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Recap

* Working towards a proper calculation of decay and scattering processes

Initially concentrate on: _+ + € e
tam o e 98
efe — utu Y
‘€ qQ 7eg(
e_ u_ q q

A In Lecture2 covered the relativistic calculation of particle decay rates
and crc s sections

L.

M2
5 o« —— X (phase space)
flux

A Skipped relativistic treatment of spin-half particles
Dirac Equation

A In this Lecture will concentrate on the Lorentz Invariant Matrix Element

* Interaction by particle exchange
* Introduction to Feynman diagrams
* The Feynman rules for QED



Interaction by particel exchange

» Calculate transition rates from Fermi’s Golden Rule
Uy =27|Ty|°p (Ey)
where Tﬁ- is perturbation expansion for the Transition Matrix Element
(fIV1i) GIVIE)
={fIVl)+ ), E—E; -+
J#i

*For particle scattering, the first two terms in the perturbation series
can be viewed as:

“scattering in Vi i “scattering via an
a potential intermediate state”
i Vi . Viji
1

» “Classical picture” - particles act as sources for fields which give
rise a potential in which other particles scatter - “action at a distance”

* “Quantum Field Theory picture” - forces arise due to the exchange
of virtual particles. No action at a distance + forces between particles
now due to particles



*Consider the particle interaction g + b — ¢+ d which occurs
via an intermediate state corresponding to the exchange of particle X

*One possible space-time picture of this process is:

F 3

C  Initial statei: a+b
Final state f: ¢+d

Intermediate state j: ¢ + b + x

space

*This time-ordered diagram corresponds to
a “emitting” x and then b absorbing x

time ]
*The corresponding term in the perturbation expansion is:
VNGV
E,—E;
(d|V|x+b){c+x|V]a)
(Eq+Ep) — (Ec+Ey+Ep)

. T'ﬁb refers to the time-ordering where a4 emits X before b absorbs it

Iyi =

ab
T:‘



*Need an expression for (¢ + x|V|a) in a C

non-invariant matrix element 77; S

* Ultimately aiming to obtain Lorentz Invariant ME
*Recall Ty; is related to the invariant matrix element by

—1/2
Ty = [ 1E) > My,
where k runs over an 5art|<:|es In the matrix element

*Here we have
(c+x|V]a) =

(a—c+x)
(2E,2E.2E,)'/?
M[a_}cﬂ) is the “Lorentz Invariant” matrix element fora - ¢c + x

* The simplest Lorentz Invariant quantity is a scalar, in this case
8a
c+x|Via) =
( Via) (2E,2E.2E,)'/?
ga is a measure of the strength of the interactiona - ¢c + x

Note : the matrix element is only LI in the sense that it is defined in terms of
LI wave-function normalisations and that the form of the coupling is LI

Note : in this “illustrative” example g is not dimensionless.




8b

Similarl dlV b =
Giving 79 (d|V]x+Db)(c+x|V]a) b 8b d
g (EaJrEﬁ)_(Ec+Ex+Eb)
I 1 Sa8b

2E, (2E2Ep2E2E )" ? (Ey—E.—Ey)
* The “Lorentz Invariant” matrix element for the entire process is
M = (2E2E,2E2E)"*Tf

1 8a8b

2E& (E%‘_E%‘_E%)

Note:

¢ ;’Ef refers to the time-ordering where a emits x before b absorbs it

It is not Lorentz invariant, order of events in time depends on frame
¢+ Momentum is conserved at each interaction vertex but not energy
E; #E;
H = A - ros 2 =D 2
+ Particle x is “on-mass shell” i.e. E:=pi+m



8b
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¢+ Momentum is conserved at each interaction vertex but not energy
E; #E;
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+ Particle x is “on-mass shell” i.e. E:=pi+m



* But need to consider also the other time ordering for the process

S1 4. C *This time-ordered diagram corresponds to
< : “ PPN z ~
o ; b “emitting” x and then a absorbing x
* X is the anti-particle of x e.g.
SRS w W
I ] ]
time Vu H Vu H

*The Lorentz invariant matrix element for this time ordering is:
Mbgz I ] 8a8b
'f 2E; (Ep—E4—E,)
*In QM need to sum over matrix elements corresponding to same final
state: My = MY +M¥

_ 8a8b 1 n I
2Er Ea - E{: — Ex Eb - Ed - Er
1

_ 8a8b _
2Er Ea - Ec - Ex Ea - Ec +E1

| Energy conservation:
(Ea +Ep =E, +Ed)



Sa8b 2Ey

*Which gives M ¢; 2E,  (E,—E.)?_E2
X

8a8b
(E%'_'E%)Q'_'Eg

From 1sttime ordering E? = p?> +m? = (p, — p.)*> +m?
8a8b
(Ea — Ec)* — (Pa— Pe)* —m3
8a8b
(Pa — pc)* —m3

giving My =

8a8b
q* —mg

- Mf.i —

* After summing over all possible time orderings, M/; is (as anticipated)
Lorentz invariant. This is a remarkable result - the sum over all time
orderings gives a frame independent matrix element.

