INTRODUCTION TO DATA SCIENCE

This lecture is
based on course by E. Fox and C. Guestrin, Univ of Washington

What is retrieval?

Search for related items

Data

features for query point

Compute distances to other \mathbf{x} all other datapoints

Output \mathbf{x}^{NN} :
"nearest" point or set of points to query

What is retrieval?

Retrieve "nearest neighbor" article

Space of all articles, organized by similarity of text

What is retrieval?

Or set of nearest neighbors

Space of all articles, organized by similarity of text

Retrieval applications

Just about everything...

What is clustering?

Discover groups of similar inputs

Clustring applications

Clustering documents by "topic"

$26 / 11,3 / 12,10 / 12 / 2019$

Clustering applications

Clustering images

For search, group as:

- Ocean
- Pink flower
- Dog
- Sunset
- Clouds
- ...

$26 / 11,3 / 12,10 / 12 / 2019$

Impact of retrieval \& clustering

- Foundational ideas
- Lots of information can be extracted using these tools (exploring user interests and interpretable structure relating groups of users based on observed behavior)

Overwiew of content

Models

Algorithms

Retrieval

as
k-nearest neighbor search

1-NN search for retrieval

Space of all articles,
organized by similarity of text

1-NN search for retrieval

Compute distances to all docs

Space of all articles, organized by similarity of text

1-NN search for retrieval

Retrieve "nearest neighbor"

Space of all articles, organized by similarity of text

$1-N N$ search for retrieval

Or set of nearest neighbors

Space of all articles, organized by similarity of text

1-NN algorithm

1 - Nearest neighbor

- Input: Query article \quad : $\underline{\mathbf{x}}_{\mathrm{a}}$ Corpus of documents (N docs)

- Output: Most similar article $\quad \leftarrow x^{N N}$

Formally:

$$
x^{N N}=\min _{x_{i}} \text { distance }\left(x_{q}, x_{i}\right)
$$

1-NN algorithm

k-NN algorithm

- Input: Query article \quad : \mathbf{x}_{q} Corpus of documents

- Output: List of k similar articles

Formally:

$$
x^{N N}=\left\{x^{\left(N N_{1}\right.}, \ldots, x^{(N / N}\right\}
$$

k-NN algorithm

Critical elements of NN search

Item (e.g., doc) representation

$$
\mathbf{x}_{\mathrm{q}} \leftarrow
$$

Measure of distance between items:
$\delta=\operatorname{distance}\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}_{\mathrm{q}}\right)$

Document representation

Bag of words model

- Ignore order of words
- Count \# of instances of each word in vocabulary

"Carlos calls the sport futbol. Emily calls the sport soccer."

$26 / 11,3 / 12,10 / 12 / 2019$

Document representation

Issues with word counts Rare words

Common words in doc: "the", "player", "field", "goal"
Dominate rare words like: "futbol", "Messi"

Document representation

TF-IDF document representation

Emphasizes important words

- Appears frequently in document (common locally)

$$
\text { Term frequency }=\square \quad \text { word counts } \square
$$

- Appears rarely in corpus (rare globally)

Inverse doc freq. $=\log \frac{\# \text { does }}{1+\# \text { docs using word }}$

Document representation

TF-IDF document representation

Emphasizes important words

- Appears frequently in document (common locally)

$$
\text { Term frequency }=\square \quad \text { word counts } \square
$$

- Appears rarely in corpus (rare globally)

$$
\text { Inverse doc freq. } \left.=\log \frac{\# \text { docs }}{1+\# \text { docs using word }}\right]
$$

Trade off: local frequency vs. global rarity

Distance metrics:

Distance metrics:
 Defining notion of "closest"

In 1D, just Euclidean distance:

$$
\operatorname{distance}\left(x_{i}, x_{q}\right)=\left|x_{i}-x_{q}\right|
$$

In multiple dimensions:

- can define many interesting distance functions
- most straightforwardly, might want to weight different dimensions differently

Distance metrics:

Weighting different features

Reasons:

- Some features are more relevant than others

Distance metrics:

Weighting different features

Reasons:

- Some features are more relevant than others

title

abstract
main body conclusion

Distance metrics:

Weighting different features

Reasons:

- Some features are more relevant than others
- Some features vary more than others

Specify weights as a function of feature spread

For feature j :
$\frac{1}{\max _{i}\left(\mathbf{x}_{i}[\mathrm{j}]\right)-\min _{i}\left(\mathbf{x}_{i}[\mathrm{j}]\right)}$

Distance metrics:

Scaled Euclidean distance

Formally, this is achieved via
$\operatorname{distance}\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}_{\mathrm{q}}\right)=$

$$
\sqrt{a_{1}\left(\mathbf{x}_{\mathrm{i}}[1]-\mathbf{x}_{\mathrm{q}}[1]\right)^{2}+\ldots+\mathrm{a}_{\mathrm{d}}\left(\mathbf{x}_{\mathrm{i}}[d]-\mathbf{x}_{\mathrm{q}}[d]\right)^{2}}
$$

weight on each feature
(defining relative importance)

Distance metrics:

Effect of binary weights

$$
\begin{aligned}
& \text { distance }\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}_{\mathrm{q}}\right)= \\
& \sqrt{a_{1}\left(\mathbf{x}_{\mathrm{i}}[1]-\mathbf{x}_{\mathrm{q}}[1]\right)^{2}+\ldots+\mathrm{a}_{\mathrm{d}}\left(\mathbf{x}_{\mathrm{i}}[d]-\mathbf{x}_{\mathrm{q}}[d]\right)^{2}} \\
& \text { Setting weights as } 0 \text { or } 1 \\
& \text { is equivalent to } \\
& \text { feature selection } \\
& \text { Feature engineering/ } \\
& \text { selection is } \\
& \text { important, but hard }
\end{aligned}
$$

Distance metrics:

(non-scaled) Euclidean distance

Defined in terms of inner product

$$
\begin{aligned}
& \operatorname{distance}\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}_{\mathrm{q}}\right)=\sqrt{\left(\mathbf{x}_{\mathrm{i}}-\mathbf{x}_{\mathrm{q}}\right)^{\top}\left(\mathbf{x}_{\mathrm{i}}-\mathbf{x}_{\mathrm{q}}\right)} \\
& \quad\left(\mathbf{x}_{\mathrm{i}}[1]-\mathbf{x}_{\mathrm{q}}[1]\right)^{2}+\ldots+\left(\mathbf{x}_{\mathrm{i}}[\mathrm{~d}]-\mathbf{x}_{\mathrm{q}}[\mathrm{~d}]\right)^{2}
\end{aligned}
$$

$$
=\begin{array}{|l|l|l|l|||}
\hline & \mid & \mid & \\
\hline
\end{array} \leftarrow x_{i}-x_{q}
$$

Distance metrics:

(non-scaled) Euclidean distance

Defined in terms of inner product

$26 / 11,3 / 12,10 / 12 / 2019$

Distance metrics:

Scaled Euclidean distance

Defined in terms of inner product

Distance metrics:

Another natural inner product measure

$$
\begin{aligned}
& =\mathbf{x}_{\mathrm{i}}{ }^{\top} \mathbf{x}_{\mathrm{q}} \\
& =\sum_{j=1}^{d} \mathbf{x}_{i}[j] \mathbf{x}_{\mathrm{q}}[\mathrm{j}] \\
& =13
\end{aligned}
$$

Distance metrics:

Another natural inner product measure

0010009006040

Distance metrics

Cosine similarity - normalize

Similarity $=\sum_{j=1}^{d}[j] \mathbf{x}_{q}[j]$

Distance metrics

Normalize

$$
\begin{aligned}
& 1000530010000<x_{i} \\
& \sqrt{\left(1^{2}+5^{2}+3^{2}+1^{2}\right) \leftarrow\left\|x_{i}\right\|=\sum_{j=1}^{d} x_{i}[]^{2}} \\
& \begin{array}{l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & & & 5 & 3 & & & 1 & & & \\
\hline
\end{array} \mathrm{O}
\end{aligned}
$$

Distance metrics

Cosine similarity

In general, - 1 < similarity < 1
$\left.\begin{array}{c}\text { For positive features (like tf-idf) } \\ 0<\text { similarity } \ll\end{array}\right\} \begin{aligned} & \text { our } \\ & \text { fous }\end{aligned}$

Define distance = 1-similarity

Distance metrics

To normalize or not?

31002 similarity $=13$

20001060020000

62004 simitarity $=52$

Distance metrics

In the normalized case

Similarity
$=13 / 24$

$26 / 11,3 / 12,10 / 12 / 2019$

Distance metrics

But not always desired...

long document

Normalizing can make dissimilar objects appear more similar

Common compromise:
Just cap maximum word counts

Distance metrics

Other distance metrics

- Mahalanobis
- rank-based
- correlation-based
- Manhattan
- Jaccard
- Hamming
- ...

Combining distance metrics

Example of document features:

1. Text of document

- Distance metric: Cosine similarity

2. \# of reads of doc

- Distance metric: Euclidean distance

> Add together with user-specified weights

Scaling up k-NN search by storing data in a KD-tree

$26 / 11,3 / 12,10 / 12 / 2019$

Complexity of brute-force search

Given a query point, scan through each point

- O(N) distance computations per 1-NN query!
- O(Nlogk) per k-NN query!

What if N is huge??? (and many queries)

KD-trees

Structured organization of documents

- Recursively partitions points into axis aligned boxes.

Enables more efficient pruning of search space

Works "well" in "low-medium" dimensions

- We'll get back to this...

KD-trees

KD-tree construction

Start with a list of
d-dimensional points.

Pt	x[1]	x[2]
1	0.00	0.00
2	1.00	4.31
3	0.13	2.85
\ldots
		\uparrow feat. 2 (word 2)

KD-trees

KD-tree construction

Split points into 2 groups

$26 / 11,3 / 12,10 / 12 / 2019$

KD-trees

KD-tree construction

Recurse on each group separately

KD-trees

KD-tree construction

Continue splitting points at each set $\begin{gathered}\text { satisf } \begin{array}{c}\text { all } \\ \text { cold } \\ \text { the tions } \\ \text { tree to to }\end{array} \text { don }\end{gathered}$

- Creates a binary tree structure

Each leaf node contains a list of points

KD-trees

KD-tree construction

Keep one additional piece of info at each node: * 3^{-}The (tight) bounds of points at or below node

KD-trees

KD-tree construction choices

Use heuristics to make splitting decisions:

- Which dimension do we split along?
widest (or alternate)
- Which value do we split at?

$$
\begin{gathered}
\text { median (or center point of box, } \\
\text { ignoring data in box) }
\end{gathered}
$$

- When do we stop?

$$
\text { Fewer than } m \text { pts left }
$$

or
box hits minimum width

KD-trees

Many heuristics...

median heuristic

center-of-range heuristic

Nearest neighbor with KD-trees

Traverse tree looking for nearest neighbor to query point

Nearest neighbor with KD-trees

1. Start by exploring leaf node containing query point

Nearest neighbor with KD-trees

1. Start by exploring leaf node containing query point

Nearest neighbor with KD-trees

1. Start by exploring leaf node containing query point

Nearest neighbor with KD-trees

1. Start by exploring leaf node containing query point
2. Compute distance to each other point at leaf node

Nearest neighbor with KD-trees

1. Start by exploring leaf node containing query point
2. Compute distance to each other point at leaf node

Nearest neighbor with KD-trees

1. Start by exploring leaf node containing query point
2. Compute distance to each other point at leaf node
3. Backtrack and try other branch at each node visited

Nearest neighbor with KD-trees

Use distance bound and bounding box of each node to prune parts of tree that cannot include nearest neighbor

Nearest neighbor with KD-trees

Use distance bound and bounding box of each node to prune parts of tree that cannot include nearest neighbor

Nearest neighbor with KD-trees

Use distance bound and bounding box of each node to prune parts of tree that cannot include nearest neighbor

Nearest neighbor with KD-trees

Complexity

For (nearly) balanced, binary trees...

- Construction
- Size: $2 N-1$ nodes if 1 datapt at each leaf $\rightarrow O(N)$
- Depth: $O(\log N)$
- Median + send points left right: $O(N)$ at every level of the tree
- Construction time: $O(N \log N)$
- 1-NN query
- Traverse down tree to starting point: $O(\log N)$
- Maximum backtrack and traverse: $O(N)$ in worst case
- Complexity range: $O(\log N) \rightarrow O(N)$

Under some assumptions on distribution of points, we get $O(\log N)$ but exponential in d

Nearest neighbor with KD-trees

Complexity

pruned many
(closer to $O(\log N$))

pruned few
(closer to $O(N)$)

Complexity for N queries

- Ask for nearest neighbor to each doc
N queries
- Brute force 1-NN:
$O\left(N^{2}\right)$
- kd-trees:

$$
\begin{aligned}
& O(N \log N) \rightarrow O\left(N^{2}\right)
\end{aligned}
$$

Complexity for N queries

Inspections vs. N and d

k-NN with KD-trees

Exactly same algorithm, but maintain distance to furthest of current k nearest neighbors

Approximate k-NN with KD-trees

Before: Prune when distance to bounding box $>r$
Now: Prune when distance to bounding box $>r / \alpha$
Prunes more than allowed, but can guarantee that if we return a
 neighbor at distance r, then there is no neighbor closer than r / α

Saves lots of search time at little cost in quality of NN!

