INTRODUCTION TO DATA SCIENCE

This lecture is
based on course by E. Fox and C. Guestrin, Univ of Washington

Regression for predictions

- Simple regression
- Multiple regression
- Accesing performance

Ridge regression

- Feature selection and lasso regression
- Nearest neighbor and kernel regression

What is regression?

From features to predictions

continuous "output" or "response" to input

Case study

Predicting house prices

Data

Model: assume functional relationship

> "Essentially, all models are wrong but some are usefull." George Box, 1987.

Regression model:

$$
y_{i}=f\left(x_{i}\right)+\varepsilon_{i}
$$

$$
E\left[\epsilon_{i}\right]=0 \leftharpoondown \text { aquillif likely }
$$

$$
\hat{L}_{\text {expocered value }}
$$

$$
\begin{gathered}
\text { is }+ \text { or }- \\
\Downarrow
\end{gathered}
$$

$$
\begin{aligned}
& y_{i} \text { is equally } \\
& \text { likely to be above } \\
& \text { or below } f\left(x_{i}\right)
\end{aligned}
$$

Task 1:

Which model to fit?

Task 2:

For a given model $\mathbf{f}(\mathbf{x})$ estimate function $\hat{f}(x)$
from data

How it works: baseline flow chart

$31 / 10 / 2017$

SIMPLE LINEAR REGRESSION

Simple linear regression model

The cost of using a given line

Find „best" line

Predicting size of house you can afford

Interpreting the coefficients

Interpreting the coefficients

ML algorithm: minimasing the cost

3D plot of RSS with tangent plane at minimum

Minimize function
over all possible $\mathrm{w}_{0}, \mathrm{w}_{1}$

Convex/concave function

CONVEX

Finding max/min analytically

CONCAVE

$\max _{w} g(w)$

CONVEX

Example:

$$
g(w)=5-(w-10)^{2}
$$

$$
\begin{aligned}
\frac{d g(w)}{d w} & =0-2(w-10)^{\prime} \cdot 1 \\
& =-2 w+20
\end{aligned}
$$

$$
\text { set derivate }=0 \text { : }
$$

Finding the max via hill climbing

Sign of the derivative is saying me what I want to do :move left or right or stay where I am

How do we know whether to move ω to right or left? (inc. or dec. the value of ω ?)
while not converged

$$
\omega^{(t+1)} \leftarrow \omega_{\substack{\text { iteration } \\ t}}^{\omega_{\text {stepsize }}^{(t)}}+\underbrace{\frac{d g(\omega)}{d \omega}}
$$

Finding the min via hill descent

$$
\min _{w} g(w)
$$

when derivative is positive, we want to decrease ω
and when derivative is negative, we wont to increase ω

Algorithm:
while not converged

$$
\left.w^{(t+1)} \leftarrow w^{(t)} \Theta \backsim \frac{d g}{d w}\right|_{w^{(t)}}
$$

Choosing the step size (stepsize schedule)

Fixed

Varying

Works well for strongly convex functions

Common choices:

$$
\begin{aligned}
& \eta_{t}=\frac{\alpha}{t} \\
& \eta_{t}=\frac{\alpha}{\sqrt{t}}
\end{aligned}
$$

Try not to decrease η too fast

Convergence criteria

For convex functions,
optimum occurs when

$$
\frac{d g(w)}{d w}=0
$$

In practice, stop when

That will be „good enough" value of ε depends on the data we are looking at

Algorithm:

while not converged

$$
w^{(t+1)} \leqslant w^{(t)}-\eta \frac{d g}{d w}
$$

Moving to multiple dimensions

3D plot of RSS with tangent plane at minimum

Gradient example

3D plot of RSS with tangent plane at minimum

$$
\begin{aligned}
g(w) & =5 w_{0}+10 w_{0} w_{1}+2 w_{1}^{2} \\
\frac{\partial g}{\partial w_{0}} & =5+10 w_{1} \\
\frac{\partial g}{\partial w_{1}} & =10 w_{0}+4 w_{1} \\
\nabla g(w) & =\left[\begin{array}{l}
5+10 w_{1} \\
10 \omega_{0}+4 w_{1}
\end{array}\right]
\end{aligned}
$$

Contour plots

3D plot of RSS with tangent pillane at minimum

Gradient descent

Algorithm:
while not converged
$w^{(t+1)} \leftarrow w^{(t)}-\eta \nabla g\left(w^{(t)}\right)$
$\left[\begin{array}{c}\vdots \\ \vdots\end{array}\right] \leftarrow\left[\begin{array}{c}i \\ \vdots\end{array}\right]-\eta\left[\begin{array}{l}\vdots \\ \vdots\end{array}\right] \widehat{\left\lvert\, \begin{array}{l}\text { Convergenc: } \\ \|\nabla g(\omega)\|<\epsilon\end{array}\right.}$

Compute the gradient

$$
\operatorname{RSS}\left(\mathrm{w}_{0}, \mathrm{w}_{1}\right)=\sum_{i=1}^{N}\left(\mathrm{y}_{\mathrm{i}}-\left[\mathrm{w}_{0}+\mathrm{w}_{1} \mathrm{x}_{\mathrm{i}}\right]\right)^{2}
$$

Taking the derivative w.r.t. w_{0}

$$
\begin{aligned}
& \sum_{i=1}^{N} 2\left(y_{i}-\left[\omega_{0}+w_{1} x_{i}\right]\right)^{\prime} \cdot(-1) \\
& =-2 \sum_{i=1}^{N}\left(y_{i}-\left[\omega_{0}+w_{1} x_{i}\right]\right)
\end{aligned}
$$

Putting it together:
$\left.\nabla \operatorname{RSS}\left(w w_{1}\right)=-2 \sum_{i}^{N}\left[y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right]\right]$ Taking the derivative w.r.t. w_{1}

$$
\begin{aligned}
& \sum_{i=1}^{N} 2\left(y_{i}-\left[w_{0}+w_{1} x_{i}\right]\right)^{\prime} \cdot\left(-x_{i}\right) \\
& =-2 \sum_{i=1}^{N}\left(y_{i}-\left[w_{0}+w_{1} x_{i}\right]\right) x_{i}
\end{aligned}
$$

Approach 1: set gradient to 0

$\nabla \operatorname{RSS}\left(w_{0}, w_{1}\right)=\left[\begin{array}{l}-2 \sum_{i=1}^{N}\left[y_{i}-\left(w_{0}+w_{1} x_{i}\right]\right] \\ \left.-2 \sum_{i=1}^{N}\left[y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right] x_{i}\right]\end{array}\right]$ This method is called
"Closed form solution"

3D plot of RSS with tangent plane at minimum

$$
\begin{aligned}
& \text { top term: } \\
& \hat{W}_{0}=\frac{\sum_{i=1}^{N} y_{i}}{N}-\hat{W}_{1} \frac{\sum_{i=1}^{N} x_{i}}{N} \quad \text { sq.ft. }
\end{aligned}
$$

bottom term:

$$
\begin{array}{l|l}
\sum y_{i} x_{i}-\hat{w}_{0} \sum x_{i}-\hat{\omega_{1}} \sum x_{i}^{2}=0 & \sum_{i=1}^{n} y_{i} \\
\sum_{i=1}^{N} x_{i} \\
\hat{\omega}_{1}=\frac{\sum y_{i} x_{i}-\frac{\sum y_{i} \sum x_{i}}{N}}{\sum x_{i}^{2}-\frac{\sum x_{i} \sum x_{i}}{N}} & \sum_{i=1}^{N} y_{i} x_{i} \\
\sum_{i=1}^{N} x_{i}^{2}
\end{array}
$$

Approach 2: gradient descent

Approach 2: gradient descent

$\nabla R S S\left(w_{0}, w_{1}\right)=\left[\begin{array}{l}-2 \sum_{i=1}^{N}\left[y_{i}-\hat{y}_{i}\left(w_{0}, w_{1}\right)\right] \\ \left.-2 \sum_{i=1}^{N}\left[y_{i}-\hat{y}_{i}\left(w_{0}, w_{1}\right)\right] x_{i}\right]\end{array}\right]$

while not converged (20.1-n)
$\left[\begin{array}{l}w_{0}^{(t+1)} \\ w_{1}^{(t+1)}\end{array}\right] \leftarrow\left[\begin{array}{c}w_{0}^{(t)} \\ \omega_{1}^{(t)}\end{array}\right]+2 \eta\left[\begin{array}{l}\sum_{i=1}^{N}\left[y_{i}-\hat{y}_{i}\left(w_{0}^{(t)}, \omega_{1}^{(t)}\right)\right] \\ \sum_{i=1}^{N}\left[y_{i}-\hat{y}_{i}\left(w_{0}^{(t)}, w_{1}^{(t)}\right)\right] x_{i}\end{array}\right]$
If overall, under predicting \hat{y}_{i}, then $\sum\left[y_{i}-\hat{y}_{i}\right]$ is positive $\rightarrow \omega_{0}$ is going to increase similar inanition for w_{1}, but multiply by x_{i}

Comparing the approaches

- For most ML problems, cannot solve gradient = 0
- Even if solving gradient $=0$ is feasible, gradient descent can be more efficient
- Gradient descent relies on choosing stepsize and convergence criteria

Symmetric cost function

square feet (sq.ft.)

