test set

Issue: Just like fitting w and assessing its performance both on training data

- λ* was selected to minimize test error (i.e., λ* was fit on test data)
- If test data is not representative of the whole world, then $\hat{\mathbf{w}}_{\lambda^*}$ will typically perform worse than test error indicates

Practical implementation

Training set

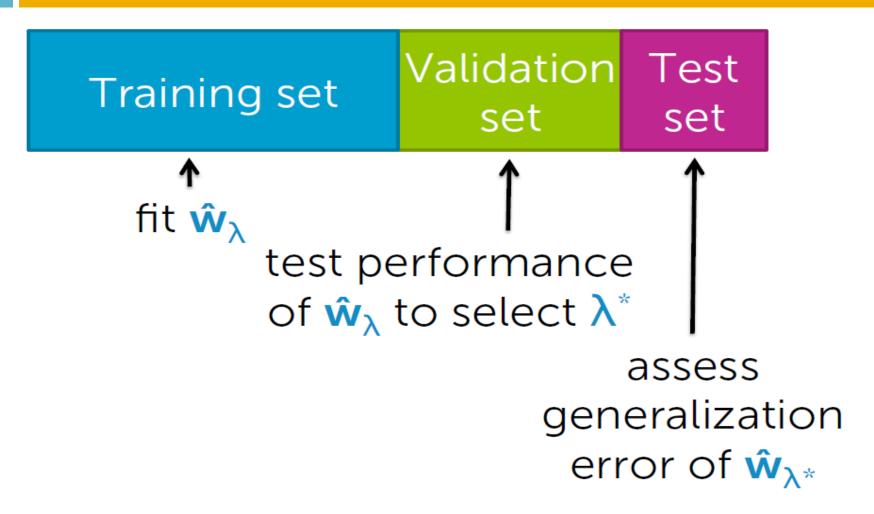
Validation Test set

set

Solution: Create two "test" sets!

- 1. Select λ^* such that $\hat{\mathbf{w}}_{\lambda^*}$ minimizes error on validation set
- 2. Approximate generalization error of $\hat{\mathbf{w}}_{\lambda^*}$ using test set

Practical implementation



Typical splits

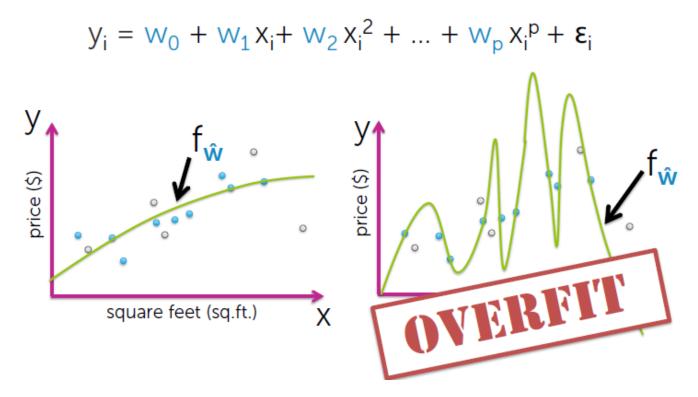
Training set	Validation set	Test set
80%	10%	10%
50%	25%	25%

What you can do now

- Describe what a loss function is and give examples
- Contrast training, generalization, and test error
- Compute training and test error given a loss function
- Discuss issue of assessing performance on training set
- Describe tradeoffs in forming training/test splits
- List and interpret the 3 sources of avg. prediction error
 - Irreducible error, bias, and variance
- Discuss issue of selecting model complexity on test data and then using test error to assess generalization error
- Motivate use of a validation set for selecting tuning parameters (e.g., model complexity)
- Describe overall regression workflow

RIDGE REGRESSION

Flexibility of high-order polynomials



Symptoms for overfitting: often associated with very large value of estimated parameters \hat{w}

Overfitting with many features

Not unique to polynomial regression, but also if **lots of inputs** (d large)

Or, generically, lots of features (D large) $y_i = \sum_{i=0}^{D} w_j h_j(\mathbf{x}_i) + \mathbf{\epsilon}_i$

- Square feet
- + bathrooms
- # bedrooms
- Lot size
- Year built

- ...

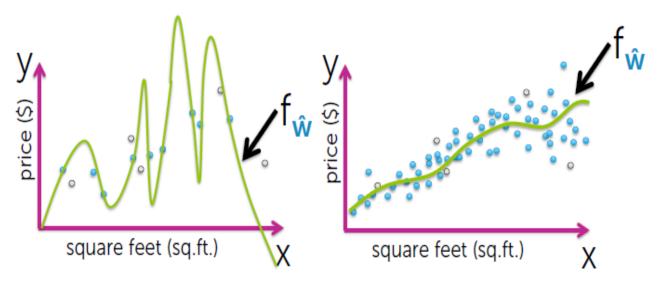
How does # of observations influence overfitting?

Few observations (N small)

→ rapidly overfit as model complexity increases

Many observations (N very large)

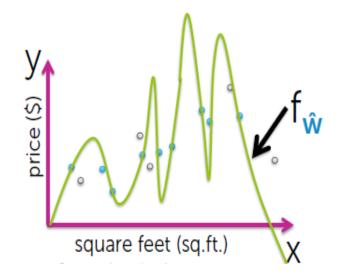
→ harder to overfit



How does # of inputs influence overfitting?

1 input (e.g., sq.ft.):

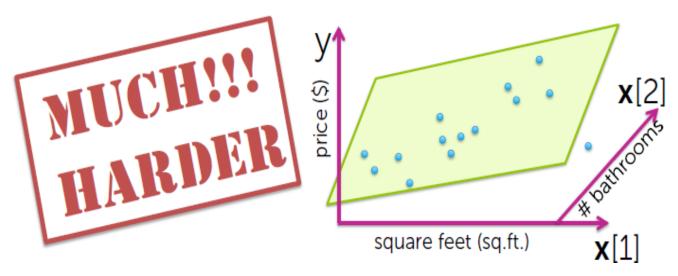
Data must include representative examples of all possible (sq.ft., \$) pairs to avoid overfitting



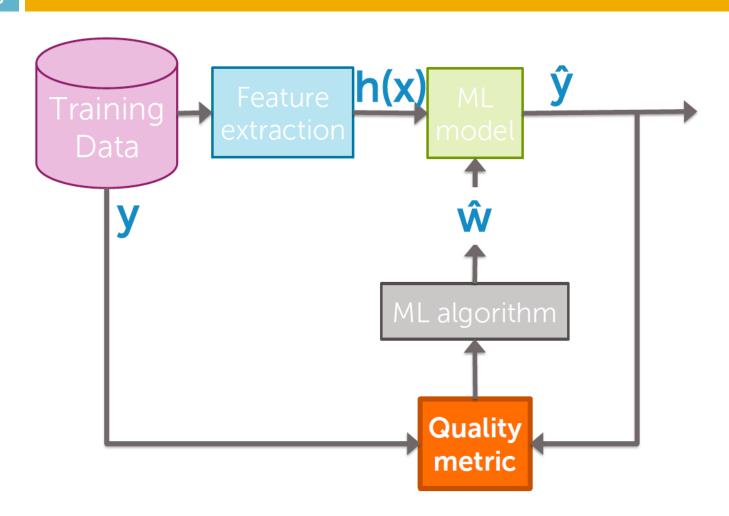
How does # of inputs influence overfitting?

d inputs (e.g., sq.ft., #bath, #bed, lot size, year,...):

Data must include examples of all possible (sq.ft., #bath, #bed, lot size, year,...., \$) combos to avoid overfitting



Lets improve quality metric blok



Desire total cost format

Want to balance:

- How well function fits data
- ii. Magnitude of coefficients

```
Total cost =

measure of fit + measure of magnitude

of coefficients

small # = good fit to
training data

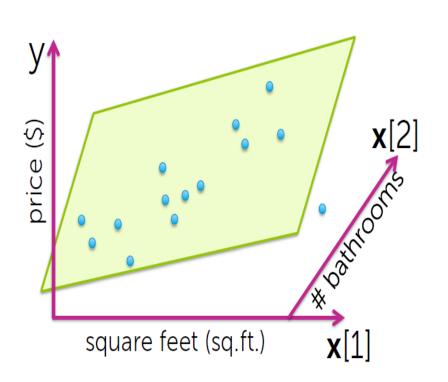
want Toe Balla Actuality of fit

measure of magnitude

of coefficients

small # = not overfit
```

Measure of fit to training data



$$RSS(\mathbf{w}) = \sum_{i=1}^{N} (y_i - h(\mathbf{x}_i)^T \mathbf{w})^2$$

$$= \sum_{i=1}^{N} (y_i - h(\mathbf{x}_i)^T \mathbf{w})^2$$

$$= \sum_{i=1}^{N} (y_i - h(\mathbf{x}_i)^T \mathbf{w})^2$$

$$= \sum_{i=1}^{N} (y_i - h(\mathbf{x}_i)^T \mathbf{w})^2$$

Measure of magnitude of regression coefficients

What summary # is indicative of size of regression coefficients?

- Sum of absolute value?

 | Wal + | Wal = | Wal | = | Wal | Li norm ... discuss more in next module
- Sum of squares (L_2 norm) $w_0^2 + w_1^2 + ... + w_0^2 = \sum_{j=0}^{2} w_j^2 \triangleq \|\mathbf{w}\|_2^2 \quad L_2 \text{ norm } ... \text{ focus of this module}$

Consider specific total cost

```
Total cost =

measure of fit + measure of magnitude

of coefficients

RSS(w)

||w||<sub>2</sub><sup>2</sup>
```

Consider resulting objectives

What if <u>w</u> selected to minimize

$$RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_2^2$$

Ridge regression (a.k.a L_2 regularization)

tuning parameter = balance of fit and magnitude

```
If \lambda=0:

reduces to minimizing RSS(W), as before (old solution) \longrightarrow \hat{W}^{LS} theast squares
```

```
If \lambda = \infty:

For solutions where \hat{w} \neq 0, then total cost is \infty

If \hat{w} = 0, then total cost = RSS(0) \longrightarrow solution is \hat{w} = 0
```

If λ in between: Then $0 \le \|\hat{\omega}\|_{\infty}^2 \le \|\hat{\omega}^{2}\|_{\infty}^2$

Ridge regression: bias-variance tradeoff

Large λ :

high bias, low variance

(e.g., $\hat{\mathbf{w}} = 0$ for $\lambda = \infty$)

In essence, λ controls model complexity

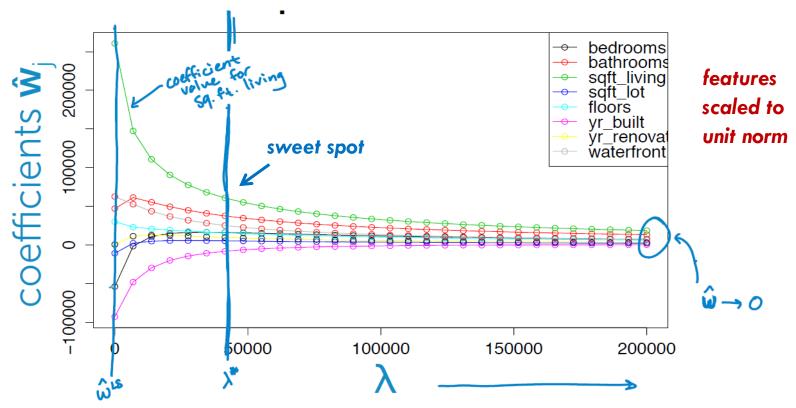
Small λ :

low bias, high variance

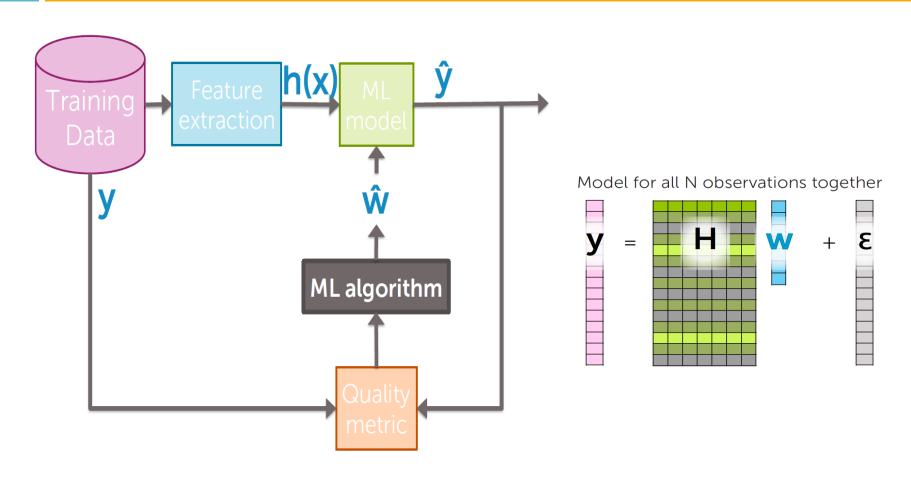
(e.g., standard least squares (RSS) fit of high-order polynomial for λ =0)

Ridge regression: coefficients path

What happens if we refit our high-order polynomial, but now using ridge regression?



