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What is a calorimeter?

Concept comes from thermo-dynamics:
A leak-proof closed box containing a substance
which temperature is to be measured.
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Temperature scale:

1 calorie (4.185]) is the necessary energry to increase the
temperature of 1 g of water at 15°C by one degre

At hadron colliders we measure GeV (0.1 - 1000)
1 GeV=10°eV = 10° * 10-°J = 1010 ] = 2.4 10° cal
1 TeV = 1000 GeV : kinetic energy of a flying mosquito

Required sensitivity for our calorimeters is
~ a thousand million time larger than
to measure the increase of temperature by 1°C of 1 g of water




Why calorimeters ?

First calorimeters appeared in the :
/0’s: Magentic
need to measure the energy of all analysis
articles, charged and neutral.
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Until then, only the momentum of
charged particles was measured
using magnetic analysis.
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Calorimetry
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Particles do not come out alive of a calorimeter




General structure of a calorimeter in particle physics

Key:
———— Muon
Electron
Hadron (e.g. Pion)
----- Photon




Important characteristic: Energy Resolution
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Important characteristic: Energy Resolution
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Important characteristic: Linearity

Response: mean signal per unit of deposited energy
e.g. # of photons electrons/GeV, pC/MeV, uyA/GeV

=» A linear calorimeter has a constant response
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Signal
Response

Energy Energy

Electromagnetic calorimeters are in general linear.
All energies are deposited via ionisation/excitation of the absorber.



Important characteristic: Position Resolution

Higgs Boson search in ATLAS
if MH ~ 120 GeV search in channel H—vyy

0 (Mu) / My = V2 [0(Ey1)/Ey1@0(Ey2)/Ev2@cot(6/2) o(0)]
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Important property: Time Resolution

pp collisions will have a frequency of 25ns (now 50ns)
~20 interactions/bunch crossing when L=103*cms1
Some theoretical models predict existence of long lived particles

Time measurement
Validate the synchronization between sub-detectors (~1ns)
Reject non-collisions background (beam, cosmic muons,..)

Identify particles which reach the detector with a non nominal time
of flight (~5ns measured with ~100ps precision)
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Important characteristic: Particle Identification

Particle Identification is particularly crucial at Hadron Colliders:

Large hadron background

Need to separate
Electrons, photons, muons from
Jets, hadrons

Means

Number of pions /0.1 minl

T et/ rejection
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Response (minl)

Shower shapes (lateral & longitudinal segmentations)
Track association with energy deposit in calorimeter

Signal time

Number of electrons /0.1 minl
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Important property: Particle Identification

Higgs boson search in ATLAS
if My ~ 120 GeV search in channel H—yy

Background: n° looking like a y
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iggering
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One has to select the good events
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Radiation Hardness & Activation

At LHC, detectors, and in particular calorimeters, have to be radiation
hard

Material (active material), glues, support structure, cables,...
Electronics installed on the detector

Dominant source of particles (for the calorimeter) is coming from
particles produced by the pp collisions

This was (and is still) one of the challenge when designing the
calorimeters for LHC

Detailed maps produced by MC to assess expected level
Dedicated tests in very high intensity beam lines

Experiments have installed monitoring detectors which will allow (in the
near future) to confront the models with measurements.
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Signal detection (light, electric charge)
Homogenous or sampling calorimeters

Electronics

(conversion, amplification,

signal transmission)

Interaction with matter

Calorimeters

15




Four steps

PARTICLE INTERACTION IN MATTER (depends on the
impinging particle and on the kind of material)

ENERGY LOSS TRANSFER TO DETECTABLE SIGNAL
(depends on the material)

ban
gap

SIGNAL COLLECTION (depends on
signal, many techniques of collection)

BUILD A SYSTEM

CERN, 8-9 Fe M. Diemoz, INFN-Roma  INEN 8
c.f. M. Diemoz at EDIT2011



https://indico.cern.ch/conferenceDisplay.py?confId=124299
https://indico.cern.ch/conferenceDisplay.py?confId=124299

General charaterictics

Calorimeters have the following properties:
Sensitive to charged and neutral particles

Precision improves with Energy (opposite to magnetic
measurements)