Asymmetric cost functions

We can weight differently
 positive and negative errors in RSS calculations.

What if cost of listing house too high has bigger cost?
Too high \rightarrow no offers $(\$=0)$
Too low \rightarrow offers for lower \$
square feet (sq.ft.) X

What you can do now

- Describe the input (features) and output (real-valued predictions) of a regression model
- Calculate a goodness-of-fit metric (e.g., RSS)
- Estimate model parameters to minimize RSS using gradient descent
- Interpret estimated model parameters
- Exploit the estimated model to form predictions
- Discuss the possible influence of high leverage points
- Describe intuitively how fitted line might change when assuming different goodness-of-fit metrics

MULTIPLE REGRESSION

Multiple regression

Fit more complex relationships than just a line

Incorporate more inputs

- Square feet
- \# bathrooms
- \# bedrooms
- Lot size
- Year built
- ...

Polynomial regression

Model:

$$
y_{i}=w_{0}+w_{1} x_{i}+w_{2} x_{i}^{2}+\ldots+w_{p} x_{i}^{p}+\varepsilon_{i}
$$

treat as different features
feature $1=1$ (constant) parameter $1=w_{0}$
feature $2=x$
parameter $2=w_{1}$
feature $3=x^{2}$
parameter $3=w_{2}$
feature $p+1=x^{p}$
parameter $\mathrm{p}+1=\mathrm{w}_{\mathrm{p}}$

Other functional forms of one input

\square Trends in time series

Other functional forms of one input

\square Seasonality

Example of detrending

Model:

$$
\mathrm{y}_{\mathrm{i}}=\mathrm{w}_{0}+\mathrm{w}_{1} \mathrm{t}_{\mathrm{i}}+\mathrm{w}_{2} \sin \left(2 \pi \mathrm{t}_{\mathrm{i}} / 12-\Phi \Phi\right)+\varepsilon_{\mathrm{i}}
$$

Trigonometric identity: $\sin (a-b)=\sin (a) \cos (b)-\cos (a) \sin (b)$
$\rightarrow \sin \left(2 \pi t_{\mathrm{i}} / 12-\Phi\right)=\sin \left(2 \pi t_{\mathrm{i}} / 12\right) \cos (\Phi)-\cos \left(2 \pi t_{\mathrm{i}} / 12\right) \sin (\Phi)$

Example of detrending

Equivalently,

$y_{i}=w_{0}+w_{1} t_{i}+w_{2} \sin \left(2 \pi t_{i} / 12\right)$

$$
+w_{3} \cos \left(2 \pi t_{i} / 12\right)+\varepsilon_{i}
$$

feature 1 = 1 (constant)
feature $2=\mathrm{t}$
feature $3=\sin (2 \pi t / 12)$
feature $4=\cos (2 \pi t / 12)$

Other examples of seasonality

Weather modeling
(e.g., temperature, rainfall)

Demand forecasting (e.g., jacket purchases)

Generic basic expansion

Model:

$$
\begin{aligned}
\mathrm{y}_{\mathrm{i}} & =\mathrm{w}_{0} \mathrm{~h}_{0}\left(\mathrm{x}_{\mathrm{i}}\right)+\mathrm{w}_{1} \mathrm{~h}_{1}\left(\mathrm{x}_{\mathrm{i}}\right)+\ldots+\mathrm{w}_{\mathrm{D}} \mathrm{~h}_{\mathrm{D}}\left(\mathrm{x}_{\mathrm{i}}\right)+\varepsilon_{\mathrm{i}} \\
& =\sum_{j=0}^{D} \mathrm{w}_{\mathrm{j}} \mathrm{~h}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{i}}\right)+\varepsilon_{\mathrm{i}}
\end{aligned}
$$

feature $1=h_{0}(x)$...often 1 (constant)
feature $2=h_{1}(x) \ldots$ e.g., x
feature $3=h_{2}(x) \ldots$ e.g., x^{2} or $\sin (2 \pi x / 12)$
feature $D+1=h_{D}(x) \ldots$ e.g., x^{p}

More realistic flow chart

$31 / 10 / 2017$

Incorporating multiple inputs

Incorporating multiple inputs

Reading your brain

General notation

Output: y $<$ scalar
Inputs: $\mathbf{x}=(\mathbf{x}[1], \mathbf{x}[2], \ldots, \mathbf{x}[d])$
d-dim vector
Notational conventions:
$\mathbf{x}[j]=j^{\text {th }}$ input (scalar)
$h_{j}(\mathbf{x})=j^{\text {th }}$ feature (scalar)
$\mathbf{x}_{\mathrm{i}}=$ input of $\mathrm{i}^{\text {th }}$ data point (vector)
$\mathbf{x}_{i}[j]=j^{\text {th }}$ input of $\mathrm{i}^{\text {th }}$ data point (scalar)

Simple hyperplane

Model:
Noise term
$y_{i}=w_{0}+w_{1} \mathbf{x}_{\mathrm{i}}[1]+\ldots+w_{d} \mathbf{x}_{\mathrm{i}}[\mathrm{d}]+\varepsilon_{\mathrm{i}}$
feature $1=1$
feature $2=\mathbf{x}[1] \ldots$ e.g., sq. ft.
feature 3 = x[2] ... e.g., \#bath
feature $d+1=\mathbf{x [d]} . .$. e.g., lot size

More generally: D-dimensional curve

Model:
$y_{i}=w_{0} h_{0}\left(\mathbf{x}_{\mathrm{i}}\right)+w_{1} h_{1}\left(\mathbf{x}_{\mathrm{i}}\right)+\ldots+w_{D} h_{D}\left(\mathbf{x}_{\mathrm{i}}\right)+\varepsilon_{i}$

$$
=\sum_{j=0}^{D} w_{j} h_{j}\left(\mathbf{x}_{\mathrm{i}}\right)+\varepsilon_{\mathrm{i}}
$$

feature $1=h_{0}(\mathbf{x})$... e.g., 1
feature $2=h_{1}(\mathbf{x})$... e.g., $x[1]=s q$. ft.
feature $3=h_{2}(x)$... e.g., $x[2]=$ \#bath

$$
\text { or, } \log (x[7]) x[2]=\log (\# b e d) x \text { \#bath }
$$

feature $D+1=h_{D}(\mathbf{x}) \ldots$ some other function of $\mathbf{x}[1] \ldots, \ldots, \mathbf{x}[d]$

Interpreting coefficients

Simple linear regression

Interpreting coefficients

Two linear features

$$
\hat{y}=\hat{w}_{0}+\hat{w}_{1} x[1] ~+\hat{w}_{2} x[2]
$$

Interpreting coefficients

Two linear features

But...
increasing \#bathrooms for fixed \#sq.ft will make your bedrooms smaller and smaller.
Think about interpretation.

Interpreting coefficients

Polynomial regression

$$
\hat{y}=\hat{w}_{0}+\hat{w}_{1} x+\ldots+\hat{w}_{j} x^{j}+\ldots+\hat{w}_{p} x^{p}
$$

Then ...
can't interpret coefficients

Interpreting coefficients

Multiple linear features

(sq.ft.)

But...
increasing \#bedrooms
for fixed \#sq.ft will make your bedrooms smaller and smaller.
You can end with negative coefficient. Might not be so if you removed \#sq.ft from the model.
Think about interpretation in context of the model you put in.