Closing remarks on KD-trees

Tons of variants of kd-trees

- On construction of trees (heuristics for splitting, stopping, representing branches...)
- Other representational data structures for fast NN search (e.g., ball trees,...)

Nearest Neighbor Search

- Distance metric and data representation crucial to answer returned

For both, high-dim spaces are hard!

- Number of kd-tree searches can be exponential in dimension
- Rule of thumb... N >> 2^{d}... Typically useless for large d.
- Distances sensitive to irrelevant features
- Most dimensions are just noise \rightarrow everything is far away
- Need technique to learn which features are important to given task

KD-tree in high dimmensions

- Unlikely to have any data points close to query point
- Once "nearby" point is found, the search radius is likely to intersect many hypercubes in at least one dim
- Not many nodes can be pruned
- Can show under some conditions that you visit at least $2^{\text {d }}$ nodes

Moving away from exact NN search

- Approximate neighbor finding...
- Don't find exact neighbor, but that's okay for many applications

Out of millions of articles, do we need the closest article or just one that's pretty similar?
Do we even fully trust our measure of similarity???

- Focus on methods that provide good probabilistic guarantees on approximation

Locality Sensitive Hashing (LHS) as alternative to KD-trees

Locality sensitive hashing

Simple "binning" of data into 2 bins

$$
\text { Score }(\mathbf{x})=1.0 \text { \#awesome - } 1.5 \text { \#awful }
$$

Locality sensitive hashing

Using bins for NN search

Locality sensitive hashing

Using score for NN search

2D Data	Sign(Score)	Bin index
$\mathbf{x}_{1}=[0,5]$	-1	0
$\mathbf{x}_{2}=[1,3]$	-1	0
$\mathbf{x}_{3}=[3,0]$	1	1
\ldots	\ldots	\ldots

candidate neighbors if Score (x)<0

Locality sensitive hashing

Provides approximate NN

Locality sensitive hashing

Three potential issues with simple approach

1. Challenging to find good line
2. Poor quality solution:

- Points close together get split into separate bins

3. Large computational cost:

- Bins might contain many points, so still searching over large set for each NN query

Bin	0	1
List containing indices of datapoints:	$\{1,2,4,7, \ldots\}$	$\{3,5,6,8, \ldots\}$

Locality sensitive hashing

How to define the line?

Locality sensitive hashing

How bad can a random line be?

Goal: If $\mathbf{x , y}$ are close (according to cosine similarity), want binned values to be the same.

$26 / 11,3 / 12,10 / 12 / 2019$

Locality sensitive hashing

How bad can a random line be?

Goal: If \mathbf{x}, \mathbf{y} are close (according to cosine similarity), want binned values to be the same.

Locality sensitive hashing

Goal: If \mathbf{x}, \mathbf{y} are close (according to cosine similarity), want binned values to be the same.

Locality sensitive hashing

How bad can a random line be?

Goal: If \mathbf{x}, \mathbf{y} are close (according to cosine similarity), want binned values to be the same.

LSH: improving efficiency

Reducing search cost through more bins

LSH: improving efficiency

Using score for NN search

2D Data	Sign $\left(\right.$ Score $\left._{1}\right)$	Bin 1 index	Sign $\left(\right.$ Score $\left._{2}\right)$	Bin 2 index	Sign $\left(\right.$ Score $\left._{3}\right)$	Bin 3 index
$\mathbf{x}_{1}=[0,5]$	-1	0	-1	0	-1	0
$\mathbf{x}_{2}=[1,3]$	-1	0	-1	0	-1	0
$\mathbf{x}_{3}=[3,0]$	1	1	1	1	1	1
\ldots						

Bin	$\begin{aligned} & {\left[\begin{array}{lll} 0 & 0 & 0 \end{array}\right]} \\ & =0 \end{aligned}$	$\begin{aligned} & {\left[\begin{array}{lll} 0 & 1 \end{array}\right]} \\ & =1 \end{aligned}$	$\begin{aligned} & {[010]} \\ & =2 \end{aligned}$	$\begin{aligned} & {[011]} \\ & =3 \end{aligned}$	$\begin{aligned} & {\left[\begin{array}{lll} 1 & 0 & 0 \end{array}\right.} \\ & =4 \end{aligned}$	$\begin{aligned} & {\left[\begin{array}{ll} 1 & 1] \\ =5 \end{array}\right.} \end{aligned}$	$\begin{aligned} & \text { [1 1 0] } \\ & =6 \end{aligned}$	$\left[\begin{array}{lll} 1 & 1 & 1] \\ =7 \end{array}\right.$
Data indices:	\{1,2\}	--	\{4,8,11\}	--	--	--	\{7,9,10\}	$\{3,5,6\}$

LSH: improving efficiency

Improving search quality by searching neighboring bins

$26 / 11,3 / 12,10 / 12 / 2019$

LSH: improving efficiency

Improving search quality by

searching neighboring bins

$26 / 11,3 / 12,10 / 12 / 2019$

LSH: improving efficiency

Improving search quality by searching neighboring bins

$26 / 11,3 / 12,10 / 12 / 2019$

LSH: improving efficiency

Improving search quality by searching neighboring bins

Bin	$\begin{array}{lll} {\left[\begin{array}{lll} 0 & 0 \end{array}\right]} \\ =0 \end{array}$	$\left[\begin{array}{lll} {\left[\begin{array}{lll} 1 \end{array}\right]} \end{array}\right.$	$\left\lvert\, \begin{array}{ll} {\left[\begin{array}{ll} 0 & 1 \end{array}\right]} \\ =2 \end{array}\right.$	$\begin{aligned} & {\left[\begin{array}{lll} 0 & 1] \\ =3 \end{array}\right.} \end{aligned}$	$\begin{aligned} & {\left[\begin{array}{lll} 1 & 0 & 0 \end{array}\right]} \\ & =4 \end{aligned}$	$\begin{array}{lll} {\left[\begin{array}{lll} 1 & 0 & 1] \\ =5 \end{array}\right.} \end{array}$	$\begin{aligned} & {\left[\begin{array}{lll} 110] \\ =6 \end{array}\right.} \end{aligned}$	$\begin{aligned} & {\left[\begin{array}{lll} 1 & 1 & 1] \\ =7 \end{array}\right.} \end{aligned}$
Data indices:	\{1,2\}	--	\{4,8,11\}	--	--	--	\{7,9,10\}	\{3,5,6\}

Quality of retrieved NN can only improve with searching more bins

Algorithm:
Continue searching until computational budget is reached or quality of NN good enough

$26 / 11,3 / 12,10 / 12 / 2019$

LSH recap

- For each query point x, search bin(x), then neighboring bins until time limit

LSH: moving to higher dimmensions d

Draw random planes

$26 / 11,3 / 12,10 / 12 / 2019$

LSH: moving to higher dimmensions d

Cost of binning points in d-dim

$$
\begin{aligned}
& \operatorname{Score}(\mathbf{x})=v_{1}^{()} \text {\#awesome } \quad \text { Per data point, } \\
& \text { need d multiplies } \\
& \text { to determine bin } \\
& \text { Index per plane } \\
& \text { 沙nportant } v_{3} \# g \text { reat }
\end{aligned}
$$

One-time cost offset if many queries of fixed dataset

What you can do now

- Implement nearest neighbor search for retrieval tasks
- Contrast document representations (e.g., raw word counts, tf-idf,...)
- Emphasize important words using tf-idf
- Contrast methods for measuring similarity between two documents
- Euclidean vs. weighted Euclidean
- Cosine similarity vs. similarity via unnormalized inner product
- Describe complexity of brute force search
- Implement KD-trees for nearest neighbor search
- Implement LSH for approximate nearest neighbor search
- Compare pros and cons of KD-trees and LSH, and decide which is more appropriate for given dataset

Clustering:

An unsupervised learning task

Motivation

Goal: Structure documents by topic

Discover groups (clusters) of related articles

$26 / 11,3 / 12,10 / 12 / 2019$

Motivation

Why might clustering be useful?

Motivation

Learn user preferences

Set of clustered documents read by user

Cluster 1

Cluster 3

Cluster 2

Cluster 4

Clustering: a supervised learning

What if some of the labels are known?

Training set of labeled docs

$26 / 11,3 / 12,10 / 12 / 2019$

Custering: a supervised learning

Multiclass classification problem

SPORTS
ENTERTAINMENT?

TECHNOLOGY

Example of supervised learning

Clustering: an unsupervised learning

No labels provided
... uncover cluster structure
from input alone

Input: docs as vectors \mathbf{x}_{i}
Output: cluster labels Z_{i}
An unsupervised learning task

$26 / 11,3 / 12,10 / 12 / 2019$

What defines a cluster ?

Cluster defined by
center \& shape/spread

Assign observation \mathbf{x}_{i} (doc) to cluster k (topic label) if

- Score under cluster k is higher than under others
- For simplicity, often define score as distance to cluster center (ignoring shape)

$26 / 11,3 / 12,10 / 12 / 2019$

Hope for unsupervised learning

Easy
Impossible

In between

$26 / 11,3 / 12,10 / 12 / 2019$

Other (challenging!) clusters to discover

Analysed by your eyes

Other (challenging!) clusters to discover

Analysed by clustering algorithms

(h)

k-means

clustering algorithm

k-means clustering algorithm

Assume

- Score= distance to
cluster center
(smaller better)

$26 / 11,3 / 12,10 / 12 / 2019$

k-means clustering algorithm

0. Initialize cluster centers

$$
\mu_{1}, \mu_{2}, \ldots, \mu_{k}
$$

$26 / 11,3 / 12,10 / 12 / 2019$

k-means clustering algorithm

0. Initialize cluster centers
1. Assign observations to closest cluster center

k-means clustering algorithm

0. Initialize cluster centers
1. Assign observations to closest cluster center
2. Revise cluster centers as mean of assigned observations

$26 / 11,3 / 12,10 / 12 / 2019$

k-means clustering algorithm

0. Initialize cluster centers
1. Assign observations to closest cluster center
2. Revise cluster centers as mean of assigned observations
3. Repeat 1.+2. until convergence

k-means as coordinate descent algorithm

1. Assign observations to closest cluster center

$$
z_{i} \leftarrow \arg \min _{j}\left\|\mu_{j}-\mathbf{x}_{i}\right\|_{2}^{2}
$$

2. Revise cluster centers as mean of assigned observations

$$
\begin{aligned}
& \mu_{j}=\frac{1}{n_{j}} \sum_{i: z_{i}=j} \mathbf{x}_{i} \\
& \mu_{j} \leftarrow \arg \min _{\mu} \sum_{i: z_{i}=j}\left\|\mu-\mathbf{x}_{i}\right\|_{2}^{2}
\end{aligned}
$$

K-means as coordinate descent algorithm

1. Assign observations to closest cluster center

$$
z_{i} \leftarrow \arg \min _{j}\left\|\mu_{j}-\mathbf{x}_{i}\right\|_{2}^{2}
$$

2. Revise cluster centers as mean of assigned
observations

$$
\mu_{j} \leftarrow \arg \min _{\mu} \sum_{i: z_{i}=j}\left\|\mu-\mathbf{x}_{i}\right\|_{2}^{2}
$$

Alternating minimization

1. (z given μ) and 2. (μ given z)
= coordinate descent

Convergence of k-means

Converges to:

- Globatimum
-Local optimum
Because we can cast k-means as coordinate descent algorithm we know that we are converging to local optimum

Convergence of k-mans to local mode

Crosses: initialised centers

Convergence of k-mans to local mode

Crosses: initialised centers

Convergence of k-mans to local mode

Crosses: initialised centers

Smart initialisation: k-means++ overwiew

Initialization of k-means algorithm is
critical to quality of local optima found

Smart initialization:

1. Choose first cluster center uniformly at random from data points
2. For each obs \mathbf{x}, compute distance $\mathrm{d}(\mathbf{x})$ to nearest cluster center
3. Choose new cluster center from amongst data points, with probability of \mathbf{x} being chosen proportional to $\mathrm{d}(\mathbf{x})^{2}$
4. Repeat Steps 2 and 3 until k centers have been chosen

k-means++ visualised

k-means++ visualised

more likely to
select a datapoint select a dater center as at cluster capoint is for away increases
(dirt this effect)

k-means++ visualised

k-means++ visualised

Smart initialisation: k-means++ overwiew

k-means++ pros/cons

Computationally costly relative to random initialization, but the subsequent k -means often converges more rapidly

Tends to improve quality of local optimum and lower runtime

Assessing quality of the clustering

Which clustering do I prefer?

k-means objective

Cluster heterogeneity

Measure of quality of given clustering:

What happens to heterogeneity as k increases?

Can refine clusters more and more to the data
\rightarrow overfitting!