No need of magnetic field

Containment varies as In(E): compact

Segmentation: position measurement and identification
Fast response

Triggering capabilities
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Big European Bubble Chamber filled with Ne:H, = 70%:30%,

o

50 GeV/c
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Electromagnetic showers

Electromagnetic showers result from electrons and photons
undergoing bremsstrahlung and pair creation

: ABSORBER

For high energy (GeV scale) electrons bremsstrahlung is the

dominant energy loss mechanism
For high energy photons pair creation is the dominant absorption

mechanism
Shower development is governed by these processes
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Which processes contributes for electrons ?
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Ionization

Interaction of charged particles with the atomic electronic cloud
Dominant process at low energy E<Ec

The whole incident energy is ultimately lost in the form of ionization
and excitation of the medium

dE
dx
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Ionization: detectable

Critical Energy E. d_E (E) — d_E (Ec) — Ec
dx i Brem dx ioniz
1 M Materials Z Ec (MeV) X (cm)
Solide |E£ . = o10MeV
Z -+ 1 ,24 Liquid Argon 18 37 14
e E. = 710MeV | [ —— -
° Z4+0.92
Lead 82 7.4 0.56
Uranium 92 6.2 0.32

There are more ionizing particles (E<Ec) in a d

ense medium
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Bremsstrahlung

Real photon emission in the electromagnetic field of the atomic nucleus

dE
dx

ZVa
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o < A/Xo E>1 GeV
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Radiation Length

The radiation length is a “universa

electromagnetic showers (electrons & photons)

Xo is the distance after which the incident electron has radiated (1-1/e)
63% of its incident energy

distance, very useful to describe

/ 37 Fo

E,
J
XQ
Air Eau Al LAr Fe Pb | PbWO,
Z - i 13 18 26 82 -
X, (cm) | 30420 36 8,9 14 1,76 0.56 0.89
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Radiation Length

- -~ (7l6gem™)A
Approximation X,
Z(Z +1) In(287A/ 7)
Energy loss by radiation <E (X) > = Eo e _ X—O

7T X

y Absorption (e* e pair creation) S 9X,
<Ilx)>=I,e "

For compound material 1/ Xo=2 w;/ X;
J J
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Energy loss in matter: photons
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Pair production

-
-

Photon interaction with nucleus electric field or

electrons if Ey > 2.me.c?.

Opair ~ 7/9 . A/NA . 1/X0
< Z2(Z+1)

Cross-section is independent of Ey (Ey>1 GeV)

Conversion length » ., = 9/7 X,

conv

ete” pair is emitted in the photon direction

6 ~m./E,

= niiclei:

photon ®

(A.Z)

LV
+
|
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¥ + nuclenus = e”e
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Photo-electric effect

Photon extracts an electron from the atom
y+atom—e +atom*

Cross-section

strong function of the number of 10000
electrons ) oo |
Dominant at very low energy s
5 § 100 [
7 :
O o€« — a 107
E’ 5
¢ 17
Electrons are emitted isotropically g
g 0.1
2 o0
o

¢ 100 keV

> 1MeV

0.001

10

100
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Compton scattering

Atomic e
Ee=mec2 fJJ\Ql’er
P.~0

P

QED cross-section for y-e scattering

Ocompton ~ /. In(Ey)/Ey

Process dominant at Ey = 100 keV - 5 GeV

N\

scattered e-

E.'=Vm_ 2c4+p,'2c?
Pe,=_ pY,
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Angular distribution: y

1 GeV electrons in SPACAL
(Pb/scifi, 6 = 3")

Compton, photoelectrons

Y —ete”

Number of shower particles (arb. units)
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Contributions to Photon Cross Section in Carbon and Lead
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Figure 24.3: Photon total cross sections as a function of energy in carbon and lead, showing the contributions of different processes:
Op.e. = Atomic photo-effect (electron ejection, photon absorption)
Teoherest = Coherent scattering (Rayleigh scattering—atom neither jonized nor excited)
Tincoherest = Incoherent scattering (Compton scattering off an electron)
Ky = Pair production, nuclear field
ke = Pair production, electron field
Onue = Photonuclear absorption (nuclear absorption, usually followed by emission of a neutron or other particle)
From Hubbell, Gimm, and Overbp, J. Phys. Chem. Ref. Data 9, 1023 (80). Data for these and other elements, compounds, and mixtures

may be obtained from http://physics.nist.gov/PhysRetData. The photon total cross section is assumed approximately flat for at least two
decades beyond the energy range shown. Figures courtesy J.H. Hubbell (NIST).
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Summary: electrons vs photon