Fitting in D-dimmensions

Rewriting in vector notation

For observation i

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{i}}=\sum_{j=0}^{D} \mathrm{w}_{\mathrm{j}} \mathrm{~h}_{\mathrm{j}}\left(\mathbf{x}_{\mathrm{i}}\right)+\varepsilon_{\mathrm{i}} \\
& Y_{\mathrm{i}}=\overbrace{\overbrace{w_{0} w_{1} w_{2} \ldots l \mid}^{y_{w_{D}}}}^{w^{\top}} \\
& =\frac{\left.\omega_{p} h_{0}\left(x_{i}\right)+w_{1} h_{1}\left(x_{i}\right)+\ldots+w_{p} h_{d} x_{i}\right)}{\text { radar }+\epsilon_{i}} \\
& =\omega^{\top} h\left(x_{i}\right)+\epsilon_{i}
\end{aligned}
$$

Rewriting in matrix notation

For all observations together

Here is our ML algorithm

Fitting in D-dimmensions

Cost function in D-dimmension

RSS in vector notation

$31 / 10 / 2017$

Cost function in D-dimmension

RSS in matrix notation

$$
\begin{aligned}
& R S S(w)=\sum_{i=1}^{N}\left(y_{i}-h\left(\mathbf{x}_{i}\right)^{\top} w\right)^{2} \\
& =\left(y-H_{w}\right)^{\top}(y-H w)
\end{aligned}
$$

Regression model for D-dimmension

RSS in matrix notation

Regression model for D-dimmension

Gradient of RSS

$$
\begin{gathered}
\boldsymbol{\nabla R S S}(\mathbf{w})=\boldsymbol{\nabla}\left[(\mathbf{y}-\mathbf{H w})^{\top}(\mathbf{y}-\mathbf{H w})\right] \\
=-2 \mathbf{H}^{\top}(\mathbf{y}-\mathbf{H w})
\end{gathered}
$$

Why? By analogy to 1D case:

$$
\begin{aligned}
& \frac{d}{d \omega}(y-h \omega)(y-h \omega)=\frac{d}{d \omega}(y-h \omega)^{2}=2 \cdot(y-h \omega)^{\prime}(-h) \\
&=-2 h(y-h \omega) \\
& \text { scalars }
\end{aligned}
$$

Regression model for D-dimmension

Approach 1: set gradient to zero

3D plot of RSS with tangent plane at minimum

Closed form solution

$\nabla \mathrm{RSS}(\mathbf{w})=-2 \mathbf{H}^{\top}(\mathbf{y}-\mathrm{Hw})=0$
Solve for w:

$$
\begin{aligned}
& -2 H^{\top} y+2 / H^{\top} H \hat{w}=0 \\
& H^{\top} H \hat{w}=H^{\top} y \\
& \underbrace{\left(H^{\top} H\right)^{-1} H^{\top} H^{\hat{w}}}=\left(H^{\top} H\right)^{-1} H^{\top} y \\
& \hat{\omega}=\left(H^{\top} H\right)^{-1} H^{\top} y
\end{aligned}
$$

Closed-form solution

This matrix might not be invertible.

This might not be CPU feasible.

Regression model for D-dimmension

Approach 2: gradient descent

We initialise our solution somewhere and then ...
while not converged

Gradient descent

$$
\begin{aligned}
& \operatorname{RSS}(w)=\sum_{i=1}^{N}\left(y_{i}-h\left(x_{i}\right)^{\top} w\right)^{2} \\
& =\sum_{i=1}^{N}\left(y_{i}-u_{0} h_{0}\left(x_{i}\right)-w_{i} h_{1}\left(x_{i}\right) \ldots w_{0} h_{0}\left(x_{i}\right)^{2}\right)
\end{aligned}
$$

Partial with respect to w_{j}.

$$
\begin{aligned}
& \sum_{i=1}^{N} 2\left(y_{i}-w_{0} h_{0}\left(x_{i}\right)-w_{1} h_{i}\left(x_{i}\right) \cdots-w_{o} h_{h}\left(x_{1}\right)\right. \\
= & \left.-2 \sum_{i=1}^{N} h_{j}\left(x_{i}\right)\left(y_{i}-h\left(x_{i}\right)^{\top}\right)^{\top} w\right)
\end{aligned}
$$

Update to $j^{\text {th }}$ feature weight:

$$
w_{j}^{(t+1)} \leftarrow w_{j}^{(t)}-\eta(-2 \sum_{i=1}^{N} h_{j}\left(x_{i}\right)(y_{i}-\underbrace{\left.h^{\top}\left(x_{i}\right) w^{(t)}\right)}_{y_{i}\left(w^{(t)}\right)})
$$

Regression model for D-dimmension

Interpreting elementwise

 If underestimating impact of \#bath $\left(\hat{\omega}_{j}^{(t)}\right.$ is is toul $)$ then $\left(y_{i}-\hat{y}_{i}\left(w^{(t)}\right)\right)$ on average weighted by \#bath will be positive

$$
\Rightarrow w_{j}^{(t+1)}>w_{j}^{(t)} \quad \text { (increase) }
$$

Summary of gradient descent

Extremely useful algorithm in several applications

init $w^{(1)}=0$ (or randomly, or smarty), $\mathrm{t}=1$
while $\left\|\nabla R S S\left(w^{(t)}\right)\right\| \sqrt[\varepsilon^{\text {rotemane }}]{\text { prtabis. }}$
for $\mathrm{j}=0$,..., $\mathrm{D}{ }_{N}$
partial[ijl $=-2 \sum_{i=1} h_{j}\left(\mathbf{x}_{i}\right)\left(y_{i}-\hat{y}_{i}\left(w^{(t)}\right)\right)$
$w_{j}^{(t+1)} \leftarrow w_{j}^{(t)}-\eta$ partial $[j]$
$t<t+1$

What you can do now

- Describe polynomial regression
- Detrend a time series using trend and seasonal components
- Write a regression model using multiple inputs or features thereof
- Cast both polynomial regression and regression with multiple inputs as regression with multiple features
- Calculate a goodness-of-fit metric (e.g., RSS)
- Estimate model parameters of a general multiple regression model to minimize RSS:
- In closed form
- Using an iterative gradient descent algorithm
- Interpret the coefficients of a non-featurized multiple regression fit
- Exploit the estimated model to form predictions
- Explain applications of multiple regression beyond house price modeling

ACCESSING PERFORMANCE

Assessing performance

Make predictions, get \$, right??

Assessing performance

Or, how much am I losing?

Example: Lost \$ due to inaccurate listing price

- Too low \rightarrow low offers
- Too high \rightarrow few lookers + no/low offers

How much am I losing compared to perfection?

Perfect predictions: Loss $=0$
My predictions: Loss = ???

Measuring loss

"Remember that all models are wrong; the practical question is how wrong do they have to be to not be useful." George Box, 1987.

Cost of using wat x when y is true
actual value

Symmetric loss functions

Examples:

(assuming loss for underpredicting $=$ overpredicting)

$$
\begin{aligned}
& \text { Absolute error: } L\left(y, f_{\hat{w}}(\mathbf{x})\right)=\left|y-f_{\hat{w}}(\mathbf{x})\right| \\
& \text { Squared error: } L\left(y, f_{\hat{w}}(\mathbf{x})\right)=\left(y-f_{\hat{w}}(\mathbf{x})\right)^{2}
\end{aligned}
$$

Accessing the loss

Use training data

Compute training error

1. Define a loss function $L\left(y, f_{\hat{w}}(\mathbf{x})\right)$

- E.g., squared error, absolute error,...

2. Training error
$=$ avg. loss on houses in training set
$=\frac{1}{N} \sum_{i=1}^{N} \mathrm{~L}\left(\mathrm{y}_{\mathrm{i}}, \mathrm{f}_{\hat{\mathrm{w}}}\left(\mathbf{x}_{\mathrm{i}}\right)\right)$
fit using training data

Training error

Use squared error loss $\left(\mathbf{y}-\mathrm{f}_{\hat{w}}(\mathbf{x})\right)^{2}$

Convention is to take average here

Training error $(\hat{w})=1 / \mathrm{N}$ *
$\left[\left(\$_{\text {train } 1}-f_{\hat{w}}\left(\mathrm{sq} . \mathrm{ft}_{\text {train 1 }}\right)\right)^{2}\right.$
$+\left(S_{\text {train } 2-f_{\hat{w}}}(\text { sq.ft.train 2) })^{2}\right.$
$+\left(\$_{\text {train }} 3^{-\mathrm{f}_{\hat{w}}}\left(\text { sq. } . \mathrm{ft}_{\text {train } 3}\right)\right)^{2}$

+ ... include all
training houses]

Training error

More intuitive is to take RMSE, same units as y

Training error vs. model complexity

Is training error a good measure?

Issue: Training error is overly optimistic
because ŵ was fit to training data

Is there something particularly wrong about having x_{t} square feet ???

Small training error $\neq>$ good predictions unless training data includes everything you might ever see

Generalisation (true) error

Really want estimate of loss over all possible ($1, \$$) pairs

Distribution over house

In our neighborhood, houses of what \# sq.ft. (且) are we likely to see?