Flow chart



Ridge regression: cost in matrix notation

In matrix form, ridge regression cost is:

$$RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_{2}^{2}$$
$$= (\mathbf{y} - \mathbf{H}\mathbf{w})^{T}(\mathbf{y} - \mathbf{H}\mathbf{w}) + \lambda \mathbf{w}^{T}\mathbf{w}$$

Gradient of ridge regresion cost

$$\nabla [RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_{2}^{2}] = \nabla [(\mathbf{y} - \mathbf{H}\mathbf{w})^{T}(\mathbf{y} - \mathbf{H}\mathbf{w}) + \lambda \mathbf{w}^{T}\mathbf{w}]$$

$$= [\mathbf{y} - \mathbf{H}\mathbf{w})^{T}(\mathbf{y} - \mathbf{H}\mathbf{w})] + \lambda [\mathbf{w}^{T}\mathbf{w}]$$

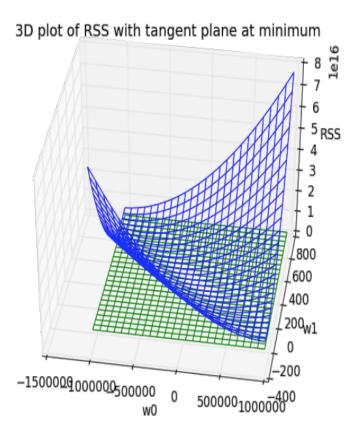
$$-2\mathbf{H}^{T}(\mathbf{y} - \mathbf{H}\mathbf{w})$$

$$2\mathbf{w}$$

Why? By analogy to 1d case...

 $\mathbf{w}^{\mathsf{T}}\mathbf{w}$ analogous to \mathbf{w}^2 and derivative of $\mathbf{w}^2 = 2\mathbf{w}$

Ridge regression: closed-form solution



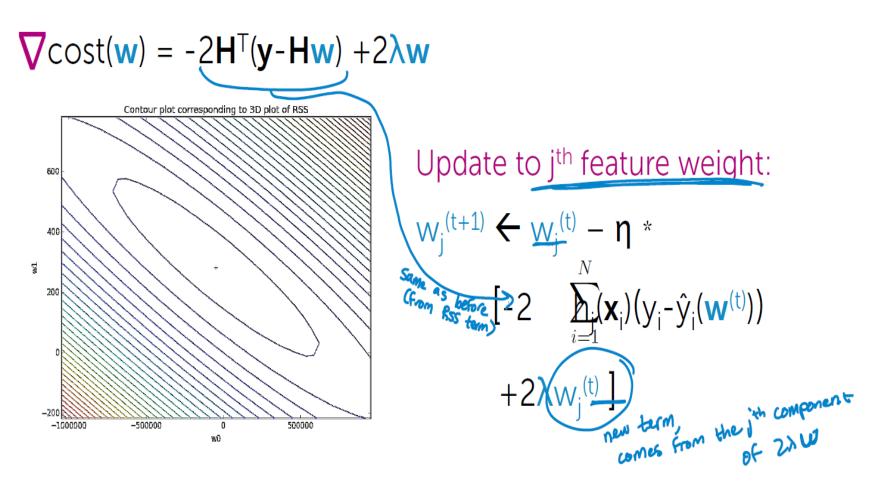
$$\nabla \text{cost}(\mathbf{w}) = -2\mathbf{H}^{\mathsf{T}}(\mathbf{y} - \mathbf{H}\mathbf{w}) + 2\lambda \mathbf{I}\mathbf{w} = 0$$
Solve for \mathbf{w} $\mathbf{H}^{\mathsf{T}}\mathbf{H} \hat{\mathbf{w}} + \lambda \mathbf{I} \hat{\mathbf{w}} = 0$

$$\mathbf{H}^{\mathsf{T}}\mathbf{H} \hat{\mathbf{w}} + \lambda \mathbf{I} \hat{\mathbf{w}} = \mathbf{H}^{\mathsf{T}}\mathbf{y}$$

$$(\mathbf{H}^{\mathsf{T}}\mathbf{H} + \lambda \mathbf{I}) \hat{\mathbf{w}} = \mathbf{H}^{\mathsf{T}}\mathbf{y}$$

$$\hat{\mathbf{w}} = (\mathbf{H}^{\mathsf{T}}\mathbf{H} + \lambda \mathbf{I})^{-1}\mathbf{H}^{\mathsf{T}}\mathbf{y}$$

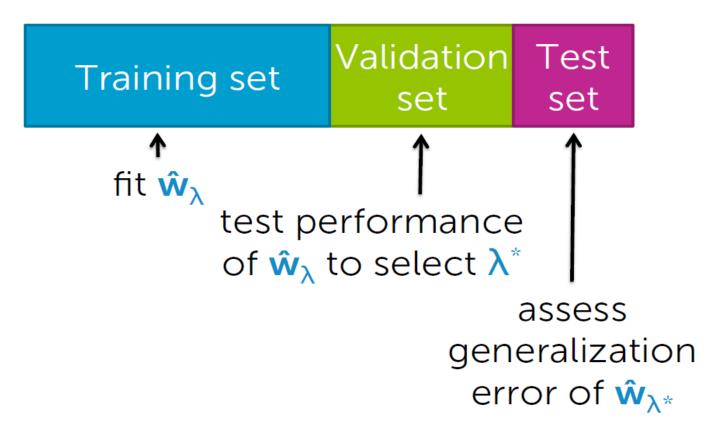
Ridge regression: gradient descent



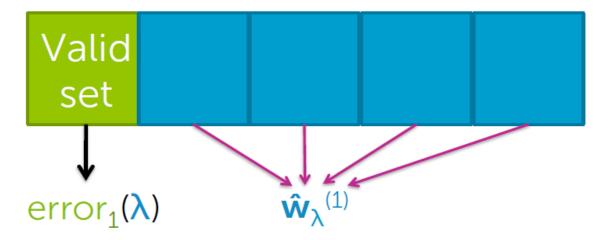
Summary of ridge regression algorithm

```
init \mathbf{w}^{(1)} = \mathbf{0} (or randomly, or smartly), t = 1
while ||\nabla RSS(\mathbf{w}^{(t)})|| > \epsilon
     for j = 0,...,D
     partial[j] = -2 \sum_{i=1}^{n} (\mathbf{x}_i)(y_i - \hat{y}_i(\mathbf{w}^{(t)}))
     w_i^{(t+1)} \leftarrow (1-2\eta\lambda)w_i^{(t)} - \eta \text{ partial}[j]
     t \leftarrow t + 1
```

If sufficient amount of data...



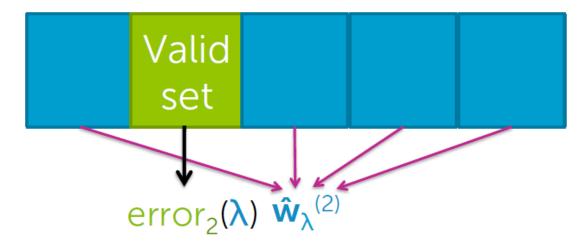
K-fold cross validation



For k=1,...,K

- 1. Estimate $\hat{\mathbf{w}}_{\lambda}^{(k)}$ on the training blocks
- 2. Compute error on validation block: $error_k(\lambda)$

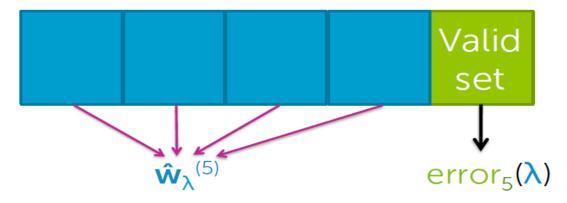
K-fold cross validation



For k=1,...,K

- 1. Estimate $\hat{\mathbf{w}}_{\lambda}^{(k)}$ on the training blocks
- 2. Compute error on validation block: $error_k(\lambda)$

K-fold cross validation



For k=1,...,K

- 1. Estimate $\hat{\mathbf{w}}_{\lambda}^{(k)}$ on the training blocks
- 2. Compute error on validation block: $error_k(\lambda)$

Compute average error:
$$CV(\lambda) = \frac{1}{K} \sum_{k=1}^{K} error_k(\lambda)$$

K-fold cross validation

Repeat procedure for each choice of λ

Choose λ^* to minimize $CV(\lambda)$

What value of K

Formally, the best approximation occurs for validation sets of size 1 (K=N)

leave-one-out cross validation

Computationally intensive

- requires computing N fits of model per λ

Typically, K=5 or 10

5-fold CV

10-fold CV

How to handle the intercept

Recall multiple regression model

```
Model:
y_i = \underset{D}{w_0} h_0(\mathbf{x}_i) + w_1 h_1(\mathbf{x}_i) + ... + w_D h_D(\mathbf{x}_i) + \epsilon_i
    =\sum_{\mathbf{W}_i} h_i(\mathbf{x}_i) + \epsilon_i
       i=0
feature 1 = h_0(\mathbf{x})...often 1 (constant)
feature 2 = h_1(x)... e.g., x[1]
feature 3 = h_2(x)... e.g., x[2]
feature D+1 = h_D(\mathbf{x})... e.g., \mathbf{x}[d]
```

Do we penalize intercept?

Standard ridge regression cost:

RSS(w) +
$$\lambda ||\mathbf{w}||_2^2$$

strength of penalty

Encourages intercept w_0 to also be small

Do we want a small intercept?

Conceptually, not indicative of overfitting...

Do we penalize intercept?

Option 1: don't penalize intercept

Modified ridge regression cost:

$$RSS(\mathbf{w}_{0}, \mathbf{w}_{rest}) + \lambda ||\mathbf{w}_{rest}||_{2}^{2}$$

Option 2: Center data first

If data are first centered about 0, then favoring small intercept not so worrisome

Step 1: Transform y to have 0 mean

Step 2: Run ridge regression as normal (closed-form or gradient algorithms)

What you can do now

- Describe what happens to magnitude of estimated coefficients when model is overfit
- Motivate form of ridge regression cost function
- Describe what happens to estimated coefficients of ridge regression as tuning parameter λ is varied
- Interpret coefficient path plot
- Estimate ridge regression parameters:
 - In closed form
 - Using an iterative gradient descent algorithm
- Implement K-fold cross validation to select the ridge regression tuning parameter λ

FEATURES SELECTION & LASSO REGRESSION

Why features selection?

Efficiency:

- If size(w) = 100B, each prediction is expensive
- If $\hat{\mathbf{w}}$ sparse, computation only depends on # of non-zeros

many zeros

$$\hat{\mathbf{y}}_{i} = \sum_{\hat{\mathbf{w}}_{j} \neq 0} \hat{\mathbf{w}}_{j} \, \mathbf{h}_{j}(\mathbf{x}_{i})$$

Interpretability:

– Which features are relevant for prediction?