Extreme case of $\mathrm{k}=\mathrm{N}$:

- can set each cluster center equal to datapoint
- heterogeneity $=0!\quad$ (all distances to cersers are 0)

Lowest possible cluster heterogeneity decreases with increasing k

How to choose k?

$26 / 11,3 / 12,10 / 12 / 2019$

MapReduce

Counting words on a single processor

(The "Hello World!" of MapReduce)

Suppose you have 10B documents and 1 machine and want to count the \# of occurrences of each word in the corpus

Code:

$$
\begin{gathered}
\text { count }[] \leftarrow \text { init hash table } \\
\text { for } d \text { in documents } \\
\text { for word in } d \\
\text { count [word] }]+=1
\end{gathered}
$$

Noive oorallet word counting

- Word counts are independent across documents (data parallel)
- Count occurrences in sets of documents separately, then merge

How do we do this for all words in vocab?
Back to sequential problem to merge counts... all words in vocab... ugh.

Counting words \& merging tabels

1. Generate pairs (word, count) in parallel
2. Merge counts for each word in parallel

How to map words to machines? Use a hash function! h (word index) \rightarrow machine index

Which words go to machine i ?
$h: \bigvee_{\text {vocab }} \rightarrow[1,2, \ldots$, machines $]$

Send counts of 'learning'
to machine
h['learning']

MapReduce abstraction

Map:

- Data-parallel over elements. e.g., documents
- Generate (key,value) pairs
- "value" can be any data type ('uw', l) ('machine', 1) ('uw'.1) ('learning', 1)

Reduce:

- Aggregate values for each key
- Must be commutative-associative operation

- Data-parallel ove keys
- Generate (key,value) pairs reduce ('uw', $\{1,17,0,0,12,2\}$) emit ('uw', 32)

MapReduce has long history in functional programming

- Popularized by Gooqle, and subsequently by open-source Hadoop implementation from Yahoo!

MapReduce - Execution overwiew

Improving performance

Combiners

- Naïve implementation of MapReduce is very wasteful in communication during shuffle:
- Combiner: Simple solution...Perform reduce locally before communicating for global reduce
- Works because reduce is commutative-associative

Scaling up k-means via MapReduce

MapReducing 1 iteration of k-means

Classify: Assign observations to closest cluster center

$$
z_{i} \leftarrow \arg \min _{j}\left\|\mu_{j}-\mathbf{x}_{i}\right\|_{2}^{2}
$$

Map: For each data point, given $\left(\left\{\mu_{j}\right\}, \mathbf{x}_{i}\right)$, emit $\left(z_{i}, \mathbf{x}_{i}\right)$
Recenter: Revise cluster centers as mean of assigned observations

$$
\mu_{j}=\frac{1}{n_{j}} \sum_{i: z_{i}=k} \mathbf{x}_{i}
$$

Reduce: Average over all points in cluster j $\left(\mathrm{z}_{\mathrm{i}}=\mathrm{k}\right)$

Scaling up k-means via MapReduce

Classification step as Map

Classify: Assign observations to closest cluster center

$$
z_{i} \leftarrow \arg \min _{j}\left\|\mu_{j}-\mathbf{x}_{i}\right\|_{2}^{2}
$$

set of cluster centers
$\operatorname{map}\left(\left[\boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2}, \ldots, \boldsymbol{\mu}_{\mathrm{k}}\right], \mathbf{x}_{\mathrm{i}}\right)$

$$
z_{i} \leftarrow \arg \min _{j}\left\|\mu_{j}-\mathbf{x}_{i}\right\|_{2}^{2}
$$

$\operatorname{emit}\left(z_{i}, \mathbf{x}_{j}\right)$
$\hat{i})$ datapoint
cluster label

$$
\text { eg. emit }(2,[17,0,1,7,0,0,5])
$$

Scaling up k-means via MapReduce

Recenter step as Reduce

Recenter: Revise cluster centers as mean of assigned observations

```
    \(\mu_{j}=\frac{1}{n_{j}} \sum_{\substack{: z_{i}=k \\ \text { abel }}} \mathbf{x}_{i}\)
```



```
    sum \(=0 \leftarrow\) total mass in cluster
    count \(=0 \leftarrow\) total \(\psi\) of obs. in cluster
    for \(\mathbf{x}\) in x _in_clusterj
    sum \(+=\mathbf{x}\)
    count \(+=1\)
    emit(j, sum/count)
            \(\underset{\substack{\text { c. } \\ \text { cumber bbel }}}{\text { cotal mass }}\)
```


Scaling up k-means via MapReduce

Some practical considerations

k-means needs an iterative version of MapReduce

- Not standard formulation

Mapper needs to get data point and all centers

- A lot of data!
- Better implementation: mapper gets many data points

Parallel k-means via MapReduce

Map: classification step; data parallel over data points

Reduce: recompute means; data parallel over centers

What you can do now

- Describe potential applications of clustering
- Describe the input (unlabeled observations) and output (labels) of a clustering algorithm
- Determine whether a task is supervised or unsupervised
- Cluster documents using k-means
- Interpret k-means as a coordinate descent algorithm
- Define data parallel problems
- Explain Map and Reduce steps of MapReduce framework
- Use existing MapReduce implementations to parallelize kmeans, understanding what's being done under the hood

Probabilistic approach: mixture model

Why probabilistic approach?

Learn user preferences

Set of clustered documents read by user

Cluster 3

Cluster 4

Why probabilistic approach?

Uncertainty in cluster assignments

Why probabilistic approach?

Other limitations of k-means

Assign observations to closest cluster center

$$
z_{i} \leftarrow \arg \min _{j}\left\|\mu_{j}-\mathbf{x}_{i}\right\|_{2}^{2}
$$

Can use weighted Euclidean, but requires known weights

Only center matters

Equivalent to assuming spherically symmetric clusters

Still assumes all clusters have the same axis-aligned ellipses

Why probabilistic approach?

Failure modes of k-means

Mixture models

- Provides soft assignments of observations to clusters (uncertainty in assignment)
- e.g., 54% chance document is world news, 45% science, 1% sports, and 0% entertainment
- Accounts for cluster shapes not just centers
- Enables learning weightings of dimensions
- e.g., how much to weight each word in the vocabulary when computing cluster assignment

Application: clustering images

Discover groups of similar images

- Ocean
- Pink flower
- Dog
- Sunset
- Clouds
$-\ldots$

$26 / 11,3 / 12,10 / 12 / 2019$

Application: clustering images

sinnpieinnagerepresentation

Consider average red, green, blue pixel intensities

$[R=0.85, G=0.05, B=0.35]$

Application: clustering images

Distribution over all cloud images

Let's look at just the blue dimension

Application: clustering images

Distribution over all sunset images

Let's look at just the blue dimension

blue

Application: clustering images

Distribution over all forest images

Let's look at just the blue dimension

Application: clustering images

Distribution over all images

We see that they are grouping!
But not easy to distinguish between groups

Application: clustering images

Can be distinguished along other dim

Now look at the red dimension

In this dimmension separable groups!

Model for a given image type

For each dimension of the $[R, G, B]$ vector, and each image type, assume a
Gaussian distribution over color intensity

Random variable the distribution is over e.g., blue intensity
blue
$26 / 11,3 / 12,10 / 12 / 2019$

Model for a given image type

2D Gaussians - Bird's eye view

 3D mesh plotContour plot

blue

Application: clustering images

2D Gaussians - Parameters

Fully specified by mean $\boldsymbol{\mu}$ and covariance $\boldsymbol{\Sigma}$
$\boldsymbol{\mu}=\left[\mu_{\text {blue }}, \mu_{\text {green }}\right]$ mean centers the distribution in 2D

Application: clustering images

2D Gaussians - Parameters

Fully specified by mean μ and covariance Σ
$\boldsymbol{\mu}=\left[\mu_{\text {blue }}, \mu_{\text {green }}\right]$
$\Sigma=\left(\begin{array}{ll}\sigma_{\text {blue }}{ }^{2} & \sigma_{\text {blue,green }} \\ \sigma_{\text {green,blue }} & \sigma_{\text {green }}{ }^{2}\end{array}\right) \stackrel{\stackrel{\odot}{\circlearrowright}}{\stackrel{ভ}{\sigma}}$
covariance determines orientation + spread

Application: clustering images

Covariance structures

$26 / 11,3 / 12,10 / 12 / 2019$

Application: clustering images

Notating a multivariate Gaussian

Random vector
e.g., [R, G, B] intensities

$26 / 11,3 / 12,10 / 12 / 2019$

Mixture of Gaussians

Model as Gaussian per category/cluster

$26 / 11,3 / 12,10 / 12 / 2019$

Mixture of Gaussians

Jumble of unlabeled images

this distribution?

Mixture of Gaussians

What if image types not equally represented?

$26 / 11,3 / 12,10 / 12 / 2019$

Mixture of Gaussians

Combination of weighted Gaussians

Associate a weight π_{k} with each Gaussian component

Mixture of Gaussians

Mixture of Gaussians (1D)

Each mixture component represents a unique cluster specified by:

$26 / 11,3 / 12,10 / 12 / 2019$

Mixture of Gaussians

Mixture of Gaussians (general)

Mixture of Gaussians

According to the model...

Without observing the image content, what's the probability it's from cluster k? (e.g., prob. of seeing "clouds" image)

Given observation X from cluster k, what's the likelihood of seeing \mathbf{x}_{i} ? (e.g., just look at distribution for "clo. das")
$p\left(x_{i} \mid \underline{\left.z_{i}=k, \mu_{k}, \Sigma_{k}\right)=N\left(x_{i} \mid \mu_{k}, \Sigma k\right) \quad \text { likalihood }, ~ f o r e s t}\right.$ $[\mathrm{P}(\mathrm{B})$]

$$
p\left(z_{i}=k\right)=\pi_{k} \quad \text { prior }
$$

Application: clustering documents

Discover groups of related documents

Application: clustering documents

Document representation

$$
\mathbf{x}_{\mathrm{i}}=\square \quad \text { tf-idf vector }
$$

Application: clustering documents

Mixture of Gaussians for clustering documents

Space of all documents
(really lives in \mathbf{R}^{\vee} for vocab size V)

Make soft assignments of docs to each
Gaussian

Application: clustering documents

Counting parameters

Each cluster has $\left\{\pi_{\mathrm{k}}, \boldsymbol{\mu}_{\mathrm{k}}, \Sigma_{\mathrm{k}}\right\}$

Application: clustering documents

Counting parameters

Each cluster has $\left\{\pi_{\mathrm{k}}, \boldsymbol{\mu}_{\mathrm{k}}, \Sigma_{\mathrm{k}}\right\}$

Application: clustering documents

Restricting to diagonal covariance

Each cluster has $\left\{\pi_{\mathrm{k}}, \boldsymbol{\mu}_{\mathrm{k}}, \Sigma_{\mathrm{k}}\right.$ diagonal $\}$

$26 / 11,3 / 12,10 / 12 / 2019$

Application: clustering documents

Restrictive assumption, but...

- Can learn weights on dimensions (e.g., weights on words in vocab)
- Can learn cluster-specific weights on dimensions

Still more flexible than k-means
Spherically symmetric clusters

Inferring soft assignments with expectation maximization (EM)

Inferring cluster labels

Desired soft assignments

What if we knew the cluster parameters $\left\{\pi_{\mathrm{k}}, \boldsymbol{\mu}_{\mathrm{k}}, \Sigma_{\mathrm{k}}\right\}$?

Compute responsibilities

What if we knew the cluster parameters $\left\{\pi_{\mathrm{k}}, \boldsymbol{\mu}_{\mathrm{k}}, \Sigma_{\mathrm{k}}\right\}$?

Responsibilities in pictures

Green cluster takes more responsibility

Blue cluster takes more responsibility

Uncertain... split
responsibility

What if we knew the cluster parameters $\left\{\pi_{k}, \mu_{k}, \Sigma_{k}\right\}$?

Responsibilities in pictures

Need to weight by cluster probabilities, not just cluster shapes

Still uncertain,
but green cluster seems more probable...
takes more responsibility

What if we knew the cluster parameters $\left\{\pi_{\mathrm{k}}, \boldsymbol{\mu}_{\mathrm{k}}, \Sigma_{\mathrm{k}}\right\}$?

Responsibilities in equations

$26 / 11,3 / 12,10 / 12 / 2019$

What if we knew the cluster parameters $\left\{\pi_{\mathrm{k}}, \boldsymbol{\mu}_{\mathrm{k}}, \Sigma_{\mathrm{k}}\right\}$?

Responsibilities in equations

$$
r_{i k}=\frac{\pi_{k} N\left(x_{i} \mid \mu_{k}, \Sigma_{k}\right)}{\sum_{j=1}^{K} \pi_{j} N\left(x_{i} \mid \mu_{j}, \Sigma_{j}\right)} \begin{aligned}
& \text { Responsibility cluster k takes for observation i } \\
& \text { over all } \\
& \text { oossible } \\
& \text { cluster } \\
& \text { assignments }
\end{aligned}
$$

What if we knew the cluster parameters $\left\{\pi_{\mathrm{k}}, \boldsymbol{\mu}_{\mathrm{k}}, \Sigma_{\mathrm{k}}\right\}$?