Popularity
of a given
\#sq.ft.

For houses with a given \#sq.f. ((\$), what house prices \$ are we likely to see?

Generalisation error definition

Really want estimate of loss
over all possible (

Formally:
average over all possible (\mathbf{x}, y) pairs weighted by
how likely each is
generalization error $=E_{x, y}^{\downarrow}\left[L\left(y, f_{\hat{w}}(\mathbf{x})\right)\right]$
,
fit using training data

Generalisation error (weighted with popularity) vs model complexity

Generalisation error vs model complexity

Forming a test set

Hold out some (\mathbb{N},) that are not used for fitting the model

We want to approximate generalisation error.

Test set: proxy for ,,everything you might see"

Training set

Test set

Compute test error

Test error
= avg. loss on houses in test set
$=\frac{1}{N_{\text {test }}} \sum_{i \text { in test set }} \mathrm{L}\left(\mathrm{y}_{\mathrm{i}}, \mathrm{f}_{\hat{w}}\left(\mathbf{x}_{\mathrm{w}}\right)\right)$
\# test points
fit using training data
has never seen
test data!

Training, true and test error vs. model complexity. Notion of overfitting.

Training/test splits

\section*{| Training set | Test set |
| :--- | :--- |}

Typically, just enough test points to form a reasonable estimate of generalization error

If this leaves too few for training, other methods like cross validation (will see later...)

Three sources of errors

In forming predictions, there are 3 sources of error:

1. Noise
2. Bias
3. Variance

Data are inherently noisy

There is some true relatioship between sq.ft and value of the house, specific to the given house.

We cannot reduce it by chosing better model or procedure, It is beyond our control.

Bias contribution

This contribution we can control.
Assume we fit a constant function

Bias contribution

Over all possible size N training sets, what do I expect my fit to be?

Bias contribution

$$
\operatorname{Bias}(\mathbf{x})=\mathrm{f}_{\mathrm{w}(\text { (true })}(\mathbf{x})-\mathrm{f}_{\overline{\mathrm{w}}}(\mathbf{x}) \begin{aligned}
& \text { Is our approach flexible } \\
& \text { enough to capture } \mathrm{f}_{\text {w (true) }} \text { ? } \\
& \\
& \text { If not, error in predictions. }
\end{aligned}
$$

Variance contribution

How much do specific fits vary from the expected fit?

Variance contribution

How much do specific fits
vary from the expected fit?

Variance of high complexity models

Assume we fit a high-order polynomial
For each train remove

Bias of high complexity models

Assume we fit a high-order polynomial
For each train remove

High complexity models are very flexible, pick better average trends.

Bias -variance tradeoff

Errors vs amount of data
for a fixed model complexity

The regression/ML workflow

1. Model selection

Often, need to choose tuning parameters λ controlling model complexity (e.g. degree of polynomial)
2. Model assessment Having selected a model, assess the generalization error

Hypothetical implementation

Training set

Test set

1. Model selection

For each considered model complexity λ :
i. Estimate parameters $\hat{\mathbf{w}}_{\lambda}$ on training data
ii. Assess performance of \hat{w}_{λ} on test data
iii. Choose λ^{*} to be λ with lowest test error
2. Model assessment

Compute test error of $\hat{\mathbf{w}}_{\lambda^{*}}$ (fitted model for selected complexity λ^{*}) to approx. generalization error

Hypothetical implementation

Training set

Test set

1. Model selection

For each considered model complexity λ :
i. Estimate parameters $\hat{\mathbf{w}}_{\lambda}$ on training data
ii. Assess performance of \hat{w}_{λ} on test data
iii. Choose λ^{*} to be λ with lowest test error
2. Model assessment

Overly optimistic!

Compute test error of $\hat{\mathbf{w}}_{\lambda^{*}}$ (fitted model for selected complexity λ^{*}) to approx. generalization error

Hypothetical implementation

Training set

Test set

Issue: Just like fitting wi and assessing its performance both on training data

- λ^{*} was selected to minimize test error (i.e., λ^{*} was fit on test data)
- If test data is not representative of the whole world, then $\hat{w}_{\lambda^{*}}$ will typically perform worse than test error indicates

Practical implementation

Training set

Validation Test set set

Solution: Create two "test" sets!

1. Select λ^{*} such that $\hat{\mathbf{w}}_{\lambda^{*}}$ minimizes error on validation set
2. Approximate generalization error of $\hat{w}_{\lambda^{*}}$ using test set

Practical implementation

Training set

Validation Test
 set set

fit \hat{w}_{λ}

\uparrow

test performance
of \hat{w}_{λ} to select λ^{*}

assess
generalization error of $\hat{w}_{\lambda *}$

Typical splits

Training set

$$
\begin{array}{lll}
80 \% & 10 \% & 10 \% \\
50 \% & 25 \% & 25 \%
\end{array}
$$

Validation Test set set

What you can do now

- Describe what a loss function is and give examples
- Contrast training, generalization, and test error
- Compute training and test error given a loss function
- Discuss issue of assessing performance on training set
- Describe tradeoffs in forming training/test splits
- List and interpret the 3 sources of avg. prediction error
- Irreducible error, bias, and variance
- Discuss issue of selecting model complexity on test data and then using test error to assess generalization error
- Motivate use of a validation set for selecting tuning parameters (e.g., model complexity)
- Describe overall regression workflow

RIDGE REGRESSION

Flexibility of high-order polynomials

$$
y_{i}=w_{0}+w_{1} x_{i}+w_{2} x_{i}^{2}+\ldots+w_{p} x_{i}^{p}+\varepsilon_{i}
$$

Symptoms for overfitting: often associated with very large value of estimated parameters \hat{w}

Overfitting with many features

Not unique to polynomial regression, but also if lots of inputs (d large)

- Square feet

Or, generically,

- \# bathrooms
lots of features (D large) - \# bedrooms

$$
\mathrm{y}_{\mathrm{i}}=\sum_{j=0}^{D} \mathrm{w}_{\mathrm{j}} \mathrm{~h}_{\mathrm{j}}\left(\mathbf{x}_{\mathrm{i}}\right)+\varepsilon_{\mathrm{i}}
$$

- Lot size
- Year built

How does \# of observations influence overfitting?

Few observations (N small)
\rightarrow rapidly overfit as model complexity increases
Many observations (N very large)
\rightarrow harder to overfit

How does \# of inputs influence overfitting?

1 input (e.g., sq.ft.):
Data must include representative examples of all possible (sq.ft., \$) pairs to avoid overfitting

How does \# of inputs influence overfitting?

d inputs (e.g., sq.ft., \#bath, \#bed, lot size, year, ...):
Data must include examples of all possible (sq.ft., \#bath, \#bed, lot size, year,...., \$) combos to avoid overfitting

nuctu!! harder

Lets improve quality metric blok

Desire total cost format

Want to balance:
i. How well function fits data
ii. Magnitude of coefficients

Measure of fit to training data

Small RSS \rightarrow mode fitting training

Measure of magnitude of regression coefficients

What summary \# is indicative of size of regression coefficients?

- Sum? $\quad W_{0}=1,527,301 \quad W_{1}=-1,605,253$
\longleftarrow But ... the coefficients are very large
- Sum of absolute value?
- Sum of squares (L_{2} norm)

$$
w_{0}^{2}+w_{1}^{2}+\ldots+w_{D}^{2}=\sum_{j=0}^{D} w_{j}^{2} \triangleq\|w\|_{2}^{2} \quad L_{2} \text { norm } \ldots \underbrace{\substack{\text { module }}}_{\text {four of this }} .
$$

Consider specific total cost

Total cost =

 measure of fit + measure of magnitude - of coefficientsRSS(w) $\overbrace{\|w\|_{2}^{2}}^{q_{2}}$

Consider resulting objectives

What if $\hat{\text { w }}$ selected to minimize
Ridge regression

$$
\operatorname{RSS}(w)+\lambda\|w\|_{2}^{2}
$$

(a.k.a L_{2} regularization)
tuning parameter = balance of fit and magnitude
If $\lambda=0$:
reduces to minimizing $R S S(\omega)$, as before (old solution) $\rightarrow \hat{\omega}^{\text {LS }}$ least squares
If $\lambda=\infty$:
For solutions where $\hat{\omega} \neq 0$, then total cost is ∞ If $\hat{\omega}=0$, then total cost $=\operatorname{Rss}(0) \rightarrow$ solution is $\hat{\omega}=0$
If λ in between: Then $0 \leq\left\|\hat{\omega}_{2}^{2} \leq\right\| \hat{\omega}^{5} \|_{2}^{2}$

Ridge regression: bias-variance tradeoff

Large λ :

high bias, low variance

$$
\text { (e.g., } \hat{w}=0 \text { for } \lambda=\infty \text {) }
$$

Small λ :
low bias, high variance
(e.g., standard least squares (RSS) fit of high-order polynomial for $\lambda=0$)

Ridge regression: coefficients path

What happens if we refit our high-order polynomial, but now using ridge regression?