* Exactly the same result would have been obtained by considering the
annihilation process
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Feynman diagrams

* The sum over all possible time-orderings is represented by a
FEYNMAN diagram

v 4 v 4
g| a ¢ g| a c a c
£ - B
+ P = :
d d
b b d
a C In a Feynman diagram:

@ the LHS represents the initial state

@ the RHS is the final state
@ everything in between is “how the interaction

d happened”

b

* It is important to remember that energy and momentum are conserved
at each interaction vertex in the diagram.

time time
1
|
|
I
|
1
1
|

* The factor ]/(q2 — mz) is the propagator; it arises naturally from

X

the above discussion of interaction by particle exchange
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* The matrix element: Mﬁ- = _Sabb _ depends on:

2 2
o~ — ny

& The fundamental strength of the interaction at the two vertices 8a, &»

@ The four-momentum, g, carried by the (virtual) particle which is
determined from energy/momentum conservation at the vertices.
Note q2 can be either positive or negative.

c Here g=p1—p3=ps—pr=t “t-channel”

For elastic scattering: p1 = (E;ﬁl ); P3 = (Eaﬁia)
g =(E—E)*—(p1— p3)*

d
g* <0 termed “space-like”
5 . Here =B S e P4:Sschanne|
onX /%, InCoM: p1=(E,p); p»=(E,—p)
% AN @ =(E+E) (-5 =4E

q*>>0 termed “time-like”
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Virtual particles

“Time-ordered QM”

(=P (=W H
b d b d
time time
A ——
*Momentum conserved at vertices

*Energy not conserved at vertices E
*Exchanged particle “on mass shell”

E)g - |ﬁx|2 — m,:zs

Feynman diagram

a C
b
b d 7 N

- —

*Momentum AND energy conserved
at interaction vertices
*Exchanged particle “off mass shell”

EJE — |ﬁx|2 — qz 7é m,%
VIRTUAL PARTICLE

*Can think of observable “on mass shell” particles as propagating waves
and unobservable virtual particles as normal modes between the source

particles: _—

——

WY
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Aside: V(r) from particle exchange

* Can view the scattering of an electron by a proton at rest in two ways:

*Interaction by particle exchange in 2" order perturbation theory.
a c

8a8b
22

X

X My =
b d q

* Could also evaluate the same process in first order perturbation
theory treating proton as a fixed source of a field which gives

ise t tential V
rise to a potential V(r) f M = (y |V (r)|y)
i / Obtain same expression for My; using
*p e YUKAWA
V(r) V(r) = ga8s - potential

* In this way can relate potential and forces to the particle exchange picture

* However, scattering from a fixed potential V (r) is not a relativistic
invariant view
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Quantum Electrodynamics (QED)

* Now consider the interaction of an electron and tau lepton by the exchange
of a photon. Although the general ideas we applied previously still hold,
we now have to account for the spin of the electron/tau-lepton and also
the spin (polarization) of the virtual photon.

*The basic interaction between a photon and a charged particle can be
introduced by making the minimal substitution

p—=p —gA; E=b- pr (here g = charge)

In QM: p=—iV; E =id/ot
Therefore make substitution:  idy, — id, —gA,
where Ay=(0,-A); dy=(9/d1,+V)

* The Dirac equation:

. oy -
(xi) - i}”a—leriY-Vw—qy“Aw—mw:O
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0 A 2
w”a—'fzy“ﬂw = my—i7.Vy+qy*Auy

<P Ay = (Pm—iTV)y+q" ¥ Auy
“ ~ J %_1
Combined rest Potential
mass + K.E. energy

*We can identify the potential energy of a charged spin-half particle
in an electromagnetic field as:

(note the A, term is

‘A/D b— q}/o'}/”A‘u just: g Y’Ag =q¢ )

* The final complication is that we have to account for the photon
polarization states.

Ay = e(M) giliF-ED

e.g. for a real photon propagating in the z direction we have two
orthogonal transverse polarization states

(i) 8 Could equally have
ell) — e2) = 1 chosen circularly

8 0 polarized states

16



*Previously with the example of a simple spin-less interaction we had

//\
= (WelV IVe) e (WalV ) ‘
8a gb /\ d o Pl ps
*In QED we could again go through the procedure L ©
of summing the time-orderings using Dirac
spinors and the expression for VD If we were
to do this, remembering to sum over all photon p2 P4
polarizations, we would obtain: o l) T v r
€ g
M = [ PB Qe'}’o}’“”e’ (P1 ]Z ,u q [ r(P4 Q'TYOYVHI }5’2)]
~ ~N" & ~~—— ~— T 7
Massless photon propagator || Interaction of 7 ':'
summing over polarizations with photon !
. "'
Virtuality in t-channel
not a charge!