Sparcity

Housing application

Lot size
Single Family
Year built
Last sold price
Last sale price/sqft
Finished sqft
Unfinished sqft
Finished basement sqft
floors

Flooring types

Parking type
Parking amount

Cooling Heating

Exterior materials

Roof type

Structure style

Dishwasher

Garbage disposal

Microwave

Range / Oven

Refrigerator

Washer

Dryer

Laundry location

Heating type

Jetted Tub

Deck

Fenced Yard

Lawn

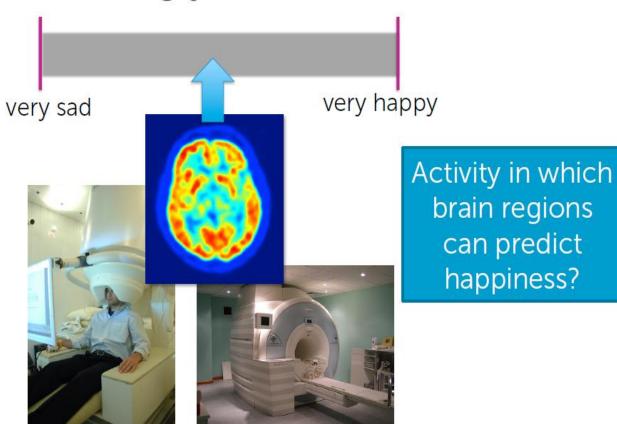
Garden

Sprinkler System

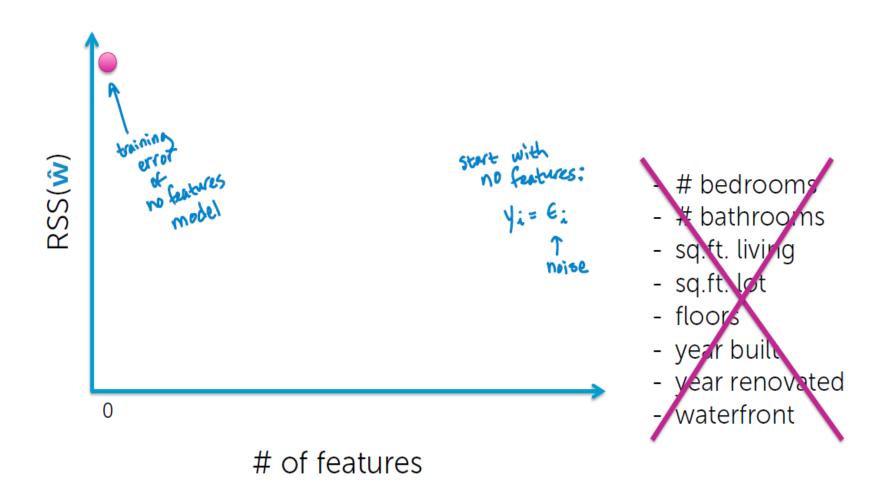
Ė

Sparcity

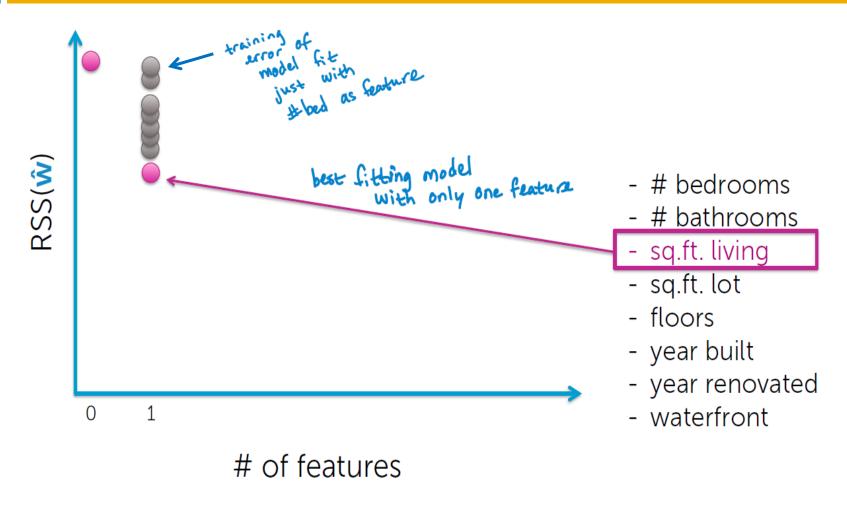
Reading your mind



Find best model of size: 0

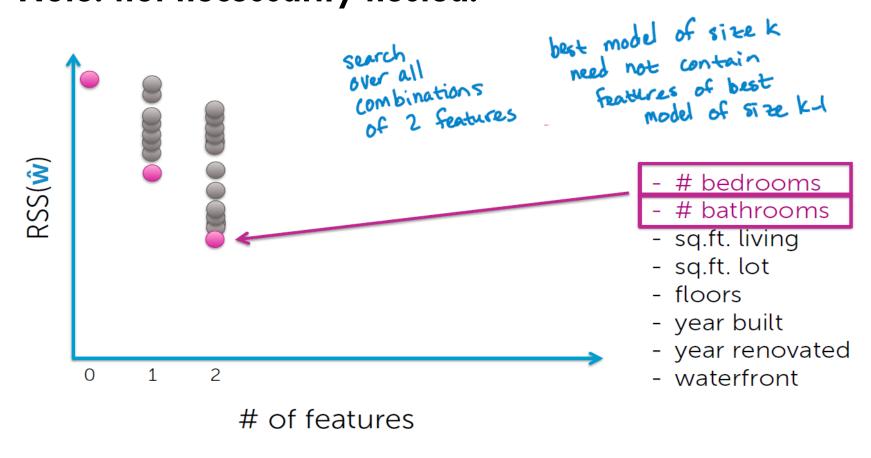


Find best model of size: 1

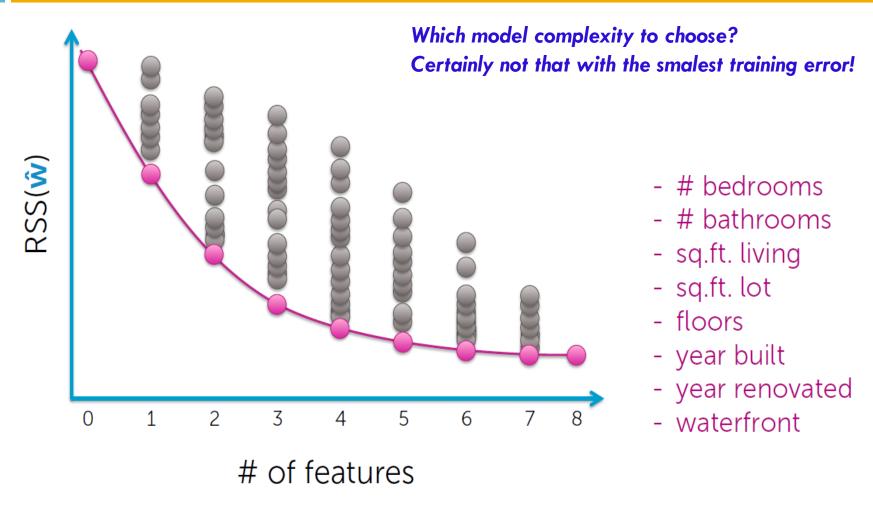


Find best model of size: 2

Note: not necessarily nested!



Find best model of size: N



Choosing model complexity

Option 1: Assess on validation set

Option 2: Cross validation

Option 3+: Other metrics for penalizing model complexity like BIC...

Complexity of "all subsets"

How many models were evaluated?

- each indexed by features included

$$\begin{aligned} y_i &= \epsilon_i \\ y_i &= w_0 h_0(\mathbf{x}_i) + \epsilon_i \\ y_i &= w_1 h_1(\mathbf{x}_i) + \epsilon_i \\ &\vdots \\ y_i &= w_0 h_0(\mathbf{x}_i) + w_1 h_1(\mathbf{x}_i) + \epsilon_i \\ &\vdots \\ y_i &= w_0 h_0(\mathbf{x}_i) + w_1 h_1(\mathbf{x}_i) + \dots + w_D h_D(\mathbf{x}_i) + \epsilon_i \end{aligned}$$

```
[0\ 0\ 0\ ...\ 0\ 0\ 0]
[1 0 0 ... 0 0 0]
[0 1 0 ... 0 0 0]
[110...000]
```

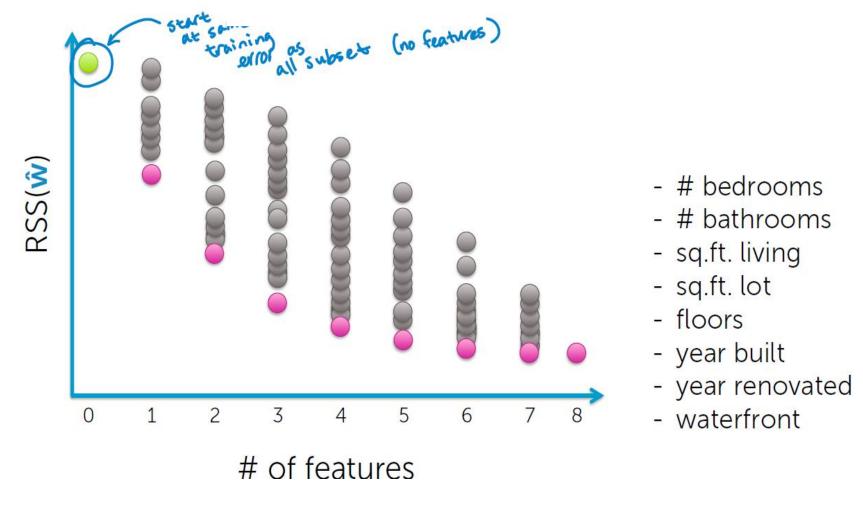
$$2^{8} = 256$$
 $2^{30} = 1,073,741,824$
 $2^{1000} = 1.071509 \times 10^{301}$
 $2^{100B} = HUGE!!!!!!$