Flow chart

Ridge regression: cost in matrix notation

In matrix form, ridge regression cost is:
$\mathrm{RSS}(\mathrm{w})+\lambda\|\mathrm{w}\|_{2}^{2}$

$$
=(\mathbf{y}-\mathrm{Hw})^{\top}(\mathbf{y}-\mathrm{Hw})+\lambda \mathbf{w}^{\top} \mathbf{w}
$$

$\|w\|_{2}^{2}=w_{0}^{2}+w_{1}^{2}+w_{2}^{2}+\ldots+w_{D}^{2}$

$=w^{\top} w$

Gradient of ridge regresion cost

$$
\begin{aligned}
& \nabla\left[\operatorname{RSS}(\mathbf{w})+\lambda\|w\|_{2}^{2}\right]=\nabla\left[(\mathbf{y}-\mathbf{H w})^{\top}(\mathbf{y}-\mathbf{H w})+\lambda \mathbf{w}^{\top} \mathbf{w}\right] \\
& =\underbrace{\left.\left.[y-H w)^{\top}(\mathbf{y}-\mathrm{Hw})\right]+\lambda \quad \nabla w^{\top} w\right]} \\
& -2 \mathbf{H}^{\top}(\mathbf{y}-\mathbf{H w}) \\
& \text { 2w }
\end{aligned}
$$

Why? By analogy to 1d case...
$w^{\top} w$ analogous to w^{2} and derivative of $w^{2}=2 w$

Ridge regression: closed-form solution

3D plot of RSS with tangent plane at minimum

$$
\begin{aligned}
& \nabla \operatorname{cost}(w)=-\left\langle\mathbf{H}^{\top}(\mathbf{y}-\mathrm{H} w)+2 \lambda \mathbf{I} \mathbf{w}=0\right. \\
& \text { Solve for } W_{W^{\top}}{ }^{\top}+H^{\top} H \hat{w}+\lambda I \hat{w}=0 \\
& \boldsymbol{H}^{\top} \boldsymbol{H} \hat{\underline{\omega}}+\lambda I \hat{\omega}=H^{\top} y \\
& \left(H^{\top} H+\lambda I\right) \hat{\omega}=H^{\top} y \\
& \hat{\omega}=\left(H^{\top} H+\lambda I\right)^{-1} H^{\top} y
\end{aligned}
$$

Ridge regression: gradient descent

$\nabla \operatorname{cost}(w)=-2 H^{\top}(y-H w)+2 \lambda w$

Update to jth feature weight:
$w_{j}^{(t+1)}<w_{j}^{(t)}-\eta *$

Summary of ridge regression algorithm

init $\mathbf{w}^{(1)}=0$ (or randomly, or smartly), $t=1$
while $\left\|\nabla \operatorname{RSS}\left(w^{(t)}\right)\right\|>\varepsilon$

$$
\begin{aligned}
& \text { for } j=0, \ldots, D \\
& \operatorname{partial}[j]=-2 \quad{\underset{i}{i} j=1}_{N}^{\lambda_{i}}\left(\mathbf{x}_{i}\right)\left(\mathrm{y}_{\mathrm{i}}-\hat{y}_{\mathrm{i}}\left(\mathbf{w}^{(\mathrm{t})}\right)\right) \\
& \mathrm{w}_{\mathrm{j}}^{(\mathrm{t}+1)} \leftarrow(1-2 \eta \lambda) \mathrm{w}_{j}^{(\mathrm{t})}-\eta \operatorname{partial}[j] \\
& \mathrm{t} \leftarrow \mathrm{t}+1
\end{aligned}
$$

How to choose λ

If sufficient amount of data...

How to choose λ

K-fold cross validation

For $\mathrm{k}=1, \ldots, \mathrm{~K}$

1. Estimate $\hat{\mathbf{w}}_{\lambda}{ }^{(k)}$ on the training blocks
2. Compute error on validation block: $\operatorname{error}_{k}(\lambda)$

How to choose λ

K-fold cross validation

For $\mathrm{k}=1, \ldots, \mathrm{~K}$

1. Estimate $\hat{\mathbf{w}}_{\lambda}{ }^{(k)}$ on the training blocks
2. Compute error on validation block: error $r_{k}(\lambda)$

How to choose λ

K-fold cross validation

For $\mathrm{k}=1, \ldots, \mathrm{~K}$

1. Estimate $\hat{w}_{\lambda}{ }^{(k)}$ on the training blocks
2. Compute error on validation block: $\operatorname{error}_{k}(\lambda)$

Compute average error: $\operatorname{CV}(\boldsymbol{\lambda})=\frac{1}{K} \sum_{k=1}^{K} \operatorname{error}_{k}(\boldsymbol{\lambda})$

How to choose λ

K-fold cross validation

Repeat procedure for each choice of λ

Choose λ^{*} to minimize $\mathrm{CV}(\lambda)$

What value of K

Formally, the best approximation occurs for validation sets of size $1(\mathrm{~K}=\mathrm{N})$

leave-one-out cross validation

Computationally intensive

- requires computing N fits of model per λ

Typically, $K=5$ or 10
5-fold CV

10-fold CV

How to handle the intercept

Recall multiple regression model

Model:

$$
\begin{aligned}
y_{i} & =w_{0} h_{0}\left(\mathbf{x}_{\mathrm{i}}\right)+\mathrm{w}_{1} \mathrm{~h}_{1}\left(\mathbf{x}_{\mathrm{i}}\right)+\ldots+\mathrm{w}_{\mathrm{D}} \mathrm{~h}_{D}\left(\mathbf{x}_{\mathrm{i}}\right)+\varepsilon_{\mathrm{i}} \\
& =\sum_{j=0}^{D} \mathrm{w}_{\mathrm{j}} \mathrm{~h}_{\mathrm{j}}\left(\mathbf{x}_{\mathrm{i}}\right)+\varepsilon_{\mathrm{i}}
\end{aligned}
$$

feature $1=h_{0}(\mathbf{x}) \ldots$ often 1 (constant)
feature $2=h_{1}(\mathbf{x})$... e.g., $\mathbf{x [1]}$
feature $3=h_{2}(\mathbf{x})$... e.g., $\mathbf{x}[2]$
feature $D+1=h_{D}(\mathbf{x}) \ldots$ e.g., $\mathbf{x}[d]$

Do we penalize intercept?

Standard ridge regression cost:

$$
\mathrm{RSS}(\mathrm{w})+\underset{\mathbb{\nwarrow}}{\lambda}\|\mathrm{w}\|_{2}^{2}
$$

Encourages intercept w_{0} to also be small

Do we want a small intercept?
Conceptually, not indicative of overfitting...

Do we penalize intercept?

\square Option 1: don't penalize intercept Modified ridge regression cost:

$$
\operatorname{RSS}\left(\mathrm{w}_{0}, \mathbf{w}_{\text {rest }}\right)+\lambda\left\|\mathbf{w}_{\text {rest }}\right\|_{2}^{2}
$$

\square Option 2: Center data first
If data are first centered about 0, then favoring small intercept not so worrisome

Step 1: Transform y to have 0 mean
Step 2: Run ridge regression as normal (closed-form or gradient algorithms)

What you can do now

- Describe what happens to magnitude of estimated coefficients when model is overfit
- Motivate form of ridge regression cost function
- Describe what happens to estimated coefficients of ridge regression as tuning parameter λ is varied
- Interpret coefficient path plot
- Estimate ridge regression parameters:
- In closed form
- Using an iterative gradient descent algorithm
- Implement K-fold cross validation to select the ridge regression tuning parameter λ

FEATURES SELECTION

\&

 LASSO RECRESSION
Why features selection?

Efficiency:

- If size $(\mathbf{w})=100 \mathrm{~B}$, each prediction is expensive
- If wharse, computation only depends on \# of non-zeros
many zeros

$$
\begin{aligned}
& \square=\square \\
& \hat{y}_{\mathrm{i}}=\sum_{\hat{w}_{j} \neq 0} \hat{W}_{\mathrm{j}} \mathrm{~h}_{\mathrm{j}}\left(\mathbf{x}_{\mathrm{i}}\right)
\end{aligned}
$$

Interpretability:

- Which features are relevant for prediction?