Interaction of e-
with photon
 All the physics of QED is in the above expression!
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*The sum over the polarizations of the VIRTUAL photon has to include
longitudinal and scalar contributions, i.e. 4 polarisation states

N[l et 8
0) _ n_ |1 2 3) _
g = (9 e = [ e = (Y e = (9
0 0 0 1
and gives: Zgﬁ'(gﬁ)*:_guv Thls is not obvious - forthe““;

moment jl.lSt take |t on trustmg
andthemvarlantmatrlxelementbecomes
M = [u}(p3)ge V"V u.(p1) } (b (pa) Y’y ue(p2)]
* Using the definition of the adjoint splnor V= 1;!' }/0

M = [i.(p3)ge V" ue(p1)] —

* This is a remarkably simple expression !
75 }ﬂuug transforms as a four vector. Writing
JH=1.(p3) Y u.(pr)  Ji =uc(pa)y uc(p2)

M= —q.q; j;g showing that M is Lorentz Invariant

[ﬁr(Pﬁl)qf'}’Vur(PZ)]
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Feynman rules for QED

It should be remembered that the expression
_ —8uv —
M= [ue(ps)qe}’“ue(m)}—q; Uz (pa)gey’ ur(p2)]

hides a lot of complexity. We have summed over all possible time-
orderings and summed over all polarization states of the virtual

photon. If we are then presented with a new Feynman diagram
we don’t want to go through the full calculation again.

Fortunately this isn’t necessary - can just write down matrix element
using a set of simple rules

Basic Feynman Rules:

et wt @ Propagator factor for each internal line
Y (i.e. each internal virtual particle)
& Dirac Spinor for each external line
e T (i.e. each real incoming or outgoing particle)

@ Vertex factor for each vertex

19



Basic rules for QED

@ External Lines

[ incoming particle u(p) ——
spin 172 outgoing particle u(p) —>
incoming antiparticle v(p) —
_ outgoing antiparticle V(p) —c—
_ [ incoming photon et (p) AN
spin1 = . u *
| outgoing photon el (p) NN\
@ Internal Lines (propagators)
) o Ig,uv u VvV
spin 1 photon qg NNNS
spin 1/2  fermion i(YHqu+m)

®
q* —m?
® Vertex Factors
spin 1/2  fermion (charge -le|)  iey"

@ Matrix Element — ;)M = product of all factors

20



P1 — .
ed.  p P3 e - U(p3)liey" Ju.(p
o p o ~ e (p3)liey*|uc(p1)
—iguv
glq q°
P : ps < p
¢ v 7 v = Uc(pa)liey’|u(p2)

M = [ (p3)ie ue(py) ‘ifz“" e (ps)iey us(p2)

*Which is the same expression as we obtained previously

y P4/

ed. et ur

—iM = [v(p2)iey"u(p1)] _Z’;W [@(p3)iey"v(pa)]

/p

Note: + At each vertex the adjoint spinor is written first
+ Each vertex has a different index
+ The Suv of the propagator connects the indices at the vertices

21



* Interaction by particle exchange naturally gives rise to Lorentz Invariant
Matrix Element of the form
8a8b

My =
A

* Derived the basic interaction in QED taking into account the spins
of the fermions and polarization of the virtual photons:

—iM = [u(p3)iey*u(p1)] _;ﬁ“" [a(ps)iey’u(p2)]

* We now have all the elements to perform proper calculations in QED !

22



Electron-positron annihilation




QED calculations

@ How to calculate a cross section using QED (e.g. e'e~— p*u-):
© Draw all possible Feynman Diagrams

*For e*e~ — p*u- there is just one lowest order diagram
et ur
Y
M o< ¢% < oL,

e T

+ many second order diagrams + ...

et Y ut e e
4 2
>\A®\< * M .. Moo,
e- w e u
@® For each diagram calculate the matrix element using Feynman rules

© Sum the individual matrix elements (i.e. sum the amplitudes)
Mﬁ =M +M>,+Mz+....

*Note: summing amplitudes therefore different diagrams for the same final
state can interfere either positively or negatively!
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and then square \Mﬁ\z = (M +M,+ M3+ )(MT—Q—M; + M3 + ver)

m) this gives the full perturbation expansion in 0,

« For QED @, ~ 1/137 the lowest order diagram dominates and
for most purposes it is sufficient to neglect higher order diagrams.

et . ur et Y U
M? < o, M? o< o
S K e K-
® Calculate decay rate/cross section
*e.g. for a decay *
r=—2 / Myi[?dQ
32mmy; .
*For scattering in the centre-of-mass frame
ik
dQ* — e4n2s |pr|" ! (1)

*For scattering in lab. frame (neglecting mass of scattered particle)

do - | E5 2 ‘M ”|2
dQ ~ 6412 \ ME, /i

25



Electron-positron annihilation

* Consider the process: e*e- — TV P3 L
*Work in C.0.M. frame (this is appropriate . 4‘
for most e*e- colliders). e x e’
P2
p=(E00.p) p=(E00.-p) 41
p3 = (E,py) ps = (E,—py) H