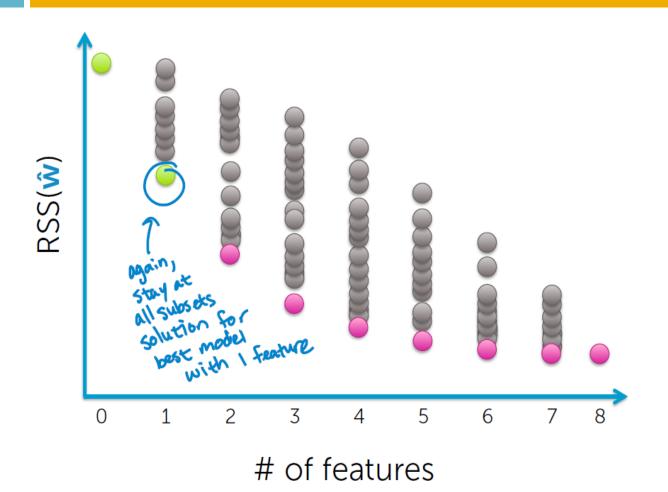
Typically, computationally infeasible

Greedy algorithm

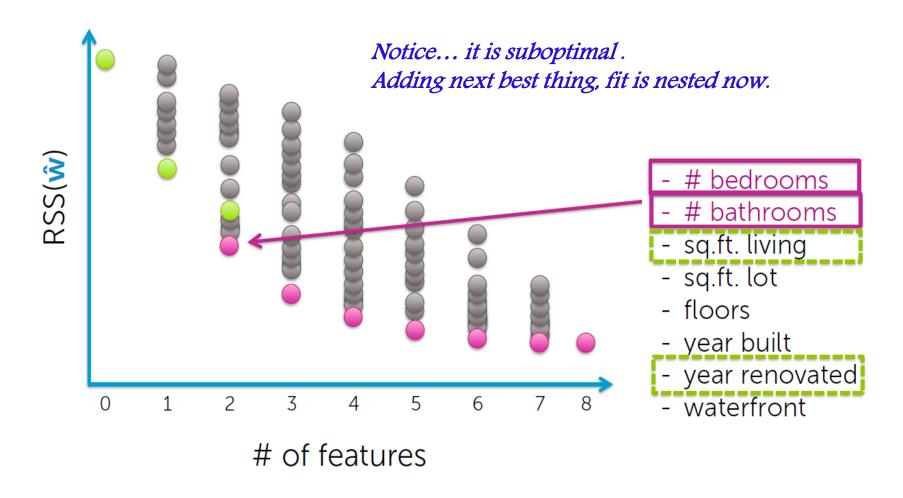
Forward stepwise algorithm

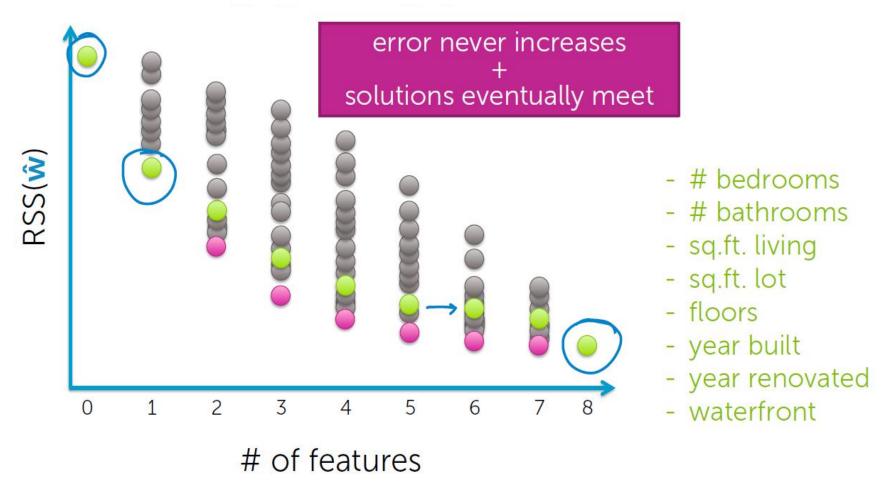
- 1. Pick a dictionary of features $\{h_0(x),...,h_D(x)\}$
 - e.g., polynomials for linear regression
- 2. Greedy heuristic:
 - i. Start with empty set of features $F_0 = \emptyset$ (or simple set, like just $h_0(\mathbf{x}) = 1 \rightarrow y_i = w_0 + \varepsilon_i$)
 - ii. Fit model using current feature set F_t to get $\hat{\mathbf{w}}^{(t)}$
 - iii. Select next best feature $h_{i*}(x)$
 - e.g., h_i(x) resulting in lowest training error when learning with F_t + {h_i(x)}
 - iv. Set $F_{t+1} \leftarrow F_t + \{h_{j*}(\mathbf{x})\}$
 - v. Recurse





- # bedrooms
- # bathrooms
- sq.ft. living
- sq.ft. lot
- floors
- year built
- year renovated
- waterfront





When do we stop?

When training error is low enough?

No!

When test error is low enough?

No!

Use validation set or cross validation!

Complexity of forward stepwise

How many models were evaluated?

- 1st step, D models
- 2nd step, D-1 models (add 1 feature out of D-1 possible)
- 3rd step, D-2 models (add 1 feature out of D-2 possible)
- ...

How many steps?

- Depends
- At most D steps (to full model)

Other greedy algorithms

Instead of starting from simple model and always growing...

Backward stepwise:

Start with full model and iteratively remove features least useful to fit

Combining forward and backward steps:

In forward algorithm, insert steps to remove features no longer as important

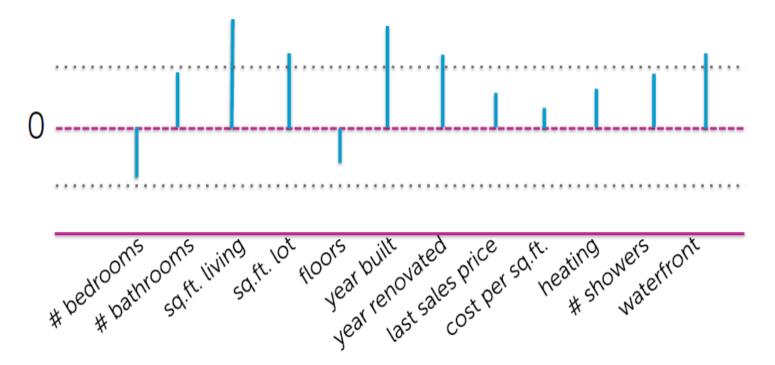
Lots of other variants, too.

Using regularisation for features selection

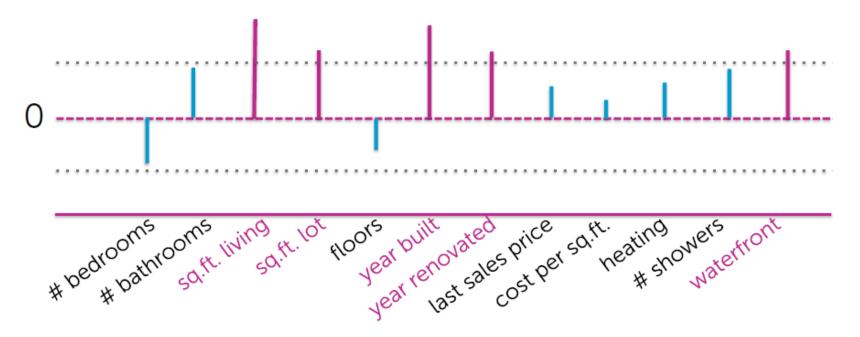
Instead of searching over a **discrete** set of solutions, can we use regularization?

- Start with full model (all possible features)
- "Shrink" some coefficients exactly to 0
 - i.e., knock out certain features
- Non-zero coefficients indicate "selected" features

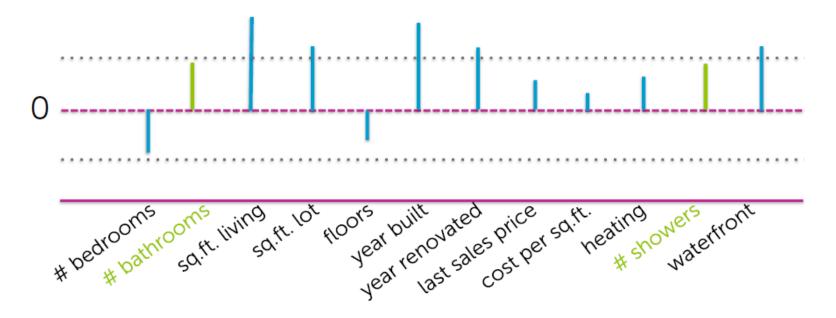
Why don't we just set small ridge coefficients to 0?



Selected features for a given threshold value



Let's look at two related features...



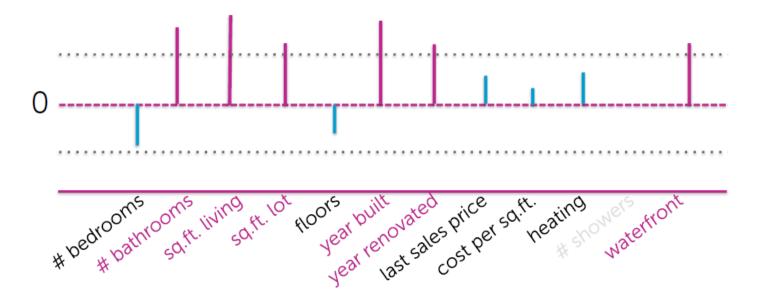
Nothing measuring bathrooms was included!

If only one of the features had been included...

Remember:

this is linear model. If we assume that #showers = #bathrooms and remove one of them from the model, coefficients will sum up.

Would have included bathrooms in selected model



Can regularization lead directly to sparsity?

Try this cost instead of ridge ...

```
Total cost =
    measure of fit + \lambda measure of magnitude
                 of coefficients
        RSS(w)
                              ||\mathbf{w}||_1 = ||\mathbf{w}_0|| + ... + ||\mathbf{w}_D||
                                                 Leads to
         Lasso regression
                                                  sparse
(a.k.a. L_1 regularized regression)
                                                solutions!
```

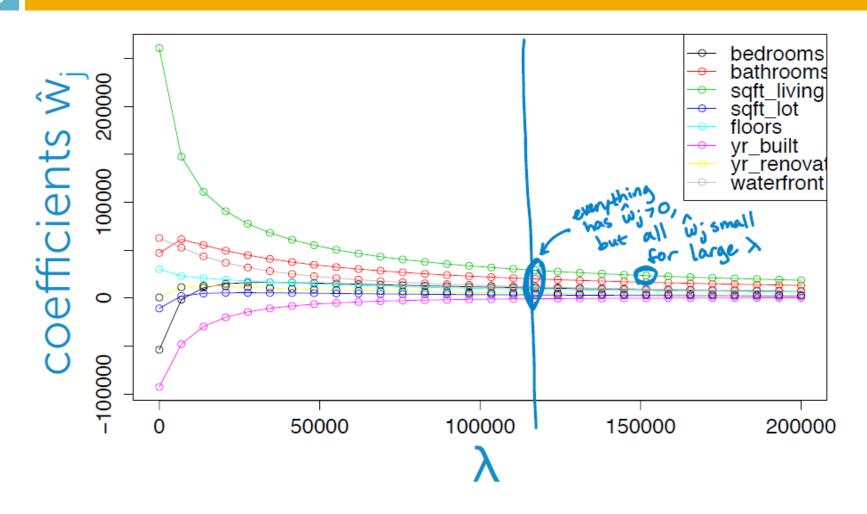
Lasso regression

Just like ridge regression, solution is governed by a continuous parameter λ

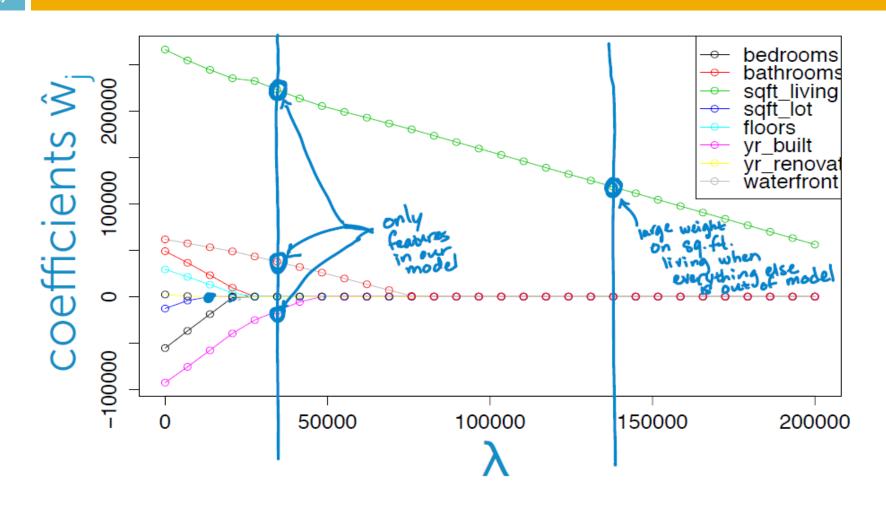
$$||f||_{1} = 0: \quad ||f||_{2} = ||f||_{1} = 0: \quad ||f||_{2} = ||f||_$$

If λ in between: $0 \leq \|\hat{\mathbf{w}}^{\text{lesso}}\|_{1} \leq \|\hat{\mathbf{w}}^{\text{less}}\|_{1}$