Sparcity

Housing application

Lot size	Dishwasher
Single Family	Garbage disposal
Year built	Microwave
Last sold price	Range / Oven
Last sale price/sqft	Refrigerator
Finished sqft	Washer
Unfinished sqft	Dryer
Finished basement sqft	Laundry location
\# floors	Heating type
Flooring types	Jetted Tub
Parking type	Deck
Parking amount	Fenced Yard
Cooling	Lawn
Heating	Garden
Exterior materials	Sprinkler System
Roof type	\vdots
Structure style	\vdots

Sparcity

Reading your mind

Find best model of size: 0

\# of features

Find best model of size: 1

Find best model of size: 2

Note: not necessarily nested!

Find best model of size: N

Choosing model complexity

Option 1: Assess on validation set

Option 2: Cross validation

Option 3+: Other metrics for penalizing model complexity like BIC...

Complexity of „all subsets"

How many models were evaluated?

- each indexed by features included

$$
\left.\begin{array}{rl}
y_{i} & =\varepsilon_{i} \\
y_{i} & =w_{0} h_{0}\left(\mathbf{x}_{i}\right)+\varepsilon_{i} \\
y_{i} & =w_{1} h_{1}\left(\mathbf{x}_{i}\right)+\varepsilon_{i} \\
\vdots
\end{array}\right\}
$$

$$
y_{i}=w_{0} h_{0}\left(\mathbf{x}_{i}\right)+w_{1} h_{1}\left(\mathbf{x}_{i}\right)+\ldots+w_{D} h_{D}\left(\mathbf{x}_{i}\right)+\varepsilon_{i}
$$

Greedy algorithm

Forward stepwise algorithm

1. Pick a dictionary of features $\left\{h_{0}(x), \ldots, h_{D}(x)\right\}$

- e.g., polynomials for linear regression

2. Greedy heuristic:
i. Start with empty set of features $F_{0}=\varnothing$ (or simple set, like just $h_{0}(x)=1 \rightarrow y_{i}=W_{0}+\varepsilon_{i}$)
ii. Fit model using current feature set F_{t} to get $\hat{\mathbf{w}}^{(t)}$
iii. Select next best feature $h_{j *}(x)$

- e.g., $h_{j}(x)$ resulting in lowest training error when learning with $F_{t}+\left\{h_{j}(x)\right\}$
iv. Set $F_{\mathrm{t}+1} \leftarrow F_{\mathrm{t}}+\left\{\mathrm{h}_{\mathrm{j} *}(\mathrm{x})\right\}$
v. Recurse

Visualizing greedy algorithm

Visualizing greedy algorithm

Visualizing greedy algorithm

Visualizing greedy algorithm

When do we stop?

When training error is low enough?

No!

When test error is low enough?

No!

Use validation set or cross validation!

Complexity of forward stepwise

How many models were evaluated?

- $1^{\text {st }}$ step, D models
- $2^{\text {nd }}$ step, D-1 models (add 1 feature out of D-1 possible)
- $3^{\text {rd }}$ step, D-2 models (add 1 feature out of D-2 possible)
- ...

How many steps?

- Depends
- At most D steps (to full model)

$$
\begin{gathered}
O\left(D^{2}\right) \ll 2^{D} \\
\text { for large } D
\end{gathered}
$$

Other greedy algorithms

Instead of starting from simple model and always growing...

Backward stepwise:

Start with full model and iteratively remove features least useful to fit

Combining forward and backward steps: In forward algorithm, insert steps to remove features no longer as important

Lots of other variants, too.

Using regularisation for features selection

Instead of searching over a discrete set of solutions, can we use regularization?

- Start with full model (all possible features)
- "Shrink" some coefficients exactly to 0
- i.e., knock out certain features
- Non-zero coefficients indicate "selected" features

Thresholding ridge coefficients?

Why don't we just set small ridge coefficients to 0 ?

Thresholding ridge coefficients?

Selected features for a given threshold value

Thresholding ridge coefficients?

Let's look at two related features...

Nothing measuring bathrooms was included!

Thresholding ridge coefficients?

If only one of the features had been included...

Remember:
this is linear model. If we assume that \#showers = \#bathrooms and remove one of them from the model, coefficients will sum up.

Thresholding ridge coefficients?

Would have included bathrooms in selected model

Can regularization lead directly to sparsity?

Try this cost instead of ridge ...

Total cost $=$
measure of fit $+\lambda$ measure of magnitude
—— of Coefficients
RSS(w)

Leads to sparse
(a.k.a. L_{1} regularized regression) solutions!

Lasso regression

Just like ridge regression, solution is governed by a continuous parameter λ

$R S S(w)+\lambda\|w\|_{1}$

$\wedge_{\text {tusing }} \sqrt{\text { tuso }}$ parameter $=$ balance of fit and sparsity
If $\lambda=0$: $\hat{\omega}^{\text {ilsso }}=\hat{\omega}^{\text {ts }}$ (uncegularized golution)
If $\lambda=\infty: \quad \hat{\omega}^{\text {haso }}=0$
If λ in between: $\quad 0 \leqslant\left\|\hat{w}^{1(5 s)}\right\|_{1} \leqslant\left\|\hat{w}^{\text {bs }}\right\|_{1}$

Coefficient path: ridge

Coefficient path: Iasso

Visualising ridge cost in 2D

Visualising ridge cost in 2D

"
$\omega_{0}^{2}+\omega_{1}^{2}=$ constant circle

$$
\operatorname{RSS}(\mathrm{w})+\lambda\|\mathrm{w}\|_{2}^{2}=\sum_{i=1}^{N}\left(\mathrm{y}_{\mathrm{i}}-\mathrm{w}_{0} \mathrm{~h}_{0}\left(\mathbf{x}_{\mathrm{i}}\right)-\mathrm{w}_{1} \mathrm{~h}_{1}\left(\mathbf{x}_{\mathrm{i}}\right)\right)^{2}+\lambda\left(\mathrm{w}_{0}^{2}+\mathrm{w}_{1}^{2}\right)
$$

Visualising ridge cost in 2D

For a specific λ value, some balance between RSS and $\|w\|_{2}^{2}$

$$
\mathrm{RSS}(\mathrm{w})+\lambda\|\mathrm{w}\|_{2}^{2}=\sum_{i=1}^{N}\left(\mathrm{y}_{\mathrm{i}}-\mathrm{w}_{0} \mathrm{~h}_{0}\left(\mathbf{x}_{\mathrm{i}}\right)-\mathrm{w}_{1} \mathrm{~h}_{1}\left(\mathbf{x}_{\mathrm{i}}\right)\right)^{2}+\lambda\left(\mathrm{w}_{0}^{2}+\mathrm{w}_{1}^{2}\right)
$$

Visualising lasso cost in 2D

> RSS contours for lasso are exactly the same as those for ridge!

$$
\operatorname{RSS}(w)+\lambda\|w\|_{1}=\sum_{i=1}^{N}\left(y_{1}-w_{0} h_{0}\left(x_{i}\right)-\left.w_{1} h_{1}\left(x_{i}\right)\right|^{2}\right]+\lambda\left(\left|w_{0}\right|+\left|w_{1}\right|\right)
$$

Visualising lasso cost in 2D

$$
\mathrm{RSS}(\mathrm{w})+\lambda\|\mathrm{w}\|_{1}=\sum_{i=1}^{N}\left(\mathrm{y}_{\mathrm{i}}-\mathrm{w}_{0} \mathrm{~h}_{0}\left(\mathbf{x}_{\mathrm{i}}\right)-\mathrm{w}_{1} \mathrm{~h}_{1}\left(\mathbf{x}_{\mathrm{i}}\right)\right)^{2}+\lambda\left(\left|\mathrm{w}_{0}\right|+\left|\mathrm{w}_{1}\right|\right)
$$

Visualising lasso cost in 2D

How we optimise for objective

To solve for w, previously took gradient of total cost objective and either:

1) Derived closed-form solution
2) Used in gradient descent algorithm

Optimise for lasso objective

Lasso total cost: $\mathrm{RSS}(\mathrm{w})+\lambda\|w\|_{1}$

Issues:

$$
\hat{\imath} \sum_{j=0}^{p}\left|w_{j}\right|
$$

1) What's the derivative of $\left|w_{j}\right|$?

$$
\text { gradients } \rightarrow \text { subgradients }
$$

2) Even if we could compute derivative, no closed-form solution
can use subgradient descent

Coordinate descent

Goal: Minimize some function $g \quad \min _{w} g(\omega)$

$$
g(\omega)=g\left(\omega_{0}, \omega_{1}, \ldots, \omega_{D}\right)
$$

Often, hard to find minimum for all coordinates, but easy for each coordinate

Coordinate descent:

Comments on coordinate descent

How do we pick next coordinate?