*Only consider the lowest order Feynman diagram:

+ ¢ Feynman rules give: :
—I8uv

—iM = [W(p2)iey*u(py)] " [i(p3)iey"v(pa)]

NOTE: °Incoming anti-particle v
*Incoming particle 7]
* Adjoint spinor written first

with s= (p1+p2)> = (E+E)*> =4E*

26



Electron and muon currents

*Here q2 — (P] +p2)2 — S and matrix element

—iM = [(p2)iey*u(p1)]—

82

- M:—?gw[ v(p2) 7 u(p1)][a(p3)y'v(ps)]

* Introduced the four-vector current

H=yrty

which has same form as the two terms in [ ] in the matrix element

EE [ p3)ieyYv(ps)]

* The matrix element can be written in terms of the electron and muon currents

(Je)' =V(p2)v"'u(p1) and  (ju)" =u(p3)?y'v(ps)

2
€ . .
- M= _?guv(]e)}u(]u)v
€’2
M = —:J}:-ju

» Matrix element is a four-vector scalar product - confirming it is Lorentz Invariant

27



Spin in e*e” annihilation

* In general the electron and positron will not be polarized, i.e. there will be equal
numbers of positive and negative helicity states
* There are four possible combinations of spins in the initial state !

ey 2 et e, Tt 5, 2 et 5, S et
RL RR LL LR

» Similarly there are four possible helicity combinations in the final state
* In total there are 16 combinations e.g. RL—+RR, RL—RL, ....

* To account for these states we need to sum over all 16 possible helicity
combinations and then average over the number of initial helicity states:

| ]
(M%) = 1 Z M;|* = 1 (‘MLLHLL‘Z‘F ‘MLL%LR‘Z_F---)
spins
* i.e. need to evaluate: 62

— = ?]c]u
for all 16 helicity combinations !

* Fortunately, in the limit £ > my only 4 helicity combinations give non-zero
matrix elements - we will see that this is an important feature of QED/QCD
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«In the C.o.M. frame in the limit E > m yu‘
)

p1 = (E,0,0,E); p»=(E,0,0,—E) e P ) o
p3 = (E,Esin0,0,Ecos0); / Do
ps = (E,—sin8,0,—Ecos8) u.|. P4
*Left- and right-handed helicity spinors for particles/anti-particles are:
: Iy LIy I
ejtp“‘. Emc I:"',;J|—m " l:"q|—|—m¢
+=N pl =N E =N 20 R
“ |€|i m© “l .;T'Tm ) 4] .’*—i—:.v:'5 V| h_i_”é
Pl i Bl .
m€!¢_g —pnelc R o0 ¢

- 0. 7]
where § =sIn5;, ¢=CO085 and N=+VE-+m
*In the limit £ > m these become:

C —35 S C

i i0 i i

w=VE{ " s =VE G s vi=VE| L v =VE [T
se'? —ce'? cel? sel?

* The initial-state electron can either be in a left- or right-handed helicity state

1 0

0 1
ur(p1) =vVE 1 Qul(Pl)z\/E E

0 —1

29



* For the initial state positron (8 = 3’1’) can have either:

1 0
0 1
vi(p2) =VE 1 ;v (p2) =VE 0
0 1
» Similarly for the final state L1~ which has polar angle 6 and choosing (b =
ur(p3)=VvVE S| ups)=VE| § |; i
s

«And for the final state u* replacing 6 — Tt —0; ¢ — 7 " obtain

=
[LIT1Y

c s using sin (%) = COS g
s . _ —c | . )
vT(p‘l):\/E —c 1 vl(p4) _\/E s » COS(EZ;B) :Sln%
—s —c ,
o2 et = —1
*Wish to calculate the matrix element M = —— j..j,
5

* first consider the muon current j_u, for 4 possible helicity combinations

RR yu‘ RL yu‘ LR yu_ LL yu—

30



The muon current

*Want to evaluate (j“)v — E(pg)]’vv(pz;) for all four helicity combinations

*For arbitrary spinors Y/, (P with it is straightforward to show that the
components of W’y”gb are

U0 = w0 =wion+ w00+ yses+vies (3)
V' = VYYo=t v+ v+ wie (4)
VY9 = VYV =—i(yios— w05+ 50— widn) (5)
VYo = v =vio—yiou+ o - vie (6)

*Consider the JLL;;JLLEFc:cmmbinaticm using Y = i (I) =V

s ¢
with v =VE (SC) ur =VE (g) ;
—c s

i (p3)Y'vi(ps) = E(es—sc+es—sc)=0

- i (p3)Y'vi(ps) = E(=c*+5° —c*+5%) =2E(s*—c¢*) = —2Ecos 0
wr(p3)Yvi(ps) = —iE(—c*—s*—c*—5%) =2iE
wr(p3)Y'vi(ps) = E(cs+sc+ces+sc)=4Esc=2Esinf
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*Hence the four-vector muon current for the RL combination is

w1 (p3)Y'vi(pa)

2E(0,—cos8,i,sin 0)

*The results for the 4 helicity combinations (obtained in the same manner) are:

o =

2E(0,—cos0,i,sin0)
(0,0,0,0)

(0,0,0,0)
2E(0,—cos8,—i,sin0H)

RL
RR

LL
LR

* IN THE LIMIT E > m only two helicity combinations are non-zero !