Recall: According to the model...

Without observing the image content, what's the probability it's from cluster k? (e.g., prob. of seeing "clouds" image)

$$
p\left(z_{i}=k\right)=\pi_{k}
$$

Given observation \mathbf{x}_{i} is from cluster k , what's the likelihood of seeing \mathbf{x}_{i} ? (e.g., just look at distribution for "cloy ds")

$$
p\left(x_{i} \mid z_{i}=k, \mu_{k}, \Sigma_{k}\right)=N\left(x_{i} \mid \mu_{k},\right.
$$

What if we knew the cluster parameters $\left\{\pi_{k}, \mu_{k}, \Sigma_{k}\right\}$?

Part 1: Summary

> Desired soft assignments (responsibilities) are easy to compute when
> cluster parameters
> $\left\{\pi_{\mathrm{k}}, \boldsymbol{\mu}_{\mathrm{k}}, \Sigma_{\mathrm{k}}\right\}$ are known

But, we don't know these!

Imagine we knew the cluster (hard) assignments z_{i}

Estimating cluster parameters

Imagine we knew the cluster (hard) assignments z_{i}

Data table decoupling over clusters

R	G	B	Cluster
$x_{1}[1]$	$x_{1}[2]$	$x_{1}[3]$	3
$x_{2}[1]$	$x_{2}[2]$	$x_{2}[3]$	3
$x_{3}[1]$	$x_{3}[2]$	$x_{3}[3]$	3
$x_{4}[1]$	$x_{4}[2]$	$x_{4}[3]$	1
$x_{5}[1]$	$x_{5}[2]$	$x_{5}[3]$	2
$\mathrm{x}_{6}[1]$	$\mathrm{x}_{6}[2]$	$\mathrm{x}_{6}[3]$	2

Then split into separate tables and consider them independently.

Imagine we knew the cluster (hard) assignments z_{i}

Maximum likelihood estimation

R	G	B	Cluster
$\mathbf{x}_{1}[1]$	$\mathbf{x}_{1}[2]$	$x_{1}[3]$	3
$\mathbf{x}_{2}[1]$	$x_{2}[2]$	$x_{2}[3]$	3
$\mathbf{x}_{3}[1]$	$x_{3}[2]$	$x_{3}[3]$	3

Estimate $\left\{\pi_{k}, \boldsymbol{\mu}_{k}, \Sigma_{k}\right\}$
given data assigned
to cluster k
maximum likelihood estimation (MLE)

Find parameters that maximize the score, or likelihood, of data

Imagine we knew the cluster (hard) assignments z_{i}

Mean/covariance MLE

R	G	B	Cluster
$\mathrm{x}_{1}[1]$	x_{1} [2]	$\mathrm{x}_{1}[3]$	3
x_{2} [1]	x_{2} [2]	$\mathrm{x}_{2}[3]$	3
$\mathrm{x}_{3}[1]$	$\mathrm{x}_{3}[2]$	$\mathrm{x}_{3}[3]$	3

$\underset{\text { benbens }}{\rightarrow} \hat{\mu}_{k}=\frac{1}{N_{k}} \sum_{i \text { in } k} x_{i} \quad \begin{aligned} & \text { average data points } \\ & \text { in cluster } k\end{aligned}$
$\hat{\Sigma}_{k}=\frac{1}{N_{k}} \sum_{i \text { in } k}\left(x_{i}-\hat{\mu}_{k}\right)\left(x_{i}-\hat{\mu}_{k}\right)^{T}$
Scalar case: $\quad \hat{\sigma}_{k}^{2}=\frac{1}{N_{k}} \sum_{i \text { in } k}\left(x_{i}-\hat{\mu}_{k}\right)^{2}$

Imagine we knew the cluster (hard) assignments z_{i}

Cluster proportion MLE

R	G	B	Cluster
$x_{4}[1]$	$x_{4}[2]$	$x_{4}[3]$	1

Imagine we knew the cluster (hard) assignments z_{i}

Part 2a: Summary

But, we don't know these!

What can we do with just soft assignments r_{ij} ?

Estimating cluster parameters from soft assignments

What can we do with just soft assignments r_{ij} ?

Maximum likelihood estimation from soft assignments

Just like in boosting with weighted observations...

R	G	B	$r_{i 1}$	$r_{i 2}$	$r_{i 3}$
$\mathbf{x}_{1}[1]$	$\mathbf{x}_{1}[2]$	$\mathbf{x}_{1}[3]$	0.30	0.18	0.52
$\mathbf{x}_{2}[1]$	$\mathbf{x}_{2}[2]$	$\mathbf{x}_{2}[3]$	0.01	0.26	0.73
$\mathbf{x}_{3}[1]$	$\mathbf{x}_{3}[2]$	$\mathbf{x}_{3}[3]$	0.002	0.008	0.99
$\mathbf{x}_{4}[1]$	$\mathbf{x}_{4}[2]$	$\mathbf{x}_{4}[3]$	0.75	0.10	0.15
$\mathbf{x}_{5}[1]$	$\mathbf{x}_{5}[2]$	$\mathbf{x}_{5}[3]$	0.05	0.93	0.02
$\mathbf{x}_{6}[1]$	$\mathbf{x}_{6}[2]$	$\mathbf{x}_{6}[3]$	0.13	0.86	0.01

52\% chance this obs is in cluster 3

Total weight in cluster:

| 1.242 | 2.8 | 2.42 |
| :--- | :--- | :--- | (effective \# of obs)

What can we do with just soft assignments r_{ij} ?

Maximum likelihood estimation from soft assignments

R	G	B	Cluster 1 weights		
\mathbf{x}_{1} [1]	x_{1} [2]	$\mathrm{x}_{1}[3]$	0.30		
x_{2} [1]	R	G	B	Cluster 2 weights	
x_{3} [1]					
x_{4} [1]	x_{1} [1]	$\mathrm{x}_{1}[2]$	$\mathrm{x}_{1}[3]$	0.18	
x_{5} [1]	x_{2} [1]	R	G	B	Cluster 3 weights
x_{6} [1]	$\mathrm{x}_{3}[1]$				
	x_{4} [1]	$\mathrm{x}_{1}[1]$	x_{1} [2]	$\mathrm{x}_{1}[3]$	0.52
	x_{5} [1]	$\mathrm{x}_{2}[1]$	x_{2} [2]	$\mathrm{x}_{2}[3]$	0.73
	x_{6} [1]	x_{3} [1]	\mathbf{x}_{3} [2]	$\mathrm{x}_{3}[3]$	0.99
		x_{4} [1]	x_{4} [2]	$\mathrm{x}_{4}[3]$	0.15
		x_{5} [1]	x_{5} [2]	$\mathrm{x}_{5}[3]$	0.02
		x_{6} [1]	x_{6} [2]	$\mathrm{x}_{6}[3]$	0.01

What can we do with just soft assignments r_{ij} ?

Cluster-specific location/shape MLE

R	G	B	Cluster 1 weights
$\mathbf{x}_{1}[1]$	$x_{1}[2]$	$x_{1}[3]$	0.30
$\mathrm{x}_{2}[1]$	$\mathrm{x}_{2}[2]$	$\mathrm{x}_{2}[3]$	0.01
$\mathrm{x}_{3}[1]$	$\mathrm{x}_{3}[2]$	$\mathrm{x}_{3}[3]$	0.002
$\mathrm{x}_{4}[1]$	$\mathrm{x}_{4}[2]$	$\mathrm{x}_{4}[3]$	0.75
$\mathrm{x}_{5}[1]$	$\mathrm{x}_{5}[2]$	$\mathrm{x}_{5}[3]$	0.05
$\mathrm{x}_{6}[1]$	$\mathrm{x}_{6}[2]$	$\mathbf{x}_{6}[3]$	0.13

$$
\begin{aligned}
& \hat{\mu}_{k}=\frac{1}{N_{k}^{\mathrm{soft}}} \sum_{i=1}^{N} r_{i k} x_{i} \\
& \hat{\Sigma}_{k}=\frac{1}{N_{k}^{\mathrm{soft}}} \sum_{i=1}^{N} r_{i k}\left(x_{i}-\hat{\mu}_{k}\right)\left(x_{i}-\hat{\mu}_{k}\right)^{T} \\
& N_{k}^{\mathrm{Soft}}=\sum_{i=1}^{N} r_{i k}
\end{aligned}
$$

Compute cluster parameter estimates with weights on each row operation

Total weight in cluster k = effective \# obs

What can we do with just soft assignments r_{ij} ?

MLE of cluster proportions $\hat{\pi}_{k}$

$r_{i 1}$	$r_{i 2}$	$r_{i 3}$
0.30	0.18	0.52
0.01	0.26	0.73
0.002	0.008	0.99
0.75	0.10	0.15
0.05	0.93	0.02
0.13	0.86	0.01

Total weight in cluster:

```
1.242 2.8 2.42
```


Estimate cluster proportions from relative weights

Total weight in cluster k = effective \# obs

Total weight in dataset:

What can we do with just soft assignments r_{ij} ?

Defaults to hard assignment case when $r_{i j}$ in $\{0,1\}$

Hard assignments have:
$r_{i k}= \begin{cases}1 & i \text { in } k \\ 0 & \text { otherwise }\end{cases}$

R	G	B	$\mathrm{r}_{\text {i1 }}$	$\mathrm{r}_{\mathrm{i} 2}$	$\mathrm{r}_{\text {i }}$
$\mathrm{x}_{1}[1]$	$\mathrm{x}_{1}[2]$	$\mathrm{x}_{1}[3]$	0	0	1
$\mathrm{x}_{2}[1]$	$\mathrm{x}_{2}[2]$	$\mathrm{x}_{2}[3]$	0	0	1
$\mathrm{x}_{3}[1]$	$\mathrm{x}_{3}[2]$	$\mathrm{x}_{3}[3]$	0	0	1
$\mathrm{x}_{4}[1]$	$\mathrm{x}_{4}[2]$	$\mathrm{x}_{4}[3]$	1	0	0
$\mathrm{x}_{5}[1]$	x_{5} [2]	$\mathrm{x}_{5}[3]$	0	1	0
x_{6} [1]	x_{6} [2]	$\mathrm{x}_{6}[3]$	0	1	0

Total weight in cluster:

What can we do with just soft assignments r_{ij} ?

Equating the estimates...

$$
\begin{aligned}
& \hat{\Sigma}_{k}=\frac{1}{N_{k}^{\text {soft }}} \sum_{i=1}^{N} \underbrace{}_{i \hbar}\left(x_{i}-\hat{\mu}_{k}\right)\left(x_{i}-\hat{\mu}_{k}\right)^{T} \text {, } \\
& =\frac{1}{N_{k}} \sum_{i=k_{k}}\left(x_{i}-\hat{\mu}_{k}\right)\left(x_{i}-\hat{\mu}_{k}\right)^{\top}
\end{aligned}
$$

What can we do with just soft assignments r_{ij} ?

Part 2b: Summary

Still straightforward to compute cluster parameter estimates
from soft assignments

Expectation maximization (ME)

An iterative algorithm

Motivates an iterative algorithm:

1. E-step: estimate cluster responsibilities given current parameter estimates

$$
\hat{r}_{i k}=\frac{\hat{\pi}_{k} N\left(x_{i} \mid \hat{\mu}_{k}, \hat{\Sigma}_{k}\right)}{\sum_{j=1}^{K} \hat{\pi}_{j} N\left(x_{i} \mid \hat{\mu}_{j}, \hat{\Sigma}_{j}\right)}
$$

2. M-step: maximize likelihood over parameters given current responsibilities

$$
\hat{\pi}_{k}, \hat{\mu}_{k}, \hat{\Sigma}_{k} \mid\left\{\hat{r}_{i k}, x_{i}\right\}
$$

Expectation maximization (ME)

EM for mixtures of Gaussians in pictures - initialization

Expectation maximization (ME)

EM for mixtures of Gaussian in pictures - after $1^{\text {st }}$ iteration

$$
\begin{aligned}
& \text { Maximize likelihood } \\
& \text { given soft assign. } r_{i k}^{(1)} \\
& \rightarrow\left\{\hat{\pi}_{k}^{(1)}, \hat{\mu}_{k}^{(1)}, \hat{\Sigma}_{k}^{(1)}\right\}
\end{aligned}
$$

Then recompute responsibilities $\hat{r}_{i k}^{(2)}$
$26 / 11,3 / 12,10 / 12 / 2019$

Expectation maximization (ME)

EM for mixtures of Gaussians in pictures - after $2^{\text {nd }}$ iteration

rinse
+
repeat
until convergence

Expectation maximization (ME)

EM for mixtures of Gaussians in pictures - converged solution

$26 / 11,3 / 12,10 / 12 / 2019$

Expectation maximization (ME)

EM for mixtures of Gaussians in pictures - replay

$26 / 11,3 / 12,10 / 12 / 2019$

Expectation maximization (ME)

Convergence of EM

- EM is a coordinate-ascent algorithm
- Can equate E -and M -steps with alternating maximizations of an objective function
- Convergences to a local mode
- We will assess via (log) likelihood of data under current parameter and responsibility estimates

Expectation maximization (ME)

Initialization

- Many ways to initialize the EM algorithm
- Important for convergence rates and quality of local mode found
- Examples:
- Choose K observations at random to define K "centroids". Assign other observations to nearest centriod to form initial parameter estimates.
- Pick centers sequentially to provide good coverage of data like in k-means++
- Initialize from k-means solution
- Grow mixture model by splitting (and sometimes removing) clusters until K clusters are formed

Expectation maximization (ME)

Overfitting of MLE

Maximizing likelihood can overfit to data

Imagine at $\mathrm{K}=2$ example with one obs assigned to cluster 1 and others assigned to cluster 2

- What parameter values maximize likelihood?