- At random ("random" or "stochastic" coordinate descent), round robin, ...

No stepsize to choose!

Super useful approach for many problems

- Converges to optimum in some cases (e.g., "strongly convex")
- Converges for lasso objective

Normalizing features

Normalizing features

Scale training columns (not rows!) as:

$$
h_{j}\left(x_{k}\right)=\frac{h_{j}\left(x_{k}\right)}{\sqrt{\sum_{i=1}^{N} h_{j}\left(x_{j}\right)^{2}}}{ }^{\text {Normalizer: }}
$$

Apply same training scale factors to test data:

Optimising least squares objective

One coordinate at a time

$\operatorname{RSS}(w)=\sum_{i=1}^{N}\left(\mathrm{y}_{\mathrm{i}}-\sum_{j=0}^{D} \mathrm{w}_{\mathrm{i}}^{\mathrm{j}} \mathrm{h}_{j}\left(\mathbf{x}_{\mathrm{i}}\right)\right)^{2} \quad \begin{gathered}\text { normalized } \\ \text { features }\end{gathered}$
Fix all coordinates w_{-j} and take partial w.r.t. $W_{j} \overbrace{\text { id oppimization }}^{\text {all } w_{k} \text { for }}$ cordinate by coordinate

$$
\begin{aligned}
& \frac{\partial}{\partial W_{j}} \operatorname{RSS}(w)=-2 \sum_{i=1}^{N} \underline{h}_{j}\left(\mathbf{x}_{\mathrm{i}}\right)\left(\mathrm{y}_{\mathrm{i}}-\sum_{j=0}^{D} \mathrm{w}_{\mathrm{j}} \underline{h}_{\mathrm{j}}\left(\mathbf{x}_{\mathrm{i}}\right)\right)
\end{aligned}
$$

Optimising least squares objective

$$
\operatorname{RSS}(\mathrm{w})=\sum_{i=1}^{N}\left(\mathrm{y}_{\mathrm{i}}-\sum_{j=0}^{D} \mathrm{w}_{\mathrm{j}} \mathrm{~h}_{\mathrm{j}}\left(\mathbf{x}_{\mathrm{i}}\right)\right)^{2}
$$

Set partial $=0$ and solve

$$
\begin{gathered}
\frac{\partial}{\partial w_{j}} \operatorname{RSS}(w)=-\not 2 \rho_{j}+\not 2 w_{j}=0 \\
\hat{w}_{j}=\varphi_{j}
\end{gathered}
$$

Coordinate descent for least squares regression

Initialize $\hat{\mathbf{w}}=0$ (or smartly...)

while not converged
for $j=0,1, \ldots, D$
residual
without feature j
compute:

$$
\rho_{\mathrm{j}}=\sum_{i=1}^{N} h_{\mathrm{h}}\left(\mathbf{x}_{\mathrm{i}}\right) \overbrace{\left(\mathrm{y}_{\mathrm{i}}-\hat{\mathrm{y}}_{\mathrm{i}}\left(\hat{\mathrm{w}}_{-\mathrm{j}}\right)\right.}^{\uparrow_{\substack{\text { prediction } \\ \text { without feature } j}}}
$$

Measure of the correlation between w_{j} and the residual without this feature.

How to access convergence

Initialize w = 0 (or smartly...)
while not con

$$
\begin{array}{ll}
\text { compute: } & \rho_{\mathrm{j}}=\sum_{i=1}^{N} h_{\mathrm{j}}\left(\mathbf{x}_{\mathrm{i}}\right)\left(\mathrm{y}_{\mathrm{i}}-\hat{y}_{\mathrm{i}}\left(\hat{w}_{-\mathrm{j}}\right)\right) \\
\text { set: } \hat{w}_{\mathrm{j}}= \begin{cases}\rho_{\mathrm{j}}+\lambda / 2 & \text { if } \rho_{\mathrm{j}}<-\lambda / 2 \\
0 & \text { if } \rho_{\mathrm{j}} \text { in }[-\lambda / 2, \lambda / 2] \\
\rho_{\mathrm{j}}-\lambda / 2 & \text { if } \rho_{\mathrm{j}}>\lambda / 2\end{cases}
\end{array}
$$

Soft thresholding

$$
\hat{w}_{\mathrm{j}}= \begin{cases}\rho_{\mathrm{j}}+\lambda / 2 & \text { if } \rho_{\mathrm{j}}<-\lambda / 2 \\ 0 & \text { if } \rho_{\mathrm{j}} \text { in }[-\lambda / 2, \lambda / 2] \\ \rho_{\mathrm{j}}-\lambda / 2 & \text { if } \rho_{\mathrm{j}}>\lambda / 2\end{cases}
$$

Convergence criteria

When to stop?
For convex problems, will start to take smaller and smaller steps

Measure size of steps taken in a full loop over all features

- stop when max step < ε

Other lasso solvers

Classically: Least angle regression (LARS) [Efron et al. '04]

Then: Coordinate descent algorithm
[Fu '98, Friedman, Hastie, \& Tibshirani '08]

Now:

- Parallel CD (e.g., Shotgun, [Bradley et al. '111])
- Other parallel learning approaches for linear models
- Parallel stochastic gradient descent (SGD) (e.g., Hogwild! [Niu et al. '11])
- Parallel independent solutions then averaging [Zhang et al. '12]
- Alternating directions method of multipliers (ADMM) [Boyd et al. '11]

How do we chose λ

If sufficient amount of data...

How do we chose λ

K-fold cross validation

For $k=1, \ldots, K$

1. Estimate $\hat{\mathbf{w}}_{\lambda}{ }^{(k)}$ on the training blocks
2. Compute error on validation block: $\operatorname{error}_{k}(\lambda)$

Compute average error: $\operatorname{CV}(\lambda)=\frac{1}{K} \sum_{k=1}^{K} \operatorname{error}_{k}(\lambda)$

How do we chose λ

Choosing λ via cross validation

Cross validation is choosing the λ that provides best predictive accuracy

Tends to favor less sparse solutions, and thus smaller λ, than optimal choice for feature selection
c.f., "Machine Learning: A Probabilistic Perspective", Murphy, 2012 for further discussion

Impact of feature selection and lasso

Lasso has changed machine learning, statistics, \& electrical engineering

But, for feature selection in general, be careful about interpreting selected features

- selection only considers features included
- sensitive to correlations between features
- result depends on algorithm used
- there are theoretical guarantees for lasso under certain conditions

What you can do now

- Perform feature selection using "all subsets" and "forward stepwise" algorithms
- Analyze computational costs of these algorithms
- Contrast greedy and optimal algorithms
- Formulate lasso objective
- Describe what happens to estimated lasso coefficients as tuning parameter λ is varied
- Interpret lasso coefficient path plot
- Contrast ridge and lasso regression
- Describe geometrically why L1 penalty leads to sparsity
- Estimate lasso regression parameters using an iterative coordinate descent algorithm
- Implement K-fold cross validation to select lasso tuning parameter λ

NONPARAMETRIC REGRESSION

Fit globaly vs fit locally

Parametric models

Below ...
$f(x)$ is not really a polynomial function

What alternative do we have?

If we:

- Want to allow flexibility in $f(\mathbf{x})$ having local structure
- Don't want to infer "structural breaks"

What's a simple option we have?

- Assuming we have plenty of data...

Nearest Neighbor \& Kernel Regression (nonparametric approach)

Fit locally to each data point

Predicted value = "closest" y_{i}

What people do naturally...