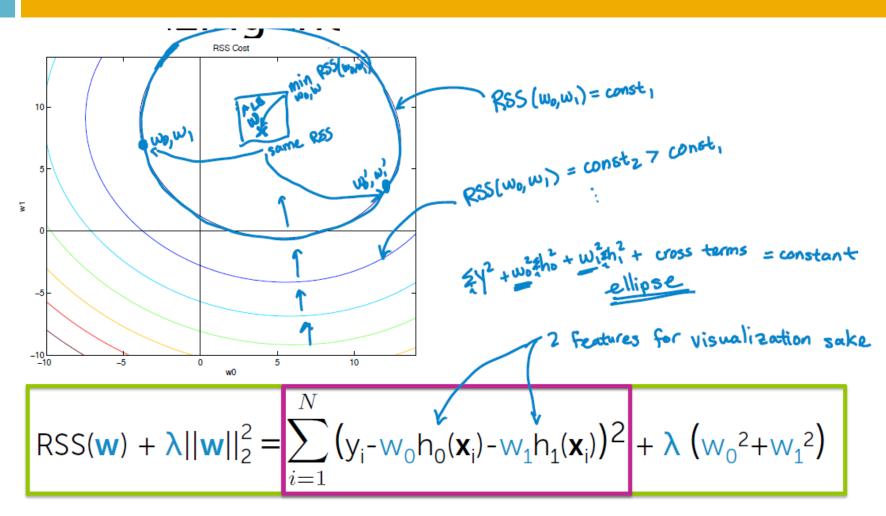
Coefficient path: ridge



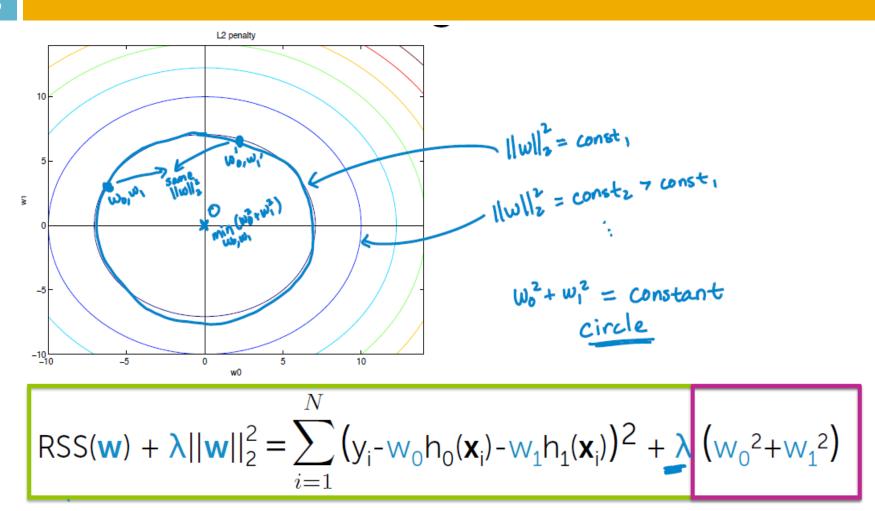
Coefficient path: lasso



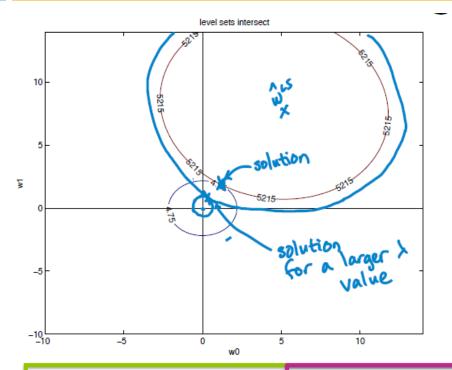
Visualising ridge cost in 2D



Visualising ridge cost in 2D



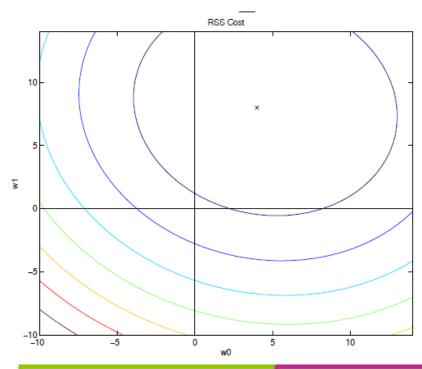
Visualising ridge cost in 2D



For a specific λ value, some balance between RSS and $\|w\|_2^2$

$$RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_{2}^{2} = \sum_{i=1}^{N} (y_{i} - w_{0}h_{0}(\mathbf{x}_{i}) - w_{1}h_{1}(\mathbf{x}_{i}))^{2} + \lambda (w_{0}^{2} + w_{1}^{2})$$

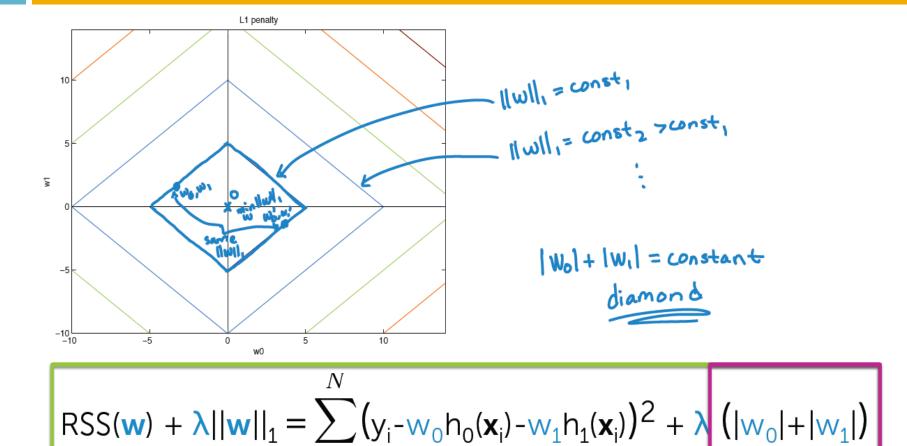
Visualising lasso cost in 2D



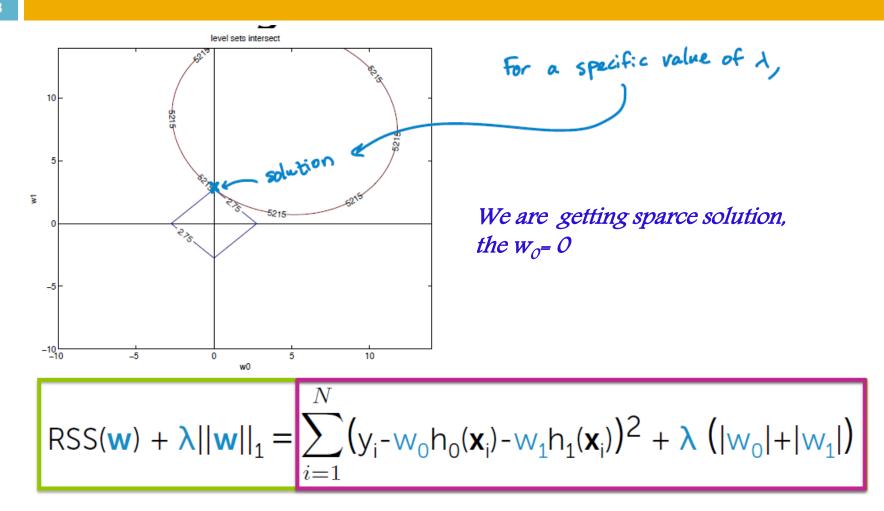
RSS contours for losso are exactly the same as those for ridge!

$$RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_1 = \sum_{i=1}^{N} (\mathbf{y}_i - \mathbf{w}_0 \mathbf{h}_0(\mathbf{x}_i) - \mathbf{w}_1 \mathbf{h}_1(\mathbf{x}_i))^2 + \lambda (|\mathbf{w}_0| + |\mathbf{w}_1|)$$

Visualising lasso cost in 2D



Visualising lasso cost in 2D



How we optimise for objective

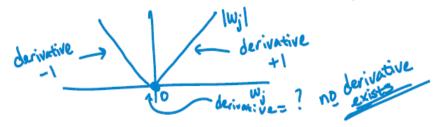
To solve for $\hat{\mathbf{w}}$, previously took gradient of total cost objective and either:

- 1) Derived closed-form solution
- 2) Used in gradient descent algorithm

Optimise for lasso objective

Lasso total cost: $RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_1$ Issues:

1) What's the derivative of $|w_i|$?



gradients > subgradients

2) Even if we could compute derivative, no closed-form solution

can use subgradient descent

Coordinate descent

Goal: Minimize some function g

$$g(\mathbf{w}) = g(\mathbf{w}_0, \mathbf{w}_1, \dots, \mathbf{w}_D)$$

when expers tixed

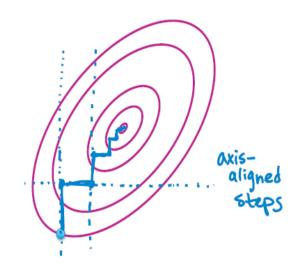
Often, hard to find minimum for all coordinates, but easy for each coordinate

Coordinate descent:

Initialize $\hat{\mathbf{w}} = 0$ (or smartly...)

while not converged

pick a coordinate j $\hat{\mathbf{w}}_{j} \leftarrow \min_{\mathbf{w}} g(\hat{\mathbf{w}}_{0}, ..., \hat{\mathbf{w}}_{j-1}, \omega, \hat{\mathbf{w}}_{j+1}, ..., \hat{\mathbf{w}}_{D})$



Comments on coordinate descent

How do we pick next coordinate?

 At random ("random" or "stochastic" coordinate descent), round robin, ...

No stepsize to choose!

Super useful approach for many problems

- Converges to optimum in some cases (e.g., "strongly convex")
- Converges for lasso objective

Normalizing features

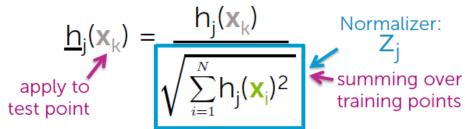
Normalizing features

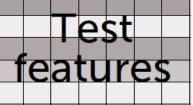
Scale training **columns** (not rows!) as:

$$\underline{h_j(\mathbf{x}_k)} = \underbrace{h_j(\mathbf{x}_k)}_{Normalizer:} \mathbf{Z}_j$$

$$\sqrt{\sum_{i=1}^{N} h_j(\mathbf{x}_i)^2}$$

Apply same training scale factors to test data:





Optimising least squares objective

One coordinate at a time

$$RSS(\mathbf{w}) = \sum_{i=1}^{N} \left(\mathbf{y}_{i} - \sum_{j=0}^{D} \mathbf{w}_{j} \mathbf{h}_{j}(\mathbf{x}_{i}) \right)^{2}$$
normalized features

Fix all coordinates
$$\mathbf{W}_{-j}$$
 and take partial w.r.t. \mathbf{W}_{j}

$$\frac{\partial}{\partial \mathbf{W}_{j}} RSS(\mathbf{w}) = -2 \sum_{i=1}^{N} \underline{\mathbf{h}}_{j}(\mathbf{x}_{i}) \left(\mathbf{y}_{i} - \sum_{j=0}^{D} \mathbf{W}_{j} \underline{\mathbf{h}}_{j}(\mathbf{x}_{i}) \right)$$

$$= -2 \sum_{i=1}^{N} \underline{\mathbf{h}}_{j}(\mathbf{x}_{i}) \left(\mathbf{y}_{i} - \sum_{j=0}^{D} \mathbf{W}_{k} \underline{\mathbf{h}}_{k}(\mathbf{x}_{k}) - \underline{\mathbf{w}}_{k} \underline{\mathbf{h}}_{k}(\mathbf{x}_{k}) \right)$$

$$= -2 \sum_{i=1}^{N} \underline{\mathbf{h}}_{j}(\mathbf{x}_{i}) \left(\mathbf{y}_{i} - \sum_{k \neq j} \mathbf{w}_{k} \underline{\mathbf{h}}_{k}(\mathbf{x}_{k}) - \underline{\mathbf{w}}_{j} \underline{\mathbf{h}}_{j}(\mathbf{x}_{i}) \right)$$

$$= -2 \sum_{i=1}^{N} \underline{\mathbf{h}}_{j}(\mathbf{x}_{i}) \left(\mathbf{y}_{i} - \sum_{k \neq j} \mathbf{w}_{k} \underline{\mathbf{h}}_{k}(\mathbf{x}_{k}) \right) + 2 \underline{\mathbf{w}}_{j} \underbrace{\sum_{i=1}^{N} \underline{\mathbf{h}}_{j}(\mathbf{x}_{i})^{2}}_{=1}$$

$$= -2 P_{ij} + 2 \underline{\mathbf{w}}_{j}$$

Optimising least squares objective

$$RSS(\mathbf{w}) = \sum_{i=1}^{N} (\mathbf{y}_i - \sum_{j=0}^{D} \mathbf{w}_j \underline{\mathbf{h}}_j(\mathbf{x}_i))^2$$

Set partial = 0 and solve

$$\frac{\partial}{\partial W_{j}} RSS(\mathbf{w}) = -2 \rho_{j} + 2 W_{j} = 0$$

$$\hat{\mathbf{w}}_{j} = p_{j}$$

Coordinate descent for least squares regression

```
Initialize \hat{\mathbf{w}} = 0 (or smartly...)
     while not converged
                                                                residual
     for j = 0, 1, ..., D
                                                           without feature j
          compute: \rho_{j} = \sum_{i=1}^{n} \underline{h}_{j}(\mathbf{x}_{i})(y_{i} - \hat{y}_{i}(\hat{\mathbf{w}}_{-j}))
                                                                    prediction
                                                                    without feature j
                              Measure of the correlation between w<sub>i</sub>
```

and the residual without this feature.