Set center equal to point and shrink variance to 0

Likelihood goes to ∞ !

Expectation maximization (ME)

Overfitting in high dims

Doc-clustering example:
Imagine only 1 doc assigned to cluster k has word w (or all docs in cluster agree on count of word w)

Likelihood maximized by setting $\boldsymbol{\mu}_{\mathrm{k}}[\mathrm{w}]=\mathbf{x}_{\mathrm{i}}[\mathrm{w}]$ and $\sigma_{\mathrm{w}, \mathrm{k}}^{2}=0$

Likelihood of any doc with different count on word w being in cluster k is 0 !

Expectation maximization (ME)

Simple regularization of M-step for mixtures of Gaussians

Simple fix: Don't let variances \rightarrow 0!
Add small amount to diagonal of covariance estimate

Alternatively, take Bayesian approach and place prior on parameters.

Similar idea, but all parameter estimates are "smoothed" via cluster pseudo-observations.

Expectation maximization (ME)

Relationship to k-means

Consider Gaussian mixture model with

and let the variance parameter $\sigma \rightarrow 0$

Datapoint gets fully assigned to nearest center, just as in k-means

- Spherical clusters with equal variances, so relative likelihoods just function of distance to cluster center
- As variances $\rightarrow 0$, likelihood ratio becomes 0 or 1
- Responsibilities weigh in cluster proportions, but dominated by likelihood disparity
$\hat{r}_{i k}=\frac{\hat{\pi}_{k} N\left(x_{i} \mid \hat{\mu}_{k}, \sigma^{2} I\right)}{\sum_{j=1}^{K} \hat{\pi}_{j} N\left(x_{i} \mid \hat{\mu}_{j}, \sigma^{2} I\right)}$

Expectation maximization (ME)

Infinitesimally small variance EM
 $=\mathrm{k}$-means

1. E-step: estimate cluster responsibilities given current parameter estimates

$$
\hat{r}_{i k}=\frac{\hat{\pi}_{k} N\left(x_{i} \mid \hat{\mu}_{k}, \sigma^{2} I\right)}{\sum_{j=1}^{K} \hat{\pi}_{j} N\left(x_{i} \mid \hat{\mu}_{j}, \sigma^{2} I\right)} \in\{0,1\}
$$

2. M-step: maximize likelihood over parameters given current responsibilities (hard assignments!)

$$
\hat{\pi}_{k}, \hat{\mu}_{k} \mid\left\{\hat{r}_{i k}, x_{i}\right\}
$$

What you can do now

- Interpret a probabilistic model-based approach to clustering using mixture models
- Describe model parameters
- Motivate the utility of soft assignments and describe what they represent
- Discuss issues related to how the number of parameters grow with the number of dimensions
- Interpret diagonal covariance versions of mixtures of Gaussians
- Compare and contrast mixtures of Gaussians and k-means
- Implement an EM algorithm for inferring soft assignments and cluster parameters
- Determine an initialization strategy
- Implement a variant that helps avoid overfitting issues

Mixed membership models for documents

Clustering model

So far, clustered articles into groups

Doc labeled
with a topic
assignment

Clustering goal: discover groups of related docs

Clustering model

Are documents about just one thing?

Is this article

Clustering model

Soft assignments capture uncertainty

Soft assignments

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events
Drausin F. Wulsin ${ }^{\mathrm{a}}$, Emily B. Fox ${ }^{\mathrm{c}}$, Brian Litta, ${ }^{\mathrm{a}}$
${ }^{\text {a }}$ Department of Bioengineering, University of Pennsylvania, Philadelphia, PA ${ }^{\text {b }}$ Department of Neurology, University of Pernsytvania, Philadelphia, PA ${ }^{\text {cDepartment }}$ of Statistics, University of Washington, Seattle, WA

Abstract

Patients with epilepsy can manifest short, sub-clinical epileptic "bursts" in addition to fuil-blown linical seizures We believe the relationship between these two classes of events something not previously studied quantitatively could vield important insights into the nature and intrinsic dynamics of seizures A goal of our work is to parse these complex epileptic events into distinct dynamic regimes. A challenge posed by the intracranial EEG (iEEG) data we study is the fact that the number and placement of electrodes can vary between patients We develop a Bayesian nonparametric Markov switching process that allows for (i) shared dynamic regimes between a variable number of channels, (ii) asynchronous regime-switching, and (iii) an unknown dictionary of dynamic regimes. We encode a sparse and changing set of dependencies between the channels using a Markov-switching Gaussian graphical model for the innovations process driving the channel dynamies and demonstrate the jmportance of this model in parsing and out-of-sample predictions of IEEG data. We show that our model produces intuitive state assignments that can help automate clinical analysis of beizures and enable the comparison of sub-clinical bursts and full clinical seizures
Keywords: Bayesian nonparametric, EEG, factorial hidden Markov model, graphical model, time series

1. Introduction

Despite over three decades of research, we still have very little idea of what defines a seizure This ignorance stems both from the complexity of epilepsy as a disease and a paucity of quantitative tools that are flexible

Encoding of cluster

 membership $\mathrm{z}_{\mathrm{i}}=4$Based on science related words, maybe doc in cluster 4

Soft assignments

Modeling the Complex Dynamics and Changing

> Correlations of Epileptic Events

Drausin F. Wulsin ${ }^{\text {a }}$, Emily B. Fox ${ }^{\text {c }}$, Brian Litt ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Department of Bioengineering, University of Penrsylvania, Philadelphia, PA Department of Neurology, University of Pernsytuania, Philadelphia, PA ${ }^{\text {chepartment of Statistics, University of Washington, Seattle, WA }}$

Abstract

Patients with epilepsy can manifest short, sub-clinical epileptic "bursts" in adit add
the

Soft assignments

 capture uncertainty in $z_{i}=2$ or 4abl
unl set
graphical model for the innovations process driving the channel dynamics and demonstrate the importance of this model in parsing and out-of-sample predictions of iEEG data. We show that our model produces intuitive state assignments that can help automate clinical analysis of seizures and enable the comparison of sub-clinical bursts and full clinical seizures,
Keywords: Bayesian nomparametric, EEG, factorial hidden Markov model graphical model, time series

1. Introduction

Despite over three decades of research, we still have very little idea of what defines a seizure. This ignorance stems both from the complexity of epilepsy as a disease and a paucity of quantitative tools that are flexible

Encoding of cluster

 membership $z_{i}=2$
Or maybe cluster 2

Soft assignments

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events
Drausin F. Wulsin ${ }^{\text {a }}$, Emily B. Fox ${ }^{e}$, Brian Litt ${ }^{\text {a,b }}$
a Department of Bioenginecring, University of Pennsylvania, Philadelphia, PA ${ }^{\circ}$ Department of Newrology, University of Pennsylvania, Philadelphia, PA ${ }^{2}$ Department of Statistics, University of Washington, Seattlc, WA

Abstract

Patients with epilepsy can manifest short, sub-clinical epileptic "bursts" in addition to full-blown clinical seizures, We believe the relationship between these two classes of events something not previously studied quantitatively could yield important insights into the nature and intrinsic dynamics of

seizu into
 (iEE
 can switd
 switd able

unkı
graphica. model for the imnovations process driving the channel dynamics and demonstrate the importance of this model in parsing and out-of-sample predictions of IEEG data. We show that our model produces intuitive state assignments that can help automate clinical analysis of seizures and enable the comparison of sub-clinical bursts and full clinical seizures
Keywords: Bayesian nonparametrid EEG, factorial hidden Markov model. graphica. model, time series

1. Introduction

Despite over three decades of research, we still have very little idea of what defines a seizure This ignorance stems both from the complexity of epilepsy as a disease and a paucity of quantitative tools that are flexible

Really, it's about science and technology

Mixed membershio models

Modeling the Complex Dynamics and Changing Correlations of Epileptic Events

Drausin F. Wulsin ${ }^{\text {a }}$, Emily B. Fox ${ }^{\text {c }}$, Brian Litta ${ }^{\text {ab }}$
${ }^{a}$ Department of Bioengineering, University of Pennsylvania, Philadelphia, PA ${ }^{\text {b }}$ Department of Neurology, University of Pernsyivania, Philadelphia, PA ${ }^{\text {c Department of Statistics, University of Washington, Seattle, WA }}$

Abstract

Patients with epilepsy can manifest short, sub-clinical epileptic "bursts" in addition to full-blown elinical seizures, We believe the relationship between these two classes of events - something not previously studied quantitatively could vield important insights into the nature and intrinsic dynamics of seizures A goal of our work is to parse these complex epileptic events into distinct dynamic regimes. A challenge posed by the intracranial EEG (iEEG) data we study is the fact that the number and placement of electrodes can vary between patients We develop a Bayesian nonparametric Markow switching process that allows for (i) shared dynamic regimes between a variable number of channels, (ii) asynchronous regime-switching, and (iii) an unknown dictionary of dynamic regimes. We encode a sparse and changing set of dependencies between the channels using a Marko-switching Gaussian graphical model for the innovations process driving the channel dynamics and demonstrate the importance of this model in parsing and out-of-sample predictions of IEEG data. We show that our model produces intuitive state assignments that can help automate clinical analysis of seizures and enable the comparison of sub-clinical bursts and full clinical seizures
Keywords: Bayesian honparametric EEG, factorial hidden Markov model graphical model, time series

1. Introduction

Despite over three decades of research, we still have very little idea of what defines a seizure This ignorance stems both from the complexity of epilepsy as a disease and a paucity of quantitative tools that are flexible

Mixed membership models

Want to discover a set of memberships

(In contrast, cluster models aim at discovering a single membership)

Building alternative model

An alternative document clustering model

(Back to clustering, not mixed membership modeling)

Building an alternative model

So far, we have considered...

Modeling the Complex Dynamics and Changing Correlations of Epileptic Events

Drausin F. Wulsin", Emily B. Foxe ${ }^{\text {a }}$, Brian Littp

Abstract
Patients with epilepsy can manifest short, sub-clinical eqileptic "bursts" in addition to fall-blown clinical seixuras. We believe the relationship between these two chasers of yield important insights into the nature and intrinsic dynamics of seixures. A goal of our work in to parse these complex epileptic evente into distinct dymarnic regimes. A challenge poeed by the intracranial EEG (iEECG) data we stady is the fact that the number and placerment of electrodes can vary between patients. We develop a Bayexinn nonparametric Markov switching proces that allows for (i) shared dynami regimes betwoen a vari able number of chanmelh, (ii) asynchronous regimo itching, and (iii) an unknown dictionary of dynamic regimes. We encode is varse and changing set of dependencies between the channela uxing a Markow- itching Gnussian graphical model for the innowations proceses driving the cham, ,dynamios and demonstrate the importance of this model in parsing and out nample preassignmenta that can help antornate clinical analysis of seizures at. enable the comparison of sub-clinical bursts and full elinical seixures.
Keywords: Bayerinn noaparametric, EEDG, factorial hidden Markov moo graphical model, time serims

1. Introduction

Despite over three decades of reseserch, we still have wery little iden of what defines a secixare. This ignorance stems both from the complexity of eqilepey as a divesue and a paucity of quantitative tools that are flexible
$\mathbf{x}_{\mathrm{i}}=$

Building an alternative model

Bag-of-words representation

Modeling the Complex Dynamics and Changing Correlations of Epileptic Events

Drausin F. Wulsin², Emily B. Foxa , Brian Littap
 ${ }^{\circ}$ Dcpartment of Nowrobsy, Uniecrnity of Posenplumiai, Phileichitias, A

Abstract

Patients with epilepsy can manifest short, sab-clinical epileptic "bursts" in addition to fall-blown clinical seizures. We believe the relationship between
 these two claseses of eventa someching no sould yield important insights int A goal of our wrik in to panse these denplen epileptic events imto divino (iEFO) Hin Co can vary betwoes patients. We develop a Baymina nonparametric Markov
 unknown dietionary of dynamie ragimer We encode a sparse and changing set of dependencio © gruphical model for then dimtions of iEEC date. We show that pur model prodoces intuitive state

Kegwords: Baywins nocaparametric, EEG, factorial hidden Markov model, gruphical model, time serite

1. Introduction

Derpite over throe decades of research, we still have very little iden of what defines in scizure. Thin ignorance stems both from the complexity of epilepoy an a divesue and a paocity of quantitative tools that are flexible