Real estate agent assesses value by
finding sale of most similar house

1 -NN regression more formally

Dataset of ($\left.\boldsymbol{\Lambda}_{1}, S\right)$ pairs: $\left(\underline{\left.\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{N}, y_{N}\right)}\right.$

1. Find "closest" $\mathbf{x}_{\mathbf{i}}$ in dataset

Visualizing 1-NN in multiple dimensions

Distance metrics: Notion of „closest"

In 1D, just Euclidean distance:

$$
\operatorname{distance}\left(\mathrm{x}_{\mathrm{j}}, \mathrm{x}_{\mathrm{q}}\right)=\left|\mathrm{x}_{\mathrm{j}}-\mathrm{x}_{\mathrm{q}}\right|
$$

In multiple dimensions:

- can define many interesting distance functions
- most straightforwardly, might want to weight different dimensions differently

Weighting housing inputs

Some inputs are more relevant than others

Scaled Euclidan distance

Formally, this is achieved via
distance $\left(\mathbf{x}_{\mathrm{j}}, \mathbf{x}_{\mathrm{q}}\right)=$

$$
\sqrt{a_{1}\left(\mathbf{x}_{j}[1]-\mathbf{x}_{q}[1]\right)^{2}+\ldots+{\underset{d}{d}}\left(\mathbf{x}_{j}[d]-\mathbf{x}_{q}[d]\right)^{2}}
$$

weight on each input (defining relative importance)

Other example distance metrics:

- Mahalanobis, rank-based, correlation-based, cosine similarity, Manhattan, Hamming, ...

Different distance metrics

Euclidean distance

Manhattan distance

Performing 1-NN search

- Query house:

- Dataset:

- Specify: Distance metric
- Output: Most similar house

1-NN algorithm

set n_{i}
set Dist2NN = δ
Return most similar house $\quad \begin{aligned} & \text { closest house } \\ & \text { to query house }\end{aligned}$
IIIn

1-NN in practice

Get more "comps"

More reliable estimate if you base estimate off of a larger set of comparable homes

K-NN regression more formally

Dataset of (
Query point: \mathbf{x}_{q}

1. Find k closest \mathbf{x}_{i} in dataset
$\left(x_{w_{1}}, x_{w_{w_{2}}}, \ldots, x_{w_{k}}\right)$ such that for any x_{i} not in nearest neighbor set, $\operatorname{distance}\left(x_{i}, x_{q}\right) \geq \operatorname{distance}\left(x_{N_{N}}, x_{q}\right)$
2. Predict

$$
\begin{aligned}
\hat{y}_{q} & =\frac{1}{k}\left(y_{N_{1}}+y_{N N_{2}}+\cdots+y_{N_{k}}\right) \\
& =\frac{1}{k} \sum_{j=1}^{n} y_{w_{w_{j}}}
\end{aligned}
$$

K-NN more formally

- Query house:

- Dataset:

- Specify: Distance metric
- Output: Most similar houses

K-NN algorithm

K-NN in practice

Nearest Neighbors Kernel ($\mathrm{K}=30$)

K-NN in practice

Nearest Neighbors Kernel ($\mathrm{K}=30$)

Issues with discontinuities

Overall predictive accuracy might be okay, but...

For example, in housing application:

- If you are a buyer or seller, this matters
- Can be a jump in estimated value of house going just from 2640 sq.ft. to 2641 sq.ft.
- Don't really believe this type of fit

Weighted k-NN

Weigh more similar houses more than those less similar in list of k-NN

How to define weights

Want weight $C_{q N N j}$ to be small when distance $\left(\mathbf{x}_{\mathrm{NNj}}, \mathbf{x}_{\mathrm{q}}\right)$ large
and $C_{q N N j}$ to be large when
distance $\left(\mathbf{x}_{\text {NNj }}, \mathbf{x}_{\mathrm{q}}\right)$ small
Simple method:

$$
c_{q N N_{j}}=\frac{1}{\text { distance }\left(x_{j}, x_{q}\right)}
$$

Kernel weights for $d=1$

Gaussian kernel:
Kernel $\lambda_{\lambda}\left(\left|x_{i}-x_{q}\right|\right)=$ $\exp \left(-\left(x_{i}-x_{q}\right)^{2} / \lambda\right)$
Note: never exactly 0 !

Kernel drives how the weights will decay, if at all, as a function of the distance.

Kernel regression

Nadaraya-Watson kernel weighted average

Instead of just weighting NN, weight all points

Predict:

weight on each datapoint

$$
\hat{\mathrm{y}}_{\mathrm{q}}=\frac{\sum_{i=1}^{N} \mathrm{c}_{\mathrm{qi}} \mathrm{y}_{\mathrm{i}}}{\sum_{i=1}^{N} \mathrm{c}_{\mathrm{qi}}}=\frac{\sum_{i=1}^{N} \operatorname{Kernel} \lambda_{\lambda}\left(\operatorname{distance}\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}_{\mathrm{q}}\right)\right) * \mathrm{y}_{\mathrm{i}}}{\sum_{i=1}^{N} \operatorname{Kernel} \lambda_{\lambda}\left(\operatorname{distance}\left(\mathbf{x}_{i}, \mathbf{x}_{\mathrm{q}}\right)\right)}
$$

Kernel regression in practice

Choice of bandwith λ

Often, choice of kernel matters much less than choice of λ

Choosing λ (or k on k-NN)

How to choose? Same story as always...

Cross Validation

Contrasting with global average

A globally constant fit weights all points equally

$$
\hat{y}_{\mathrm{q}}=\frac{1}{N} \sum_{i=1}^{N} y_{i}=\frac{\sum_{i=1}^{N} \underline{c}^{\text {equ }}}{\text { equal weight on each datapoint }}
$$

Contrasting with global average

Kernel regression leads to locally constant fit

- slowly add in some points and and let others gradually die off

$$
\hat{\mathrm{y}}_{\mathrm{q}}=\frac{\sum_{i=1}^{N} \operatorname{Kernel} \lambda_{\lambda}\left(\operatorname{distance}\left(\mathbf{x}_{\mathrm{i}} \mathbf{x}_{\mathrm{q}}\right)\right) * y_{i}}{\sum_{i=1}^{N} \operatorname{Kernel} l_{\lambda}\left(\operatorname{distance}\left(\mathbf{x}_{\mathrm{i}} \mathbf{x}_{\mathrm{q}}\right)\right)}
$$

Local linear regression

So far, discussed fitting constant function locally at each point
\rightarrow "locally weighted averages"

Can instead fit a line or polynomial locally at each point
\rightarrow "locally weighted linear regression"

Local regression rules of thumb

- Local linear fit reduces bias at boundaries with minimum increase in variance
- Local quadratic fit doesn't help at boundaries and increases variance, but does help capture curvature in the interior
- With sufficient data, local polynomials of odd degree dominate those of even degree

Recommended default choice:
local linear regression

Nonparametric approaches

k-NN and kernel regression are examples of nonparametric regression

General goals of nonparametrics:

- Flexibility
- Make few assumptions about f(x)
- Complexity can grow with the number of observations N

Lots of other choices:

- Splines, trees, locally weighted structured regression models...

Limiting behaviour of NN

Noiseless setting ($\varepsilon_{i}=0$)

In the limit of getting an infinite amount of noiseless data, the MSE of 1-NN fit goes to 0

Limiting behaviour of NN

Noiseless setting $\left(\varepsilon_{i}=0\right)$

In the limit of getting an infinite amount of noiseless data, the MSE of 1-NN fit goes to 0

Error vs amount of data
for a fixed model complexity

Limiting behaviour of NN

Noisy data setting

In the limit of getting an infinite amount of data, the MSE of NN fit goes to 0 if k grows, too

Issues: NN and kernel methods

NN and kernel methods work well when the data cover the space, but...

- the more dimensions d you have, the more points N you need to cover the space
- need $N=O(\exp (d))$ data points for good performance

This is where parametric models become useful...

Issues: Complexity of NN search

Naïve approach: Brute force search

- Given a query point $\mathbf{x}_{\text {q }}$
- Scan through each point $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}$
- $\mathrm{O}(\mathrm{N})$ distance computations per 1-NN query!
- O(Nlogk) per k-NN query!

What if N is huge??? (and many queries)

Will talk more about efficient methods in
Clustering \& Retrieval course

What you can do now

- Motivate the use of nearest neighbor (NN) regression
- Define distance metrics in 1D and multiple dimensions
- Perform NN and k-NN regression
- Analyze computational costs of these algorithms
- Discuss sensitivity of NN to lack of data, dimensionality, and noise
- Perform weighted k-NN and define weights using a kernel
- Define and implement kernel regression
- Describe the effect of varying the kernel bandwidth λ or \# of nearest neighbors k
- Select λ or k using cross validation
- Compare and contrast kernel regression with a global average fit
- Define what makes an approach nonparametric and why NN and kernel regression are considered nonparametric methods
- Analyze the limiting behavior of NN regression

Summarising

- Linear regression

Models
 - Regularization: Ridge (L2), Lasso (L1)

- Nearest neighbor and kernel regression

Algorithms

- Gradient descent
- Coordinate descent

Concepts

- Loss functions, bias-variance tradeoff, cross-validation, sparsity, overfitting, model selection, feature selection