* This is an important feature of QED. It applies equally to QCD.
* In the Weak interaction only one helicity combination contributes.
* The origin of this will be discussed in the last part of this lecture

* But as a consequence of the 16 possible helicity combinations only

four given non-zero matrix elements
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Electron-positron annihilation cont.

* For €'~ = u*u~ now only have to consider the 4 matrix elements:

T T
- - 2

= [ | + = [ | +
MRR e Ll | e e Ll | e MRL

MLR

* Previously we derived the muon currents for the allowed helicities:

2N upwt o w(pa)yYvi(pa) = 2E(0,—cos8,i,sin0)
B 2E(0,—cos B, —i,sinB)

uu___,'ﬁ-——;’*u L B ,
s Mp Mg = (p3)Yvi(pa)

*Now need to consider the electron current

33



The electron current

*The incoming electron and positron spinors (L and R helicities) are:

l 0 1 0
uT_\/E(‘f);ul_\/E(é); vT—\/E(_O]);vV—\/E((I])
0 —1 0 ]

*The electron current can either be obtained from equations (3)-(6) as before or
it can be obtained directly from the expressions for the muon current.

(Je)* =V(p2)Y*u(p1) (Ju)* =u(p3)yv(ps)

*Taking the Hermitian conjugate of the muon current gives

@(p3) P v(p)]” = [ulps) PV v(ps)]’

= v(ps) P u(ps) (AB)" = BTA’
v(pa) YT u(ps) Pr=9
v(ps) YV u(ps) P = P
= V(pa)Y'u(ps)
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* Taking the complex conjugate of the muon currents for the two non-zero
helicity configurations:

v (pa)Pur(p3) = [%(p3)7y"v(ps)]” = 2E(0,—cos@,—i,sinO)
vi(Pa)¥u(ps) = [(p3)7'vi(pa)]” = 2E(0,—cos8,i,sin6)
To obtain the electron currents we simply need to set @ = ()

e =, = e egef : ?l(pz)’}/vm(pl) = 2FE(0,—1,-i,0)

e—=0 «—=e* |ejef 1 Vi(p)Yu(p1) = 2E(0,—-1,i,0)
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Matrix element calculation

F
e

*We can now calculate M = —— j,.j,, for the four possible helicity combinations.

€.g. the matrix element for eEe}f — uf;ﬂzr which will denote| Mpp

Vi
/ : Here the first subscript refers to the helicity
e "= = - of the e~ and the second to the helicity of the p".
: Don’t need to specify other helicities due to '
: “helicity conservation”, only certain chiral
u : combinations are non-zero. _
. . — + . . = L .
*Using: eger = (jo)F =V (p2)V'uy(p1) = 2E(0,-1,-i.0)
— + . . Vv = V o . .
Hg Hy - (Ju)" =u(p3)y'v (ps) = 2E(0,—cos8,i,sinb)
2
: € : .
gives Mpp = —— [ZE(O? —1,—1i, 0)] . [ZE(O, —c0s0,i,s1n 9”
\)
= —¢*(1+cos0)
— —4;:ra(1-|-(;059) where O 282/471';1: '1/'|37
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Similarly |MRR|2 = |MLL|2 = (471'05)2(1 -I-COSB)2
|MRL|2 = |MLR|2 = (4?Ta)2(1 — COS 9)2

Mgr

-1 cos0 +1

e?(1+cos)?

Mgy

e+
A
-1 cos0 +1

e?(1 —cos 0)?

MLR

e+

A
: """--...._ M '
-1 cosb +1

e?(1 —cos0)?

-1 cos +1

e>(14cosH)?

* Assuming that the incoming electrons and positrons are unpolarized, all 4
possible initial helicity states are equally likely.



Differential cross-section

*The cross section is obtained by averaging over the initial spin states

a:;d summi]ng ov;—:-r the final spin states: Mo |? + |Mm|i Mgg|? + My |?
o 2 2 2 2 H :
— = =X M M M M
= M(2(1 +¢0s0)>+2(1 —cos6)?)
256725
do o
m) | — = (1+cos’H
dQ 4s ( ) >
- - +
Example: Mark Il Expt., M.E.Levi et al., 1 cos® 1
ete- — Thath 60 Phys Rev Lett 51 (?933)1?41 o
Vi=29GeV T soh\, 0 4 T pure QED, O(cr’)
O — QED plus Z
FE contribution
e Angular distribution becomes
slightly asymmetric in higher
order QED or when Z

contribution is included
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* The total cross section is obtained by integrating u.')*unerﬁ'3 qb using

/(1 + cos® 0)dQ —2:'r/

—1

+1

(1+cos?6)dcos 0 = =3

1671

giving the QED total cross-section for the process €7~ — u*u~

B N NN N EEE SRR -y
u

* Lowest order cross section
i calculation provides a good
i description of the data !