Building an alternative model

Bag-of-words representation

Modeling the Complex Dynamics and Changing Correlations of Epileptic Events

Drausin F. Wulsin², Emily B. Faxe , Brian Littap

Abstract
Patients with epilepsy can manifest short, suth-clinical epileptic "bursts" in addition to full-blown clinical seixures. We believe the relationship between these two clasess of eventa-someching not previously studied quantitativelycould yield important insights into the nature and intrinsic dynamics of cixures. A goal of our work is to parse these complex epileptic events (EEC) data we at is imer. A th inge poen by placemeat of dectrodes can vary between patienta. We develop a Bayesina nonparametric Markov witching process that allows for (i) shared dymamic regimes between a variable number of chamely, (ii) asynchronous regimeswitching, and (iii) an unknown dictionary of dynamic regimes. We encode a sparae and changing set of dependencies betwen the chansels using a Markov-switching Gaussian demonstrate the importance of this model in parsing and out-of-sample prodictions of iEEC data. We show that our model prodoces intuitive state assignmenta that can help automate clinical analysis of seixures and enable the comparison of sub-clinical bursts and full clinical seixures.
Kegwords: Bayesian noaparametric, EED, factorial hidden Markov model, graphical model, time series

1. Introduction

Despite over three decades of research, we still have very little iden of what defines a secisure. This ignorance stems both from the complexity of epilepry is a divewe and a paucity of quantitative tools that are flexible
$\mathbf{X}_{\mathrm{i}}=$ \{modeling, complex, epilepsy, modeling, Bayesian, clinical, epilepsy, EEG, data, dynamic...\}

multiset

= unordered set of words with duplication of unique elements mattering

Model for „bag-of-words"

Modeling the Complex Dynamics and Changing Correlations of Epileptic Events

Drausin F. Wulsin ${ }^{\text {a }}$, Emily B. Fox ${ }^{c}$, Brian Litta,b
${ }^{\text {a }}$ Department of Bioengineering, University of Pennsylvanio, Philadelphia, PA ${ }^{6}$ Department of Neurology, University of Pennsylvania, Philadelphia, PA ${ }^{\text {c Department of Statistics, University of Woshington, Seattle, WA }}$

Abstract

Patients with epilepsy can manifest short, sub-clinical epileptic "bursts" in addition to full-blown clinical seizures. We believe the relationship between these two classes of events - something not previously studied quantitatively could yield important insights into the nature and intrinsic dynamics of seizures. A goal of our work is to parse these complex epileptic events into distinct dynamic regimes. A challenge posed by the intracranial EEG (iEEG) data we study is the fact that the number and placement of electrodes can vary between patients. We develop a Bayesian nonparametric Markov switching process that allows for (i) shared dynamic regimes between a variable number of channels, (ii) asynchronous regime-switching, and (iii) an unknown dictionary of dynamic regimes. We encode a sparse and changing set of dependencies between the channels using a Markov-switching Gaussian graphical model for the innovations process driving the channel dynamics and demonstrate the importance of this model in parsing and out-of-sample predictions of iEEG data. We show that our model produces intuitive state assignments that can help automate clinical analysis of seizures and enable the comparison of sub-clinical bursts and full clinical seizures.
Keywords: Bayesian nonparametric, EEG, factorial hidden Markov model, graphical model, time series

1. Introduction

Despite over three decades of research, we still have very little idea of what defines a seizure. This ignorance stems both from the complexity of epilepsy as a disease and a paucity of quantitative tools that are flexible

A model for bag-of-words representation

As before, the "prior" probability that doc i is from topic k is:

$$
p\left(z_{i}=k\right)=\pi_{k}
$$

$\pi=\left[\begin{array}{lll}\pi_{1} & \pi_{2} & \ldots \\ \pi_{k}\end{array}\right]$
represents corpus-wide topic prevalence

Model for „bag-of-words"

Modeling the Complex Dynamics and Changing Correlations of Epileptic Events

Drausin F. Wulsin ${ }^{\text {a }}$, Emily B. Fox ${ }^{\varepsilon}$, Brian Litt ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Department of Bioengineering, University of Pennsylvania, Philadelphia, PA ${ }^{5}$ Department of Neurology, University of Pennsylvania, Philadelphio, PA ${ }^{\text {c Department of Statiatics, University of Washington, Seattle, WA }}$

Abstract

Patients with epilepsy can manifest short, sub-clinical epileptic "bursts" in addition to full-blewn clinical seizures. We believe the relationship between these twoelasses of events mething not previously studied quantitatively could yield important insiblue insto the nature and intrinsic dynamics of seizures. goal of om work is we parse these complex epileptic events into distinct dymanic regimes. 4 chainapreposed by the intracranial EEG (iEEG) data we study is the fact that the numbec eruaplacement of lectrodes can vary between patients. We develop a Bmyentam peyimpametric Markok switching process that all ws for (i) sharethsnamtoreghm Now ween a xariable number of channels, (ii) asymensonous regimesurichisce not (iii) ap unknown dictionary of dynamic regimes. We cheode a sparsenatid ting set of dependencies between the channels using a Markov-swtehing Gamen graphical model for the innovations process driving the channel dynamics amd demonstrate the importance of this model in parsing and out of somplemeren demonstrate the importance of this mode in paring and oundenamper...
dictions of iEEG den. We show that our mpdel produees mituitivo assignments that can help automate clinical analysis of seizures a the comparison of sub-clinical bursts and full clinical seizurces
Kcywords: Bayesian nonparametric, EEG, factorio- Mind ${ }^{\text {ang harkov model, }}$ graphical model, time series

1. Introduction

Despite guen three decontes of hesearch, we still have very little idea of what denes a seizure. Thi rinorance stems both from the complexity of epilepsy as a disease a paucity of quantitative tools that are flexible

A model for bag-of-words representation

Assuming doc i is from topic k, words occur with probabilities:

SCIENCE	
patients	0.05
clinical	0.01
epilepsy	0.002
seizures	0.0015
EEG	0.001

Model for „bag-of-words"

Topic-specific word probabilities

Distribution on words in vocab for each topic

SCIENCE	
experiment	0.1
test	0.08
discover	0.05
hypothesize	0.03
climate	0.01
\ldots	\ldots

TECH	
develop	0.18
computer	0.09
processor	0.032
user	0.027
internet	0.02
\ldots	\ldots

SPORTS	
player	0.15
score	0.07
team	0.06
goal	0.03
injury	0.01
\ldots	\ldots

(table now organized by decreasing probabilities showing top words in each category)

Model for „bag-of-words"

Comparing and contrasting

Now

$$
p\left(z_{i}=k\right)=\pi_{k}
$$

\{modeling, complex, epilepsy, modeling, Bayesian, clinical,
epilepsy, EEG, data, dynamic...\}
compute likelihood of the collection of words in doc under each topic distribution

Latent Dirichlet allocation (LDA)

$26 / 11,3 / 12,10 / 12 / 2019$

Latent Dirichlet allocation

Modeling the Complex Dynamics and Changing Correlations of Epileptic Events

Drausin F. Wulsin ${ }^{\text {a }}$, Emily B. Foxc ${ }^{\text {e }}$, Brian Litt ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Department of Bioengineering, University of Pennsylvania, Philadelphia, PA Department of Neurology, University of Pernsylvania, Philadelphia, PA ${ }^{-}$Deportment of Statistics, University of Washington, Seattle, WA

Abstract

Patients with epilepsy can manifest short, sub-clinical epileptic "bursts" in addition to full-blown clinical seizures, We believe the relationship between these two classes of events something not previously studied quantitatively could yield important insights into the nature and intrinsic dynamics of seizures A goal of our work is to parse these complex epileptic events into distinct dynamic regimes. A challenge posed by the intracrania EEG (iEEG) data we study is the fact that the number and placement of electrodes can vary between patients We develop a Bayesian nonparametric Markov switching process that allows for (i) shared dynamic regimes between a vanable number of channels, (ii) asynchronous regime-switching, and (iii) an unknown dictionary of dynamic regimes. We encode a sparse and changing set of dependencies between the channels using a Markof-switching Gaussian graphical model for the innovations process driving the channel dynamics and demonstrate the importance of this model in parsing and out-of-sample predictions of IEEG data. We show that our model produces intuitive state assignments that can help automate clinical analysis of seizures and enable the comparison of sub-clinical bursts and full clinical seizures
Keywords: Bayesian nonparametric EEG, factorial hidden Markov model graphical model, time series

1. Introduction

Despite over three decades of research, we still have very little idea of what defines a seizure This ignorance stems both from the complexity of epilepsy as a disease and a paucity of quantitative tools that are flexible

LDA is a mixed membership model

Want to discover a

set of topics

Latent Dirichlet allocation

Topic vocab distributions:

SCIENCE	
experiment	0.1
test	0.08
discover	0.05
hypothesize	0.03
climate	0.01
\ldots	\ldots
TECH	
develop	0.18
computer	0.09
processor	0.032
user	0.027
internet	0.02
\ldots	\ldots

SPORTS	
player	0.15
score	0.07
team	0.06
goal	0.03
injury	0.01

\vdots

[^0]Modeling the Complex Dynamics and Changing Correlations of Epileptic Events

Drausin F. Wulsina ${ }^{\text {a }}$, Emily B. Fox ${ }^{\mathrm{c}}$, Brian Litt ${ }^{\mathrm{a}, \mathrm{b}}$
${ }^{\text {a }}$ Department of Bioengineering, University of Pennsypvania, Philadelphia, PA ${ }^{6}$ Department of Neurology, University of Pennsytvania, Philadelphia, P ${ }^{\text {c Department of Statistics, University of Washington, Seattle, WA }}$

Abstract

Taurion worm enilepsy can manifest short, sub-clinical epileptic "bursts" in ane two thases of events somertums mot previously studied quantitatively imporeant insights into the mature and ind rinsic dynamics of Chris A goal of out work is to parse those compleo enileptic events b VGG data we stud is the fact onat thenumber and placement of eleatrodes ca (Mry betwecn gatient We developg Bryosian nonparametric Markov swi hing phocess hat allows fir (i) shared dyrumic regiges between a variable umber of chanheb, (ii) asynchronous regime-switching, and (iii) an unknd n dictionary of dynanic regimes We encode a sparse and changing set of de fend ncies between the channels using a Markov-switching Gaussian graphical pode for the innovations process driving the channel dynamics and demonstrat the imporance of this model in parsing and out-of-sample predictions of LEEG Jata. We show that ongmodel produces intuitive state assignments that cal help automate clinical analysis of seizures and enable the comparisol f subclinical bursts and full clinical seizures.
Keywords: Bay san nomarametric, EEG, factorial hidden Markov model, graphical model, tine seribs

1. Introduction

Despite over three dec des of research, we still have very little idea of what defines a seizure. This ignorange stems both from the complexity of epilepsy as a disease and a paucity of quantitative tools that are flexible

Clustering:

One topic indicator z_{i} per document i

All words come from (get scored under) same topic z_{i}

Distribution on prevalence of topics in corpus $\boldsymbol{\pi}=\left[\begin{array}{llll}\pi_{1} & \pi_{2} & \ldots & \pi_{k}\end{array}\right]$

Latent Dirichlet allocation

In LDA:

One topic indicator $z_{i w}$ per word in doc i

Each word gets scored under its

topic $z_{i w}$
Distribution on
prevalence of topics in document $\pi_{\mathrm{i}}=\left[\begin{array}{llll}\pi_{i 1} & \pi_{\mathrm{i} 2} & \cdots & \pi_{\mathrm{ik}}\end{array}\right]$

Inference in LDA models

Topic vocab distributions:

SPORTS

player	0.15
score	0.07
team	0.06
goal	0.03
injury	0.01

Modeling the Complex Dynamics and Changing Correlations of Epileptic Events

Drausin F. Wulsin ${ }^{\mathrm{a}}$, Emily B. Fox ${ }^{\mathrm{c}}$, Brian Litt ${ }^{\mathrm{a}, \mathrm{b}}$
${ }^{\text {a }}$ Department of Bioengineering, University of Pennsylvania, Philadelphia, PA ${ }^{6}$ Department of Neurology, University of Pernsybvania, Philadelphia, PA cDepartment of Statistics, University of Washington, Seattle, WA

Abstract

Patients with epilepsy can manifest short, sub-clinical epileptic "bursts" in addition to full-blown clinical seizures, We believe the relationship between these two classes of events - something not previously studied quantitativelycould yield important insights into the nature and intrinsic dynamics of seizures A goal of our work is to parse these complex epileptic events into distinct dynamic regimes. A challenge posed by the intracrania EEG (iEEG) data we study is the fact that the number and placement of electrodes can vary between patients. We develop a Bayesian nonparametric Markov switching process that allows for (i) shared dynamic regimes between a variable number of channels, (ii) asynchronous regime-switching, and (iii) an unknown dictionary of dynamic regimes. We encode a sparse and changing set of dependencies between the channels using a Markor-switching Gaussian graphica. model for the innovations process driving the channel dynamics and demonstrate the importance of this model in parsing and out-of-sample predictions of IEEG data. We show that our model produces intuitive state assignments that can help automate clinical analysis of seizures and enable the comparison of sub-clinical bursts and full clinical seizures
Keywords: Bayesian nonparametric EEG, factorial hidden Markov model graphical model, time series

1. Introduction

Despite over three decades of research, we still have very little idea of what defines a seizure This ignorance stems both from the complexity of epilepsy as a disease and a paucity of quantitative tools that are flexible

Document topic

 proportions:

Inference in LDA models

Inference in LDA models

Inference in LDA models

Interpreting LDA outputs

TOPIC 3	
player	0.15
score	0.07
team	0.06
goal	0.03
injury	0.01

Inference in LDA models

Interpreting LDA outputs

TOPIC 2	
develop	0.18
computer	0.09
processor	0.032
user	0.027
internet	0.02
-	\ldots

\section*{| TOPIC 3 | |
| :--- | :--- |
| player | 0.15 |
| score | 0.07 |
| team | 0.06 |
| goal | 0.03 |
| injury | 0.01 |
| | \ldots |
 :}

Examine coherence of
learned topics

- What are top words per topic?
- Do they form meaningful groups?
- Use to post-facto label topics (e.g., science, tech, sports,...)