How to access convergence

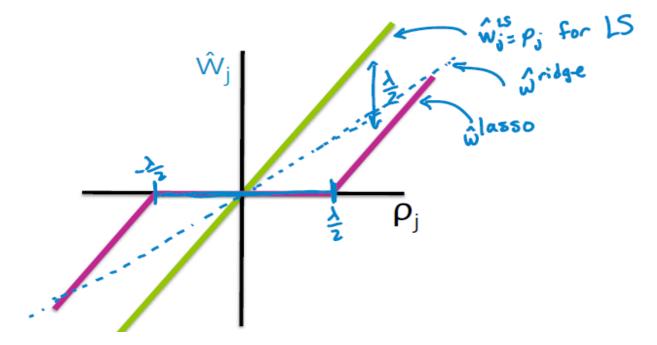
```
Initialize \hat{\mathbf{w}} = 0 (or smartly...)

while not converged for j = 0,1,...,D

compute: \qquad \rho_j = \sum_{i=1}^N \underline{h}_j(\mathbf{x}_i)(\mathbf{y}_i - \hat{\mathbf{y}}_i(\hat{\mathbf{w}}_{-j}))
set: \hat{\mathbf{w}}_j = \begin{cases} \rho_j + \lambda/2 & \text{if } \rho_j < -\lambda/2 \\ 0 & \text{if } \rho_j \text{ in } [-\lambda/2, \lambda/2] \\ \rho_j - \lambda/2 & \text{if } \rho_j > \lambda/2 \end{cases}
```

Soft thresholding

$$\hat{\mathbf{w}}_{j} = \begin{cases} \rho_{j} + \lambda/2 & \text{if } \rho_{j} < -\lambda/2 \\ 0 & \text{if } \rho_{j} \text{ in } [-\lambda/2, \lambda/2] \\ \rho_{j} - \lambda/2 & \text{if } \rho_{j} > \lambda/2 \end{cases}$$



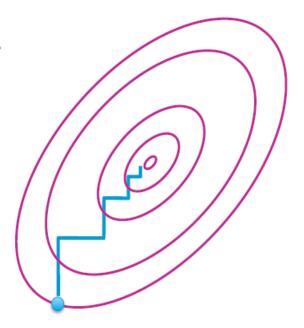
Convergence criteria

When to stop?

For convex problems, will start to take smaller and smaller steps

Measure size of steps taken in a full loop over all features

stop when max step < ε



Other lasso solvers

Classically: Least angle regression (LARS) [Efron et al. '04]

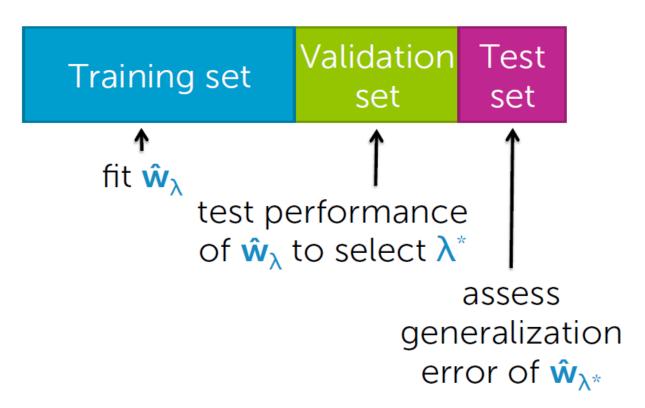
Then: Coordinate descent algorithm [Fu '98, Friedman, Hastie, & Tibshirani '08]

Now:

- Parallel CD (e.g., Shotgun, [Bradley et al. '11])
- Other parallel learning approaches for linear models
 - Parallel stochastic gradient descent (SGD) (e.g., Hogwild! [Niu et al. '11])
 - Parallel independent solutions then averaging [Zhang et al. '12]
- Alternating directions method of multipliers (ADMM) [Boyd et al. '11]

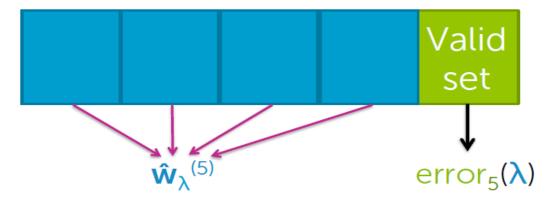
How do we chose λ

If sufficient amount of data...



How do we chose λ

K-fold cross validation



For k = 1, ..., K

- 1. Estimate $\hat{\mathbf{w}}_{\lambda}^{(k)}$ on the training blocks
- 2. Compute error on validation block: $error_k(\lambda)$

Compute average error:
$$CV(\lambda) = \frac{1}{K} \sum_{k=1}^{K} error_k(\lambda)$$

How do we chose λ

Choosing λ via cross validation

Cross validation is choosing the λ that provides best predictive accuracy

Tends to favor less sparse solutions, and thus smaller λ , than optimal choice for feature selection

c.f., "Machine Learning: A Probabilistic Perspective", Murphy, 2012 for further discussion

Impact of feature selection and lasso

Lasso has changed machine learning, statistics, & electrical engineering

But, for feature selection in general, be careful about interpreting selected features

- selection only considers features included
- sensitive to correlations between features
- result depends on algorithm used
- there are theoretical guarantees for lasso under certain conditions

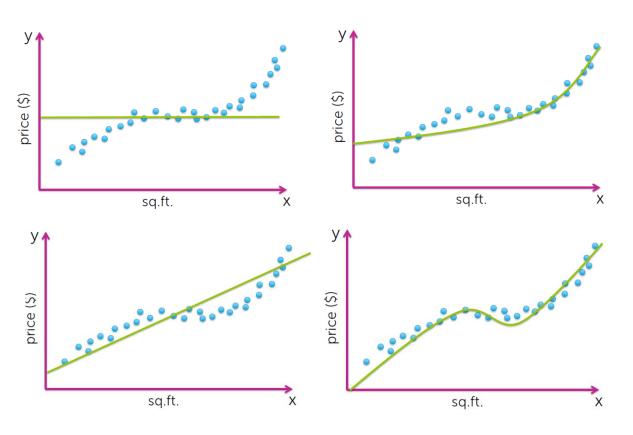
What you can do now

- Perform feature selection using "all subsets" and "forward stepwise" algorithms
- Analyze computational costs of these algorithms
- Contrast greedy and optimal algorithms
- Formulate lasso objective
- Describe what happens to estimated lasso coefficients as tuning parameter λ is varied
- Interpret lasso coefficient path plot
- Contrast ridge and lasso regression
- Describe geometrically why L1 penalty leads to sparsity
- Estimate lasso regression parameters using an iterative coordinate descent algorithm
- Implement K-fold cross validation to select lasso tuning parameter λ

NONPARAMETRIC REGRESSION

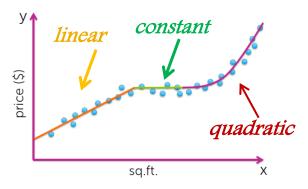
Fit globaly vs fit locally

Parametric models



Below ...

f(x) is not really
a polynomial function



What alternative do we have?

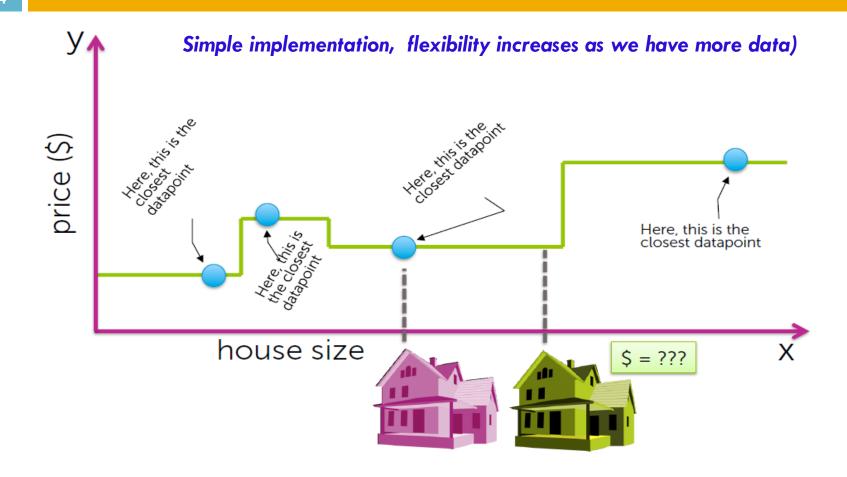
If we:

- Want to allow flexibility in f(x) having local structure
- Don't want to infer "structural breaks"

What's a simple option we have?

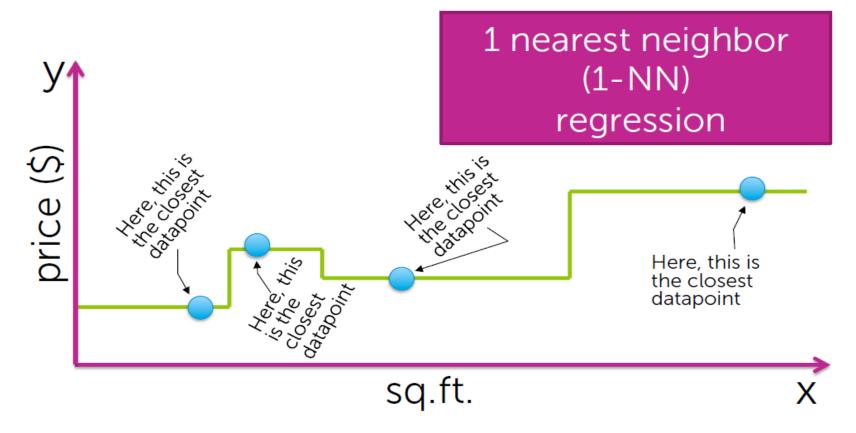
Assuming we have plenty of data...

Nearest Neighbor & Kernel Regression (nonparametric approach)



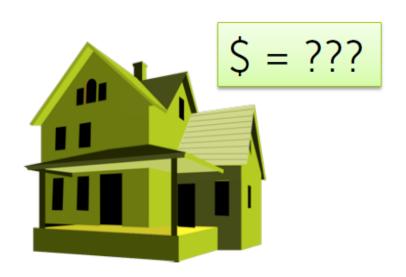
Fit locally to each data point

Predicted value = "closest" y_i



What people do naturally...

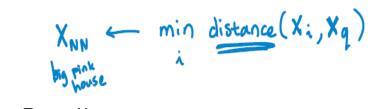
Real estate agent assesses value by finding sale of most similar house



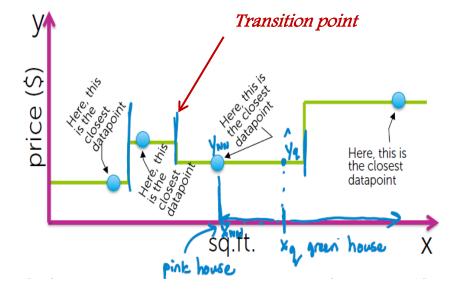
1-NN regression more formally

Dataset of $(\mathbf{x}_1, \mathbf{y}_1)$, $(\mathbf{x}_2, \mathbf{y}_2)$,..., $(\mathbf{x}_N, \mathbf{y}_N)$ Query point: $\mathbf{x}_q \leftarrow \mathbf{y}_1$ \$?