This is an impressive result. From
first principles we have arrived at an
expression for the electron-positron
annihilation cross section which is
good to 1%

o(nb)’

10
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Spin considerations (E>>m)

* The angular dependence of the QED electron-positron matrix elements can
be understood in terms of angular momentum

* Because of the allowed helicity states, the electron and positron interact
in a spin state with Sz = +1, i.e. in a total spin 1 state aligned along the

zaxis: [1,4+1) or|l,—1)

» Similarly the muon and anti-muon are produced in a total spin 1 state aligned

along an axis with polar angle 0
Vi “n 1)9
e.g. | Mgg /’
e = L=
o+ D ‘]1]>
“'+
1, ])9 , of

* Hence MRR =< (lj]\ 1, ]) where Y corresponds to the spin state,

the muon pair.
* To evaluate this need to express \ 1, ])9 in terms of eigenstates of S,

* In the appendix it is shown that

[1,1) = (1 —cosB)l],—U+\/i§sin9|]1())+%(l+cos€)|l,+])
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*Using the wave-function for a spin 1 state along an axis at angle 0

y=1,1)g = 3(] —0059)|]?—])+%sin9“;0)+%(1 +cos8)|1,+1)

can immediately understand the angular dependence

MRR 2 |1?1>9
Y
— =

//P~ ot == |1.J,1> =

IMgr|* o< [(y|1,4+1)|> = 7 (1 +cosH)?

MLR %P’_ |1:~1>9
e_.;/“' _e.,. C==xp |17—]>m>

[MiR[? o< [(y[1, = 1)[* = (1 —cos 6)?

| |
-1 cosf +1
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Lorentz invariant form of ME

* Before concluding this discussion, note that the spin-averaged Matrix Element
derived above is written in terms of the muon angle in the C.o.M. frame.

| _
<|Mff|2> = Z><(|MRR\2+|MRL\2+|MLR\2+|MEL|) , /P3<'l-l
1 o)
l 4 y) ) e b < e’
= —¢(2(1+cosO) +2(1 —cosB)”) / o
4 P
= ¢*(14cos*0) K

*The matrix element is Lorentz Invariant (scalar product of 4-vector currents)
and it is desirable to write it in a frame-independent form, i.e. express in terms
of Lorentz Invariant 4-vector scalar products

‘Inthe CoM. p; =(E,0,0,E) pr=(E,0,0,—E)
p3 = (E,Esin6,0,Ecos0) ps=(E,—Esin6,0,—Ecos0)
giving: P1.p2 =2E*; p1.p3=E*(1—cos0); pi.ps=E*(1+cos6)

*Hence we can write

(|Mpi|*) = 2¢* (P1-03)” + (P1-p4)” Iy (I2+H2)§

(1 -Pz)z
*Valid in any frame !




Chirality

*The helicity eigenstates for a particle/anti-particle for £ > m are:

C —5 S C

i i b it
w=vE|". |iu=vE| S s v=VE| L v =VE[T.
se'? —ce'? ce'? se'?

where SZSiH%; c:cos%
*Define the matrix 0010
.03 0001 Y /01
r=YrrY=,{3000 —(10)
0100

In the limit £ > m the helicity states are also eigenstates of }’5

’}’SHT = tuy; }/Su,i = —uj; Pyr = —V15 }lsvl =tV
* In general, define the eigenstates of }’5 as LEFT and RIGHT HANDED CHIRAL
states Urg, Ur; VR, VL
ie. Yur=-+ug; Yup=—up; Yvg=—Vg; ¥vp=-+vL

°In the LIMIT £ > m (and ONLY IN THIS LIMIT):
HREHT; uLELtl; VREVT; VLEVl
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Chirality

* This is a subtle but important point: in general the HELICITY and CHIRAL
eigenstates are not the same. It is only in the ultra-relativistic limit that the
chiral eigenstates correspond to the helicity eigenstates.

* Chirality is an import concept in the structure of QED, and any interaction of the
form E'}/"u
* In general, the eigenstates of the chirality operator are:
Pur = +ug; Yup=—ur; Pvg=—Vg: v =+

* Define the projection operators:

PR=301+7); P=301-7)

*The projection operators, project out the chiral eigenstates

Prugp =ugr; Prup =0; Pugr=0; Pru; =uy

Prvp =0, Ppvp=vy, Povg=vg:; Povp=0

*Note Pp projects out right-handed particle states and left-handed anti-particle states

*We can then write any spinor in terms of it left and right-handed
chiral components:

y=vyr+y =51+ )y+35(1—-9)y
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Chirality in QED

*In QED the basic interaction between a fermion and photon is:
ieYyr ¢
*Can decompose the spinors in terms of Left and Right-handed chiral components:
gy o = ie(Y,+Wr)V(0r+ 1)
= e(PrY Or+ YRV OL+V, V" O+ W, Y 1)

*Using the properties of }/5

P)yr=1 r'=y; Pr=-vmHy
it is straightforward to show
VRV 0L=0; Y7 ¢r=0

* Hence only certain combinations of chiral eigenstates contribute to the
interaction. This statement is ALWAYS true.