Inference in LDA models

Interpreting LDA outputs

TOPIC 2

TOPIC 3	
player	0.15
score	0.07
team	0.06
goal	0.03
injury	0.01

Modeling the Complex Dynamics and Changing Correlations of Epileptic Events Drausin F. Wulkin², Emily B. Fax ${ }^{\varepsilon}$, Brinn Littab ${ }^{\text {a Depertment of Phoenginering, Urituersity of Peransylvanta, Philhdelphia, PA }}$ ${ }^{\circ}$ Depertment of Nearolagy, Untsersity of Perrigiveenio, Pitiaddiphia, PA a Department of Stattstics, Untersity of Washington, Seatlle, WA
Abstract
Patients with epileper car manifest short, sub-clinical epileptic "bursts" in addition to fult-blown linical peizures We believe the relationship between these two clasess of eventa- something not previously studied quant itatively could yield important imsights into the nature and intrinsic dynamioss of seixurer A goal of our work is to parse these complex spileptic events into distinct dynamic regimes. A thalleng posed by the intracranmi EEES (iFEG) data we stady is the fact that the number and plocement of electrodes con vary between patientes We develop o Bayesinn nomparametric Markon switching process that allows for (i) sharect dymanic regirnes between a variable mumber of channels, (ii) asynchronoum regime-switching, and (iii) an unknown dictionary of dynamic regimes. We encoden aparac fud changing sut of derpendencies between the channels using a Markof -switching Gausxinn graphica model for thr Innovations process driving the channel dynamics and demonstrate the importance of this model in pansing and out-of-mample predictions of iEEG data. We show that cas model produces intuitive state averiguments that can help automate slinicn analyss of cixuree and emble the comparion of sub-climenl bursts and full clinicn, peizures
Keywords: Bayexint nanparametrid EEG, factorial hidden Markov madell Enuphicn model, time series
1. Introduction Despite over thres dexades of research, we still have very little iden of whot defines a scixure This ignorance stems both from the complexity of ecrilergy as a diberese and a paucity of quantitative tools that are flexible

Doc-specific topic proportions can be used to:

- Relate documents
- Study user topic preferences
- Assign docs to multiple categories

Inference in LDA models

Interpreting LDA outputs

TOPIC 3	
player	0.15
score	0.07
team	0.06
goal	0.03
injury	0.01
\ldots	\ldots

:

An inference algorithm for LDA: Gibbs sampling

Clustering so far

k-means

Assign observations to closest cluster center
$z_{i} \leftarrow \arg \min _{j}\left\|\mu_{j}-\mathbf{x}_{i}\right\|_{2}^{2}$
Revise cluster centers
$\mu_{j} \leftarrow \arg \min _{\mu} \sum_{i: z_{i}=j}\left\|\mu-\mathbf{x}_{i}\right\|_{2}^{2}$

EM for MoG

E-step: estimate cluster responsibilities

$$
\hat{r}_{i k}=\frac{\hat{\pi}_{k} N\left(x_{i} \mid \hat{\mu}_{k}, \hat{\Sigma}_{k}\right)}{\sum_{j=1}^{K} \hat{\pi}_{j} N\left(x_{i} \mid \hat{\mu}_{j}, \hat{\Sigma}_{j}\right)}
$$

M-step: $\underline{\text { maximize likelihood }}$ over parameters

$$
\hat{\pi}_{k}, \hat{\mu}_{k}, \hat{\Sigma}_{k} \mid\left\{\hat{r}_{i k}, x_{i}\right\}
$$

Iterative soft assignment to max objective

What can we do for our bag-of-words models?

Part 1: Clustering model

SPORTS	
player	0.15
score	0.07
team	0.06
goal	0.03
injury	0.01

:

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events
Drausin F. Wulsin², Ermily B. Foxx , Brian Littsp
 ${ }^{2}$ Department of Statstites, Unterssity of Washingtom, Seathle, WA

Abstract

Patients with epilepsy can manifest short, sub-clinical epileptic "bursts" in
addition to full-blown clinical seixures. We believe the relationship between addition to full-blown clinical seizures. We believe the relationship between these two clusess of events something not previoualy studied quantitatively could yied important insights into the nature and intrinse dynamues of seizures. A goal of our work is to parse these complex epileptic eventa into distinct dynamic regimes. A challenge posed by the intracranial EEG
(iEEG) data we study is the fact that the number and placement of electrodes (iEEG) data we study is the fact that the number and placement of electrodes
can vary between patienta. We develop a Bayesian nonparametric Markov can vary between patients. We develop a Bayesian nonparametric Markov
switching process that allows for (i) shared dynamic regimes between a variswitching process that allows for (i) shared dynamic regimes between a vari-
able number of channels, (ii) awynchronous regimeswitching, and (iii) an able number of charnek, (ii) awynchronous regimeswitching, and (iii) an
unknown dictionary of dynamic regimes. We encode a spanse and changing unknown dietionary of dynamic regimes. We encode a sparse and changing set of dependencies between the channels uxing a Markov-switching Gaussian graphical model for the innowations process driving the channel dynarmics and dictions of iEEG data. We show that our model produces intuitive pro asaignments that can help automate clinical analysis of seixures and enable the comparison of sub-clinical bursts and full clinical seixures.
Keywords: Bayesian nonparametric, EEG, Eyctorial hidden Markov model, graphical model, time series

1. Introduction

Despite over three decades of research, we still have very little idea of what defines a seizure. This ignorance stems both from the complexity of epilepay ias a disesse and a paucity of quantitative tools that are flexible

One topic indicator z_{i} per document i

All words come from (get scored under)
same topic z_{i}
Distribution on prevalence of topics in corpus $\boldsymbol{\pi}=\left[\begin{array}{llll}\pi_{1} & \pi_{2} & \ldots & \pi_{k}\end{array}\right]$

What can we do for our bag-of-words models?

Part 1: Clustering model

SCIENCE	
experiment	0.1
test	0.08
discover	0.05
hypothesize	0.03
climate	0.01
..	\ldots

TECH	
develop	0.18
computer	0.09
processor	0.032
user	0.027
internet	0.02
\ldots	\ldots

SPORTS	
player	0.15
score	0.07
team	0.06
goal	0.03
injury	0.01
.-	\ldots

:

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events
Drausin F. Wulkin², Emily B. Foxe, Brian Litts b

eppriment of Neurohogy, Unitersity of Pennsyitanta, Philadelphis,

Abstract

Patients with epilepsy can manifest short, sub-clinical epileptic "bursts" in addition to full-blown clinical seixures. We believe the relationship between these two clasess of events-something not previouly studied quautitatively could yield important insights into the nature and intrinsic dynamics of seixures. A goal of our work is to parse these complex epileptic events into distinct dynamic regimes. A chailenge posed by the intracranial EEG (iEEG) data we study is the fact that the number and placement of electrodes can vary between patients. We develop a Bayesian nonparametric Markov switching process that allows for (i) shared dynamic regimas between a vari
able number of channels, (ii) awychronous regimeswitching, and (iii) an able number of channels, (i) awynchronous regmeswitctung, and (iii) an
unknown dictionary of dynamic regimes. We encode a spane and changing unknown dectsonary of dynamic regimes. We encode a spanse and changis
set of dependencies between the channela using a Markov-switching Gaisian graphical model for the innowations process driving the channel dynamios and demonastrate the importance of this model in parsing and out-of sample predictions of iEEG data. We show that our model produces intuitive state assignments that can help automate clinical analysis of seizures and enable the comparison of sub-clinical bursts and full clinical seizures.
Keywords: Bayesian nonparaunetric, EEG, factorial hidden Markov model, graphical model, time series

1. Introduction

Despite over three decades of research, we still have very little idea of what defines a seixure. This ignorance stems both from the complexity of endensu am a disesue and a paucity of auantitative tools that are flexible

Can derive EM algorithm:

- Gaussian likelihood of
tf-idf vector
\downarrow
multinomial likelihood of word counts (m_{w} successes of word w)
- Result: mixture of multinomial model

What can we do for our bag-of-words models?

Part 2: LDA model

\section*{| TOPIC 3 | |
| :--- | :--- |
| player | 0.15 |
| score | 0.07 |
| team | 0.06 |
| goal | 0.03 |
| injury | 0.01 |}

Can derive EM algorithm, but not common (performs poorly)

An inference algorithms

Typical LDA implementations

Normally LDA is specified as a Bayesian model
(otherwise, "probabilistic latent semantic analysis/indexing")

- Account for uncertainty in parameters when making predictions
- Naturally regularizes parameter estimates in contrast to MLE

EM-like algorithms (e.g., "variational EM"), or...

Algorithm for Bayesian inference

Gibbs sampling

Iterative random hard assignment!

Benefits:

- Typically intuitive updates
- Very straightforward to implement

Gibbs sampling for LDA

TOPIC 2

\section*{| develop | 0.18 |
| :--- | :--- |}

computer 0.09
processor 0.032

user	0.027

internet	0.02

\section*{TOPIC 3
 | player | 0.15 |
| :--- | :--- |
 $\begin{array}{ll}\text { score } & 0.07 \\ \text { team } & 0.06\end{array}$
 team 0.06
 $\begin{array}{ll}\text { goal } & 0.03 \\ \text { injury } & 0.01\end{array}$}

:

Current set of assignments

Gibbs sampling for LDA

Gibbs sampling for LDA

\section*{TOPIC 1
 | experiment | 0.1 |
| :--- | :--- |
| test | 0.08 |
 | test | 0.08 |
| :--- | :--- | | discover 0.05 |
| :--- | :--- | hypothesize 0.03 $\begin{array}{ll}\text { climate } & 0.01\end{array}$}

TOPIC 2

| develop | 0.18 |
| :--- | :--- | :--- |
| computer | 0.09 |

computer	0.09

processor 0.032 \begin{tabular}{l|l|}
\hline user \& 0.027

\hline internet \& 0.02
\end{tabular}

TOPIC 3	
player	0.15
score	0.07
team	0.06
goal	0.03
injury	0.01

Modeling the Complex Dynamics and Changing Correlations of Epileptic Events Drauxin F. Wulkin², Ernily B. Fax ${ }^{\varepsilon}$, Brian Littsp ${ }^{\text {a }}$ Department of Phoenginering, Uratverstty of Pernisylvanta, Philadelphis, PA DDepartment of Newrology, Unitersity of Perrasyibento, Philaddiphta, PA ${ }^{\text {a }}$ Depariment of Statistics, Unterssity of Washingtion, Seatelc, WA
Abstract
Patients -ith epilepory car manifest short, sub-clinical epileptic "bursta" in ardition to full-blown linical cizures We believe the relationahip between these two cluses of events-something not previously stadied quantitatively could yield important imsights into the nature and intrinaic dynamics of seizures A goal of our work is to parse these complex spileptic eventas into distinct dynamic regimes. A thallenge posed by the intracramin EEEG (iEFG) data we stady is the fact that the number and placement of electrodes con vary between patiente We develop a Bayexian ponparametric Markon switching process that allows for (i) shoreef dymanic regimes between a varable mumber of channels, (ii) asynchronow regime-switching, and (iii) an unknown dictionary of dynarme regimes. We encole n panac fad changing sat of dependencies between the channels using 2 Markof-switching (Gausian graphica model for the innovations process driving the channel dynamics and dembastrate the jumportance of this model in parsing and out-of-sample predictions of iREC data. We show that esur model produces intuitive state aseignments that can help automate alinicn analysas of vixuren and enable the comparison of sub-climenl bursts and full clinicn, vizures
Kevwords: Bayesian norparametrid EEG, factocial hidden Markov model Eruphica model, time series
1. Introduction Despite over thresedecudes of research, we still have very little iden of whot defines a seixure . This ignorance stems both from the complexity of epileprey as a diseowe and a paucity of quantitative tools that are flexible

Step 2: Randomly reassign doc topic proportions based on assignments $z_{i w}$ in current doc

Gibbs sampling for LDA

TOPIC 3	
player	0.15
score	0.07
team	0.06
goal	0.03
injury	0.01

:

Step 3: Repeat for all docs

Gibbs sampling for LDA

TOPIC 2	
Word 1	$?$
Word 2	$?$
Word 3	$?$
Word 4	$?$
Word 5	$?$
\ldots	\ldots

TOPIC 3				
Word 1	$?$			
Word 2	$?$			
Word 3	$?$			
Word 4	$?$			
Word 5	$?$			
\ldots	\ldots			

Step 4: Randomly reassign topic vocab distributions based on assignments $z_{\text {iw }}$ in entire corpus

An inference algorithm: Gibbs sampling

Gibbs sampling for LDA

TOPIC 2

develop	0.18

computer	0.09			
:---	:---		processor	0.032
:---	:---		user	0.027
| :--- | :--- | | internet | 0.02 |
| :--- | :--- |

TOPIC 3	
player	0.15
score	0.07
team	0.06
goal	0.03
injury	0.01

Repeat Steps 1-4 until max iter reached

An inference algorithm: Gibbs sampling

Random sample \#10000

TOPIC 1	
experiment	0.1
test	0.08
discover	0.05
hypothesize	0.03
climate	0.01
\ldots	\ldots
TOPIC	2
develop	0.18
computer	0.09
processor	0.032
user	0.027
internet	0.02
	\ldots

Current set of assignments

An inference algorithm: Gibbs sampling

Random sample \#10001

TOPIC 1	
experiment	0.12
test	0.06
hypothesize	0.042
discover	0.04
climate	0.011

TOPIC 2

develop	0.16			
computer	0.11	computer 0.11	user	0.03
:---	:---		processor	0.029
:---	:---			
			internet	0.023
:---	:---			

TOPIC 3	
player	0.15
score	0.07
team	0.06
offense	0.02
defense	0.018

Current set of assignments

An inference algorithm: Gibbs sampling

Random sample \#10002

\author{

TOPIC 1
 \begin{tabular}{l|l|}
\hline experiment \& 0.10

\hline discover \& 0.055

 discover 0.055 hypothesize 0.043

test \& 0.042

\hline
\end{tabular}
 examine 0.015

}

TOPIC 3	
player	0.17
score	0.09
game	0.062
team	0.043
win	0.03

\vdots

Modeling the Complex Dynamics and Changing Correlations of Epileptic Events

Drausin F. Wulsinis ${ }^{2}$, Emily B. Fax ${ }^{c}$, Brian Litt $=p$

EDepariment of Statistice, Untiversity of Washingition, Seatile, WA

Abstract

Patients with epilepey car mannifest nhort, sub-clinical epileptic "bursts" in addition to fult-blown linical cixures We believe the relationahip between these two clasess of events-something not previously studied quantitatively could yield important insights into the nature and intringic dynarnics of
suizuren seizured A gool of our work is to parse these complex spileptic events
into distinet dynamic regimes. A shallenge posed by the intracratini
EECG (iFEG) data we study is the fact that the number and placement of electrodes can vary betweer patiente We develop on Bayenian ponparametric Markon switching process that allows for (i) shared dymamic regirnes between in vartable nurmber of channels, (ii) nyychronoul regimeswitching, and (iii) an unknown dictionary of dynarnice regirness. We encode on panse find changing unknown dependencies between the channels using a Markon -switching Gausian graphical model for the inowntion! process driving the channel dynamics and gremonstrate the importunce of the model in parsing and out-of-sample pre dictions of iEEC data. We show that cour model prodvoces intuitive stat waignments that can help automate plinicn analysas of peixure and enabl the comparion of sub-clinical bursts and full clinicn. pisures
Kevwords: Baycrian nonparametrid EEG, factorial hidden Markov model Kevwords:
Eraphica model, timne series

1. Introduction

Despite over thren deandes of research, we still have very little iden of what defines a scixured This ignorance stems both from the complexity of whot defines a seixure This ignorance stems both from the complexity of
erilepry as a disewe and a paucity of quantitative tools that are flexible

Current set of assignments

An inference algorithm: Gibbs sampling

What do we know about this process?

Not an optimization algorithm

Eventually
provides
"correct"
Bayesian
estimates...
probability of observations given variables/parameters
and probability of variables/parameters themselves

An inference algorithm: Gibbs sampling

What to do with sampling output?

Predictions:

1. Make prediction for each snapshot of randomly assigned variables/parameters (full iteration)
2. Average predictions for final result

Parameter or assignment estimate:

- Look at snapshot of randomly assigned variables/parameters that maximizes "joint model probability"

Gibbs sampling algorithm

Iterative random hard assignment!

Assignment variables and model parameters treated similarly

Iteratively draw variable/parameter from conditional distribution having fixed:

- all other variables/parameters
- values randomly selected in previous rounds
- changes from iter to iter
- observations
- always the same values

"Collapsed" Gibbs sampling for LDA

Based on special structure of LDA model, can sample just indicator variables $z_{\text {iw }}$

- No need to sample other parameters
- corpus-wide topic vocab distributions
- per-doc topic proportions

Often leads to much better performance because examining uncertainty in smaller space

Collapsed Gibbs sampling for LDA

Collapsed Gibbs sampling for LDA

Select a document

epilepsy	dynamic	Bayesian	EEG	model

5 word document

Collapsed Gibbs sampling for LDA

Randomly assign topics

3	2	1	3	1
epilepsy	dynamic	Bayesian	EEG	model

(one possible approach)

Collapsed Gibbs sampling for LDA

Randomly assign topics

3	2	1	3	1
epilepsy	dynamic	Bayesian	EEG	model

Collapsed Gibbs sampling for LDA

Maintain local statistics

3	2	1	3	1					
epilepsy	dynamic	Bayesian	EEG	model	\qquad		Topic 1	Topic 2	Topic 3
:---:	:---:	:---:	:---:						
	Doc i	2	1						
2									

Collapsed Gibbs sampling for LDA

Maintain global statistics

3	2	1	3	1
epilepsy	dynamic	Bayesian	EEG	model

	Topic 1	Topic 2	Topic 3
epilepsy	1	0	35
Bayesian	50	0	1
model	42	1	0
EEG	0	0	20
dynamic	10	8	1
\ldots			

	Topic 1	Topic 2	Topic 3
Doc i	2	1	2

Collapsed Gibbs sampling for LDA

Randomly reassign topics

3	K.	1	3	1
epilepsy	dynamic	Bayesian	EEG	model

	Topic 1	Topic 2	Topic 3
epilepsy	1	0	35
Bayesian	50	0	1
model	42	1	0
EEG	0	0	20
dynamic	10	$7 \not 又 8$	1
\ldots			

	Topic 1	Topic 2	Topic 3
Doc i	2	011	2

decrementing
counts
after removing
curcent assignment

Collapsed Gibbs sampling for LDA

Probability of new assignment

3	$?$	1	3	1
epilepsy	dynamic	Bayesian	EEG	model

Collapsed Gibbs sampling for LDA

Probability of new assignment

3	$?$	1	3	1
epilepsy	dynamic	Bayesian	EEG	model

$26 / 11,3 / 12,10 / 12 / 2019$

Collapsed Gibbs sampling for LDA

Probability of new assignment

3	$?$	1	3	1
epilepsy	dynamic	Bayesian	EEG	model

$26 / 11,3 / 12,10 / 12 / 2019$

Collapsed Gibbs sampling for LDA

Probability of new assignment

3	$?$	1	3	1
epilepsy	dynamic	Bayesian	EEG	model

Collapsed Gibbs sampling for LDA

Randomly draw a new topic indicator

3	$?$	1	3	1
epilepsy	dynamic	Bayesian	EEG	model

$26 / 11,3 / 12,10 / 12 / 2019$

Collapsed Gibbs sampling for LDA

Update counts

3	1	1	3	1
epilepsy	dynamic	Bayesian	EEG	model

	Topic 1	Topic 2	Topic 3
epilepsy	1	0	35
Bayesian	50	0	1
model	42	1	0
EEG	0	0	20
dynamic	$11 ~ \not 10$	7	1
\ldots			

	Topic 1	Topic 2	Topic 3
Doc i	$3 \not 2$	0	2

increment counts

$$
\begin{gathered}
\text { based on new } \\
\text { assignment of } \\
z_{i w}=1
\end{gathered}
$$

Collapsed Gibbs sampling for LDA

Geometrically...

3	1	1	3	1
epilepsy	dynamic	Bayesian	EEG	model

Collapsed Gibbs sampling for LDA

Iterate through all words/docs

3	1	1	3	1
epilepsy	dynamic	Bayesian	EEG	model

	Topic 1	Topic 2	Topic 3
epilepsy	1	0	35
Bayesian	50	0	1
model	42	1	0
EEG	0	0	20
dynamic	10	7	1
\ldots			

	Topic 1	Topic 2	Topic 3
Doc i	2	0	2

Collapsed Gibbs sampling for LDA

What to do with the collapsed samples?

TOPIC 2

develop	0.18
computer	0.09
processor	0.032
user	0.027
internet	0.02

TOPIC 3
 player 0.15
 $\begin{array}{ll}\text { score } & 0.07\end{array}$
 team 0.06
 goal 0.0
 injury 0.01

From "best" sample of $\left\{z_{i w}\right\}$, can infer:

1. Topics from conditional distribution...
need corpus-wide info

Collapsed Gibbs sampling for LDA

What to do with the collapsed samples?

From "best" sample of $\left\{z_{i w}\right\}$, can infer:

1. Topics from conditional distribution... need corpus-wide info
2. Document "embedding"... need doc info only

Collapsed Gibbs sampling for LDA

Embedding new documents

Simple approach:

1. Fix topics based on training set collapsed sampling
2. Run uncollapsed
sampler on
new doc(s) only

What you can do now

- Compare and contrast clustering and mixed membership models
- Describe a document clustering model for the bag-of-words doc representation
- Interpret the components of the LDA mixed membership model
- Analyze a learned LDA model
- Topics in the corpus
- Topics per document
- Describe Gibbs sampling steps at a high level
- Utilize Gibbs sampling output to form predictions or estimate model parameters
- Implement collapsed Gibbs sampling for LDA

Hierarchical clustering

Why hierarchical clustering

- Avoid choosing \# clusters beforehand
- Dendrograms help visualize different clustering granularities
- No need to rerun algorithm

- Most algorithms allow user to choose any distance metric
- k-means restricted us to Euclidean distance

Why hierarchical clustering

Can often find more complex shapes than k-means or Gaussian mixture models

Gaussian mixtures:
ellipsoids
k-means: spherical clusters

Why hierarchical clustering

Can often find more complex
shapes than k-means or
Gaussian mixture models

What about these?

Two main types of algorithms

Divisive, a.k.a top-down: Start with all data in one big cluster and recursively split.

- Example: recursive k-means

Agglomerative a.k.a. bottom-up: Start with each data point as its own cluster. Merge clusters until all points are in one big cluster.

- Example: single linkage

Divisive clustering

Divisive in pictures - level 1

Divisive clustering

Divisive in pictures - level 2

Divisive: Recursive k-means

Divisive: Recursive k-means

Divisive: choices to be made

- Which algorithm to recurse
- How many clusters per split
- When to split vs. stop
- Max cluster size: number of points in cluster falls below threshold
- Max cluster radius: distance to furthest point falls below threshold
- Specified \# clusters: split until pre-specified \# clusters is reached

Aglomerative: Single linkage

1. Initialize each point to be its own cluster

(1)

Aglomerative: Single linkage

2. Define distance between clusters to be:

Aglomerative: Single linkage

3. Merge the two closest clusters

Aglomerative: Single linkage

4. Repeat step 3 until all points are in one cluster

Aglomerative: Single linkage

4. Repeat step 3 until all points are in one cluster

Cluster of clusters

Just like our picture for divisive clustering...

The dendrogram

- x axis shows data points (carefully ordered)
- y-axis shows distance between pair of clusters

Extracting a partition

Choose a distance D^{*} at which to cut dendogram Every branch that crosses D* becomes a separate cluster

Data points

Agglomerative: choices to be made

- Distance metric: $\mathrm{d}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$
- Linkage function: e.g., $\min _{x_{i} i n C_{1},} d\left(x_{i}, x_{j}\right)$ x_{j} in C_{2}
- Where and how to cut dendrogram

More on cutting dendrogram

- For visualization, smaller \# clusters is preferable
- For tasks like outlier detection, cut based on:
- Distance threshold
- Inconsistency coefficient
- Compare height of merge to average merge heights below
- If top merge is substantially higher, then it is joining two subsets that are relatively far apart compared to the members of each subset internally
- Still have to choose a threshold to cut at, but now in terms of "inconsistency" rather than distance

- No cutting method is "incorrect", some are just more useful than others

Computational considerations

- Computing all pairs of distances is expensive
- Brute force algorithm is $\mathrm{O}\left(\mathrm{N}^{2} \log (\mathrm{~N})\right)$
\# datapoints
- Smart implementations use triangle inequality to rule out candidate pairs
- Best known algorithm is $\mathrm{O}\left(\mathrm{N}^{2}\right)$

[^0]: 0.