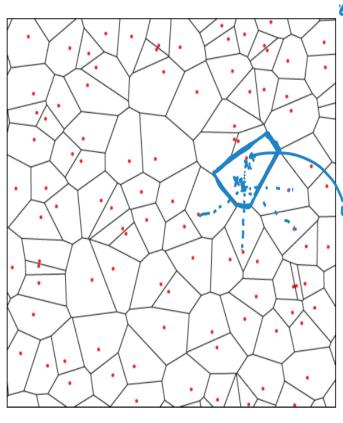
1. Find "closest" \mathbf{x}_i in dataset



2. Predict



Visualizing 1-NN in multiple dimensions



Voronoi tesselation (or diagram):

- Divide space into N
 regions, each
 containing 1 datapoint
- Defined such that any
 x in region is "closest"
 to region's datapoint

Xq closer to X; than any other X; for iti.

Don't explicitly form!

Distance metrics: Notion of "closest"

In 1D, just Euclidean distance:

$$distance(x_j, x_q) = |x_j - x_q|$$

In multiple dimensions:

- can define many interesting distance functions
- most straightforwardly, might want to weight different dimensions differently

Weighting housing inputs

Some inputs are more relevant than others

bedrooms
bathrooms
sq.ft. living
sq.ft. lot
floors
year built
year renovated
waterfront

Scaled Euclidan distance

Formally, this is achieved via

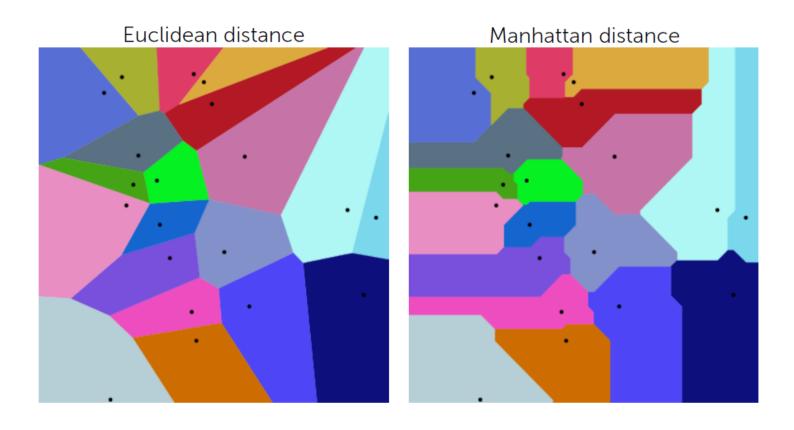
distance(
$$\mathbf{x}_j$$
, \mathbf{x}_q) =
$$\sqrt{a_1(\mathbf{x}_j[1] - \mathbf{x}_q[1])^2 + ... + a_d(\mathbf{x}_j[d] - \mathbf{x}_q[d])^2}$$

weight on each input (defining relative importance)

Other example distance metrics:

 Mahalanobis, rank-based, correlation-based, cosine similarity, Manhattan, Hamming, ...

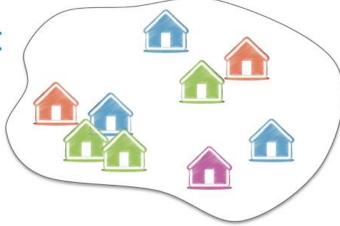
Different distance metrics



Performing 1-NN search

Query house:

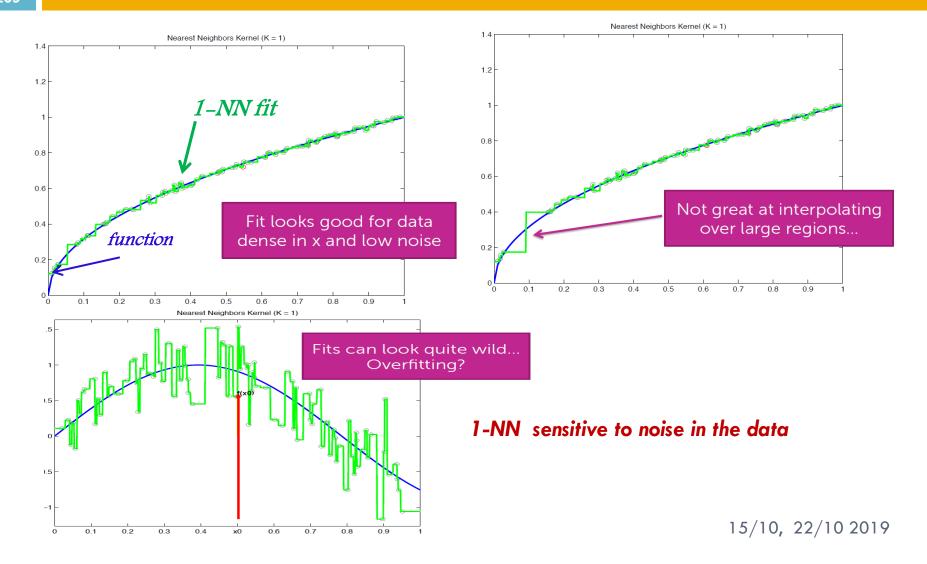
· Dataset:



- Specify: Distance metric
- Output: Most similar house

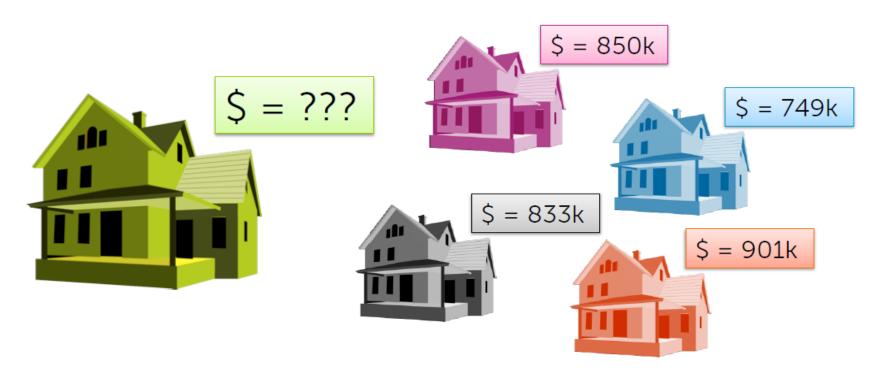
1-NN algorithm

closest house Initialize **Dist2NN** = ∞, 1 = Ø query house For i=1,2,...,NCompute: $\delta = distance(\hat{m}_i, \hat{m}_g)$ If δ < Dist2NN set **Dist2NN** = δ closest house to query house Return most similar house 👚 🛩



Get more "comps"

More reliable estimate if you base estimate off of a larger set of comparable homes



K-NN regression more formally

Dataset of $(\hat{\mathbf{x}}_1, \hat{\mathbf{y}}_1)$, $(\mathbf{x}_2, \mathbf{y}_2), ..., (\mathbf{x}_N, \mathbf{y}_N)$

Query point: \mathbf{x}_q

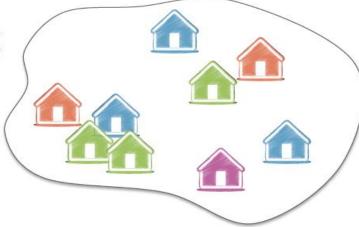
1. Find k closest **x**_i in dataset

2. Predict

K-NN more formally

Query house:

· Dataset:

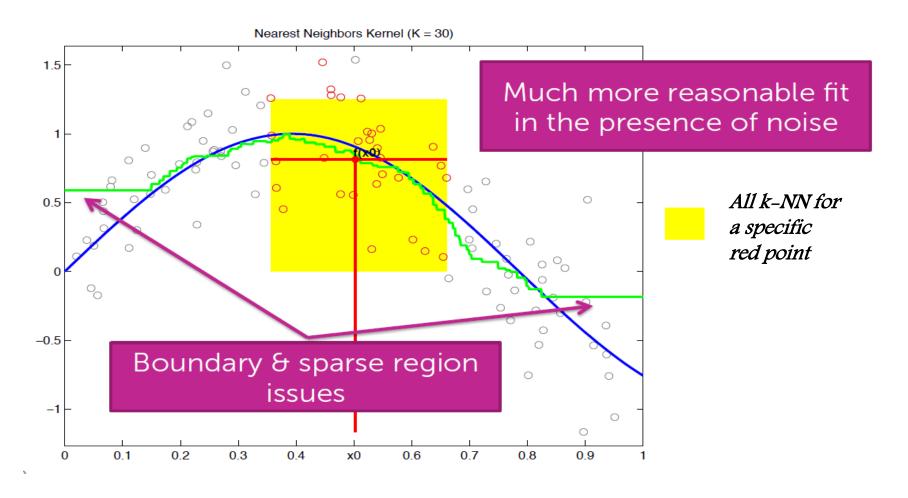


- Specify: Distance metric
- Output: Most similar houses

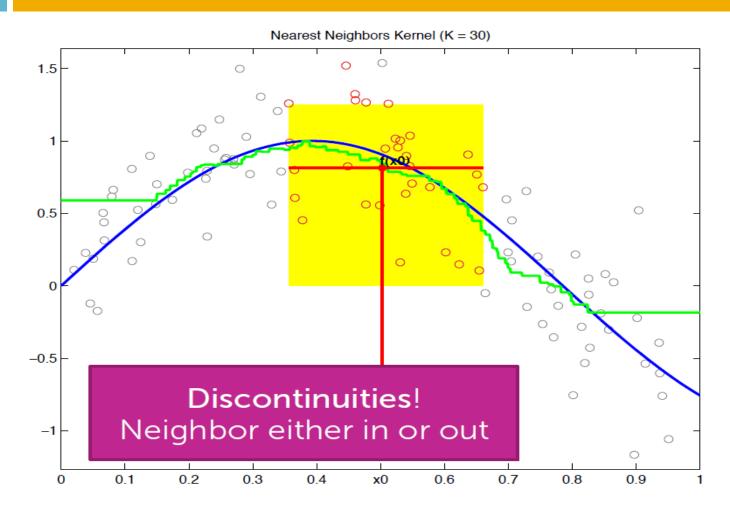
K-NN algorithm

```
sort first k houses
                                       by distance to query house
Initialize Dist2kNN = Sort(\delta_1,...,\delta_k) \leftarrow list of sorted distances
For i=k+1,...,N
   Compute: \delta = distance(\underline{1}_i,\underline{1}_i)
       If \delta < Dist2kNN[k]
       find j such that \delta > Dist2kNN[j-1] but \delta < Dist2kNN[j]
       remove furthest house and shift queue:
                        [j:k🏠
            Dist2kNN[j+1:k] = Dist2kNN[j:k-1]
       Set Dist2kNN[j] = \delta and
                                                  closest houses
Return k most similar houses 👚
                                                   to guery house 🎹
```

K-NN in practice



K-NN in practice



Issues with discontinuities

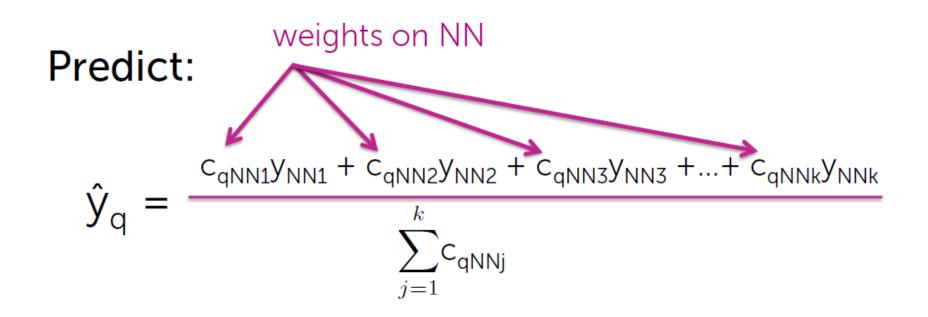
Overall predictive accuracy might be okay, but...