*For E > m , the chiral and helicity eigenstates are equivalent. This implies that
for E > m only certain helicity combinations contribute to the QED vertex !
This is why previously we found that for two of the four helicity combinations
for the muon current were zero
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Allowed QED helicity combinations

+ In the ultra-relativistic limit the helicity eigenstates = chiral eigenstates
+ In this limit, the only non-zero helicity combinations in QED are:

: Scattering:

“Helicity conservation”

N
R R

N &

i Annihilation:

L
N

/
R

-----
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Summary

* In the centre-of-mass frame the e*e~ = p*u- differential cross-section is

do o’ X
8 % 1icos? e
o) 75 (1 +cos™6)

NOTE: neglected masses of the muons, i.e. assumed E> my

* In QED only certain combinations of LEFT- and RIGHT-HANDED CHIRAL
states give non-zero matrix elements

* CHIRAL states defined by chiral projection operators
__ 1 : _ 1
Pr=5(1+7); P.=3(1-7)

* Inlimit £ > m the chiral eigenstates correspond to the HELICITY eigenstates
and only certain HELICITY combinations give non-zero matrix elements

RR RL LR LL

Ty Ty Ty Ty
o= > #Z: e ™ </-: o= ,‘./‘-' e = “1/4-'
// et / et / et / et

ut T T T
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Detectors for high energy physics
(ATLAS at LHC)




LHC (Large Hadron Collider )
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1)

Which particles are detected?

Charged leptons, photons and
hadrons: e, u,y,m,K,p,n...
(maybe new long-lived
particles, i.e. particles which
enter detector)

B (and D) mesons and 1 leptons
have ct ~ 0.09 ..0. x 10>m large
enough for additional vertex
reconstruction

Neutrinos (maybe also new
particles) are reconstructed as
mising transverse momentum

All other particles which decay
or hadronise in primary vertex
(top quark decays before
hadronises)

Quarks
Leptons
. Force particles

Higgs

Onlye, p, y of the fundamental Standard Model
Particles are directly detected

Heavy particles W, Z decay immediatelly



Sketch of particles interaction with

detector

innermost layer » outermost layer

tracking electromagnetic hadronic muon
system calorimeter calorimeter system

photons

electrons

—_— -

muons

rotons
.aons
pions

neutrons
0
Ky

C. Lippmann - 2003



1)

3)

4)

The observables?

Photon makes photo-efect, Compton
scattering and pair production. It has no
track but an electromagnetic cascade in
the calorimeter.

Charged particles makes scattering,
ionisation, excitation and bremsstrahlung, &
transition and cherenkov radiation. They
produce tracks.

Electrons make electromagnetic cascades
(clusters) in the calorimeter

Hadrons also interact strongly via inelastic

interactions, e.g. neutron capture, induced
fission, etc. They make hadronic cascades

(clusters) int he hadronic calorimeter.

Only weakly interacting particles
(neutrinos) are reconstructed as missing
transverse momentum (,,missing energy”). 4




The ATLAS example

Typical 4m cylindrical onion structure

25m r—/

Tile calorimeters

5 LAr hadronic end-cap and
forward calorimeters

| Pixel detector )

Toroid magnets LAr electromagnetic calorimeters

Muon chambers Solenoid magnet | Transition radiation tracker
Semiconductor fracker




Reconstructed properties

From the hits, tracks, clusters, missing transverse
momentum and vertices we reconstruct the particles
properties:

1)
2)
3)

Momentum from curved tracks
Charge from track curvature

Energy from full absorption in calorimeters and
curved tracks

Spin from angular distributions
Mass from invariant mass from decay products
Lifetime from time of flight measurement

ldentity from dE/dx, lifetime or special behaviour (like
transition ratiation)



Detector design constraints (I)

* Constraints from physics:

1)

2)

High detection efficiency demands minimal
cracks and holes, high coverage

High resolution demands little material like
support structures, cables, cooling pipes,
electronics etc. (avoid multiple scattering)

Irradiation hard active materials to avoid
degradation and changes during operation

Low noise
Easy maintenance (materials get radioactive)



Detector design constraints (I1)

* Enviromental contraints,
i.e. from LHC design
parameters:

1)

2)

3)

4)

6)

Collision events every ™
25ns

Muons from previous event
still in detector when
current enters tracker

High occupancy in the inner
detector

Pile up (more proton proton
collisions in each bunch
crosing)

High irradiation




Size and field examples

ATLAS barrel toroid
20.5kA,39T

7 able 1
ain parameters of some HEP detector magnets (solenoids).

CDF CLEO-I ALEPH ZEUS H1 KLOE BaBar Atlas CMS

B(T) 15 15 1.5 1.8 1.2 06 1.5 20 4.0
R(m) 15 155 2.7 1.5 28 26 1.5 1.25 3.0
L(m) 48 35 6.3 245 352 39 33 366 125

The magnet layout is @ major constraint for the rest of the detector!
See A. Gadi, A magnet system for HEP experiments, NIMA 666 (2012) 10-24
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ATLAS Inner Detector

* 3 layers of pixel
modules in barrel

e 2x5 disks of forward
pixel disks

* 4 layers of strip (SCT)
modules in barrel

* 2x9 disks of forward
strip modules

Figure : ATLAS Inner detector (ID) in LHC run 1 with pixel and strip
(SCT) silicon and transition radiation (TRT) detectors. The length 1s

about 5.5 m.
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ATLAS Inner Detector

{'R= 1082 mm

d

(R =514 mm
R=443 mm

R=371 mm

L R =299 mm

R=1225mm
Pixels { R = 88.5 mm

R =50.5mm

R=0mm1

ATLAS inner detector




Transition Radiation Tracker

Combine tracking with
particle identification (PID)

* Charged particles radiate
photons when crossing
material borders.

* E* radiate x-rays more
than heavier particles.

* Use this particle PID, i.e.
distinguis e* from
hadrons.

* ATLAS has a TR detector in

the inner detector. It uses
gas for detection.

High threshold probability
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Celis in Layer 3

ATLAS EM Calorimeter I

Accordion Pb/LAr [n|<3.2 ~170k channels
Precision measurement |n|<2.5
3 layers up to |n|=2.5 + presampler |n|<1.8
2 layers 2.5<|n|<3.2
Layer 1 (y/n° rej. + angular meas.)
An.Ap = 0.003 x 0.1 N
Layer 2 (shower max) . [ T
An.A@ = 0.025 x 0.0.25 L s
Layer 3 (Hadronic leakage) A
An.Ap = 0.05 x 0.0.025
Energy Resolution: design for n~0
AE/E ~ 10%/VE ® 150 MeV/E @ 0.7%
Angular Resolution
50mrad/VE(GeV)

Strip cells in Layer 1
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The segmentation
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ATLAS Hadronic Calorimeter (Tile)

s

oooboou,oooOooabauq%ooq‘bu

i P w : e O_,.-
-”Hm(ll%‘ :5 = -: Y 2 :
ovias |

fiber Readout via PMT = e

e} 4 o + ow

Al ) oo b et 4 oer fT s |7

Figure 5-15 Cell geometry of half of a banrel mod- Figure 5-16  Proposed cell geometry for the
ule. The fibres of each cell are routed 10 one PMT.  extended barrel modules (version “a la bamnel”).



The ATLAS detector

Length : ~ 46 m
Radius : ~ 12 m

Muon Deteciors TIN Colqrimeter Liquid Arg'on Calorimeter Welgh‘l‘ .~ 7000 tons

3-level trigger S

~108 electronic channels

reducing the rate
from 40 MHz fo
~200 Hz

Inner Detector (|n|<2.5, B=2T):
Si Pixels and strips (SCT) +
Transition Radiation straws
Precise tracking and vertexing,
e/n separation (TRT).

.. | Momentum resolution:
| o/pr ~ 3.4x10 4 pr(GeV) ® 0.015

/ ! \ ~
Toroid Magnets Solenoid Magnet SCT Tragker Pixel Detector TRT Tracker

EM calorimeter: Pb-LAr Accordion \ |

e/y trigger, identification and measurement HAD calorimetry (|n[<5): segmentation, hermeticity

E-resolution: ~ 1% at 100 GeV, 0.5% at 1 TeV | Tilecal Fe/scintillator (central), Cu/W-LAr (fwd)

Trigger and measurement of jets and missing E+
E-resolution: /E ~ 50%/VE € 0.03

[oJe)



Nuclear Instruments & Methods in Physics Research

topical issue

Instrumentation and detector technologies for frontier high energy
physics

Volume 666, pages 1 - 222 (21 February 2012)

Edited by:
Archana Sharma (CERN)

Technological advances in radiation detection have been pioneered and led by particle
physics. The ever increasing complexity of the experiments in high energy physics has
driven the need for developments in high performance silicon and gaseous tracking
detectors, electromagnetic and hadron calorimetry, transition radiation detectors and
novel particle identification techniques. Magnet systems have evolved with
superconducting magnets being used in present and, are being designed for use in,
future experiments. The alignment system, being critical for the overall detector
performance, has become one of the essential design aspects of large experiments. The
electronic developments go hand in hand to enable the exploitation of these detectors
designed to operate in the hostile conditions of radiation, high rate and luminosity.

This volume provides a panorama of the state-of-the-art in the field of radiation detection
and instrumentation for large experiments at the present and future particle
accelerators.

ob