For example, in housing application:

- If you are a buyer or seller, this matters
- Can be a jump in estimated value of house going just from 2640 sq.ft. to 2641 sq.ft.
- Don't really believe this type of fit

Weighted k-NN

Weigh more similar houses more than those less similar in list of k-NN

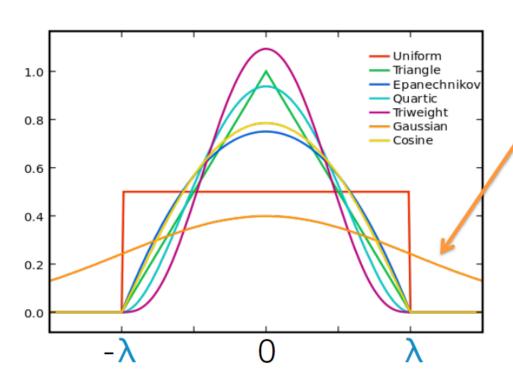


How to define weights

Want weight c_{qNNj} to be small when distance(\mathbf{x}_{NNj} , \mathbf{x}_{q}) large

and c_{qNNj} to be large when distance(\mathbf{x}_{NNj} , \mathbf{x}_{q}) small

Kernel weights for d=1



Gaussian kernel:

Kernel_{$$\lambda$$}(|x_i-x_q|) =
 \neq exp(-(x_i-x_q)²/ λ)

Note: never exactly 0!

Kernel drives how the weights will decay, if at all, as a function of the distance.

Kernel regression

Nadaraya-Watson kernel weighted average

Instead of just weighting NN, weight all points

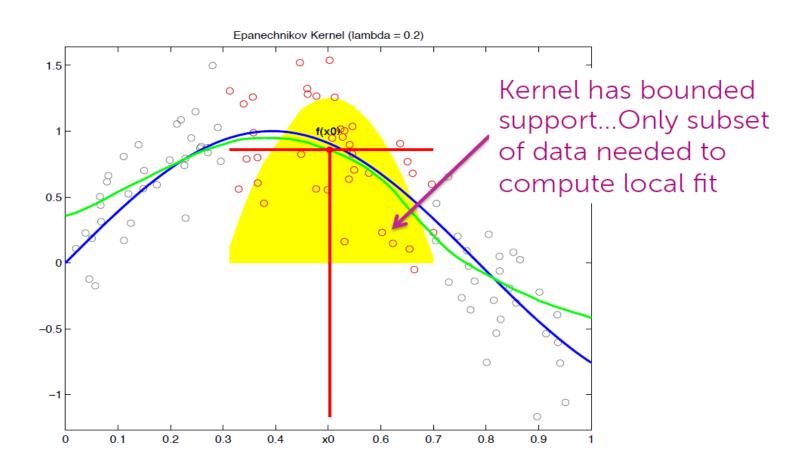
Predict:

weight on each datapoint

$$\hat{\mathbf{y}}_{q} = \frac{\sum_{i=1}^{N} c_{qi} \mathbf{y}_{i}}{\sum_{i=1}^{N} c_{qi}} = \frac{\sum_{i=1}^{N} \text{Kernel}_{\lambda}(\text{distance}(\mathbf{x}_{i}, \mathbf{x}_{q})) * \mathbf{y}_{i}}{\sum_{i=1}^{N} c_{qi}}$$

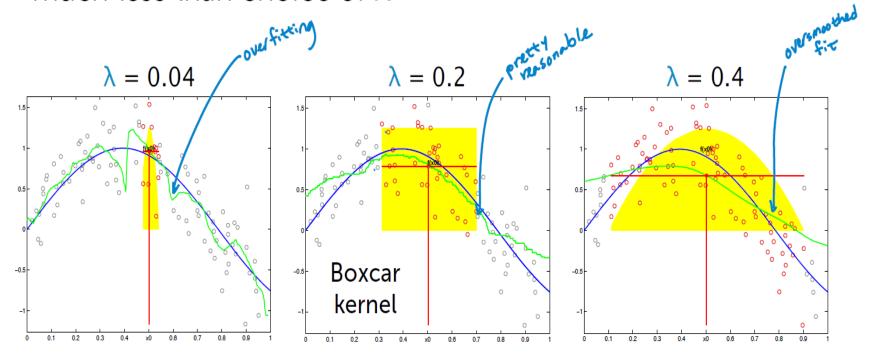
$$\sum_{i=1}^{N} \text{Kernel}_{\lambda}(\text{distance}(\mathbf{x}_{i}, \mathbf{x}_{q}))$$

Kernel regression in practice



Choice of bandwith λ

Often, choice of kernel matters much less than choice of λ



Choosing λ (or k on k-NN)

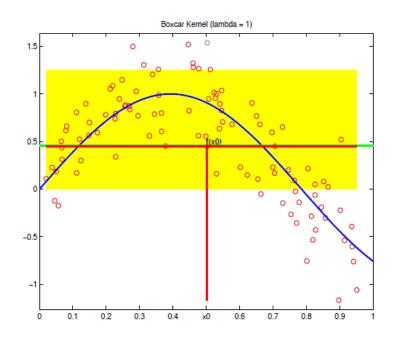
How to choose? Same story as always...

Cross Validation

Contrasting with global average

A globally constant fit weights all points equally

$$\hat{\mathbf{y}}_{\mathbf{q}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{y}_{i} = \frac{\sum_{i=1}^{N} c \mathbf{y}_{i}}{\sum_{i=1}^{N} c}$$



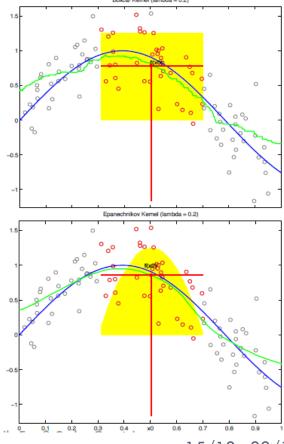
equal weight on each datapoint

Contrasting with global average

Kernel regression leads to locally constant fit

 slowly add in some points and and let others gradually die off

$$\hat{y}_{q} = \frac{\sum_{i=1}^{N} Kernel_{\lambda}(distance(\mathbf{x}_{i}, \mathbf{x}_{q})) * y_{i}}{\sum_{i=1}^{N} Kernel_{\lambda}(distance(\mathbf{x}_{i}, \mathbf{x}_{q}))}$$



Local linear regression

So far, discussed fitting constant function locally at each point

→ "locally weighted averages"

Can instead fit a line or polynomial locally at each point

→ "locally weighted linear regression"

Local regression rules of thumb

- Local linear fit reduces bias at boundaries with minimum increase in variance
- Local quadratic fit doesn't help at boundaries and increases variance, but does help capture curvature in the interior
- With sufficient data, local polynomials of odd degree dominate those of even degree

Recommended default choice:

local linear regression

Nonparametric approaches

k-NN and kernel regression are examples of nonparametric regression

General goals of nonparametrics:

- Flexibility
- Make few assumptions about f(x)
- Complexity can grow with the number of observations N

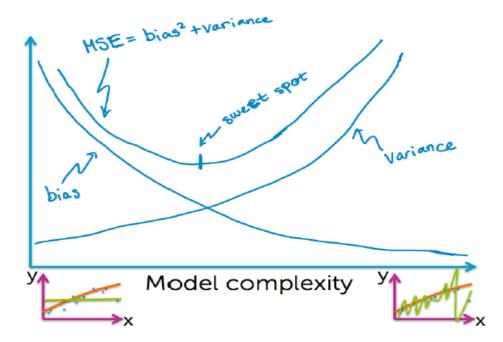
Lots of other choices:

- Splines, trees, locally weighted structured regression models...

Limiting behaviour of NN

Noiseless setting $(\varepsilon_i = 0)$

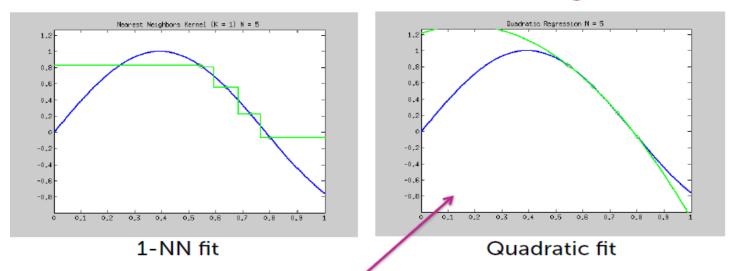
In the limit of getting an infinite amount of noiseless data, the MSE of 1-NN fit goes to 0



Limiting behaviour of NN

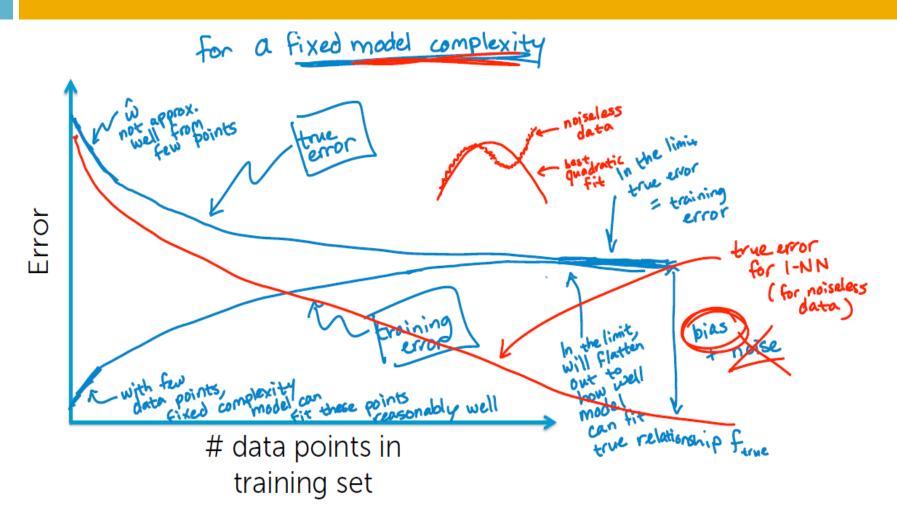
Noiseless setting ($\varepsilon_i = 0$)

In the limit of getting an infinite amount of noiseless data, the MSE of 1-NN fit goes to 0



Not true for parametric models!

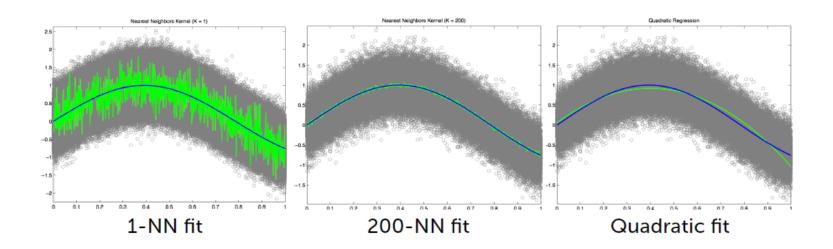
Error vs amount of data



Limiting behaviour of NN

Noisy data setting

In the limit of getting an infinite amount of data, the MSE of NN fit goes to 0 if k grows, too



Issues: NN and kernel methods

NN and kernel methods work well when the data cover the space, but...

- the more dimensions d you have, the more points N you need to cover the space
- need N = O(exp(d)) data points for good performance

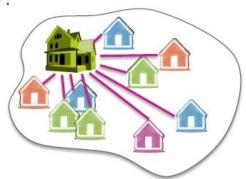
This is where parametric models become useful...

Issues: Complexity of NN search

Naïve approach: Brute force search

- Given a query point \mathbf{x}_{q}
- Scan through each point $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N$
- O(N) distance computations per 1-NN query!
- O(Nlogk) per k-NN query!

What if N is huge??? (and many queries)



Will talk more about efficient methods in Clustering & Retrieval course

We discussed how to

- Motivate the use of nearest neighbor (NN) regression
- Define distance metrics in 1D and multiple dimensions
- Perform NN and k-NN regression
- Analyze computational costs of these algorithms
- Discuss sensitivity of NN to lack of data, dimensionality, and noise
- Perform weighted k-NN and define weights using a kernel
- Define and implement kernel regression
- Describe the effect of varying the kernel bandwidth λ or # of nearest neighbors k
- Select λ or k using cross validation
- Compare and contrast kernel regression with a global average fit
- Define what makes an approach nonparametric and why NN and kernel regression are considered nonparametric methods
- Analyze the limiting behavior of NN regression

Summarising

Models

- Linear regression
- Regularization: Ridge (L2), Lasso (L1)
- Nearest neighbor and kernel regression

Algorithms

- Gradient descent
- Coordinate descent

Concepts

 Loss functions, bias-variance tradeoff, cross-validation, sparsity, overfitting, model selection, feature selection