Reminder: basic electromagnetic interactions

et/ e & lonisation Y = Photoelectric effect

= -
E E
& Compton effect

i~

dE/dx

® Bremsstrahlung

4. Calorimetry

>
S E
©
E ® Pair production
) T_L‘
C.D'Amorosio, T. Gys, £ _Joram M. Moil and L. Ropelzwsk) CERN-PHDT2 Panicie Detactors — Principles ang Technigues 410

CERN Academic Trainng Pogramme 20042005
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Schematic shower development
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Summary: development of EM showers

The shower develops as a cascade by energy transfer from the
incident particle to a multitude of particles (e= and v).

The number of cascade particles is proportional to the energy
deposited by the incident particle

The role of the calorimeter is to count these cascade particles

The relative occurrence of the various processes briefly described
is a function of the material (2)

The radiation length (Xo) allows to universally describe the shower
development
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EM shower description: simple model

The multiplication of the shower continues until the energies

E

9y=—

fall below the critical energy, E. P
X E

A simple model of the shower uses variables scaled to X, and E_ 0 ¢

Electrons loose about 2/3 of their energy in 1X,, and the
photons have a probability of 7/9 for conversion: X, ~ generation length
After distance t:

number of particles, n(¢t)=2'

energy of particles, E(t)= 2—EI

When E~ E_ shower maximum: M(la ) = —— =Y

B
E,
ol £1_
E
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EM showers longitudinal development

Depth (X,)
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ATLAS combined
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Electrons shower mean
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Ec< 1/Z
— Shower maximum

— Shower tails
tose, = tmax + 0.08Z + 9.6

37



SEARCH FOR DECAYS OF THE Z" INTO A PHOTON AND A PSEUDOSCALAR MESON

= ALEPH Collaboration

D. DECAMP, B. DESCHIZEAUX, C. GOY, J.-P. LEES, M.-N, MINARD
Lahovatocre de Phyiique des Particwles (LAPP) IN2P2-CNRS. F-74019 Annecy-le-Viewr Cedex, France

— e ——— -y

0. 12— —
LONGTUOINAL PROFRE |
. * REAL DATA

- 0wl bt
Measurement made by ALEPH z [ H’ ++ i Bhabha events
e+e_ N e+e_ ; O.oal ; l+' .-+ ¢ 1Y everts
3 | :
ete  — yy E 0 06 u' + '}+ ,
3 ! Lt
_ _ ELELLS 4
Electron/Photon longitudinal RO S 4y |
development: different g0zl e ity
b b,
L&_J T R T TR U - lj
Q 5 10 B 20

DEPTE Xg (rasatioe lengthsl

Fig. . Longitudinal profile of clectromagnetic showers, both for
clectrons from e * ¢~ ~we*e™ and for the yy candidates. Both sam.-
phes are real data, There 1s a clear shafl by about | radiation kngih
of the photon showers with respect to electron showers, as
expecied,
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EM showers lateral development

Moliere radius, R, scaling factor for lateral extent, defined by:

2IMeV xX, T4
= ~—— g XCM

R
M E 7

c

Gives the average lateral deflection of electrons of critical energy after 1X,

e 90% of shower energy contained in a cylinder of 1R
e 95% of shower energy contained in a cylinder of 2R,
e 99% of shower energy contained in a cylinder of 3.5R

Width of core controlled by

103 : ' ‘ Eb:::ml =20GeV : . i
multiple scatterlng\
i f ] of e+
= .
g e £
. JPF “u"% Width of periphery controlled
10 L | : by Compton photok

-003 -0.02-001 0 001 0.02 0.03
shower lateral profile (n)
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EM showers simulations

Electromagnetic processes are well understood and can be very well

reproduced by MC simulation:

A key element in understanding detector performance
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Properties for electromagnetic calorimeters

Density E. Xo PM Nint (dE/dX)mip
Material 4 [g 3cm' [MeV] [mm] [mm] [mm] [Me}/ cm’
] ]
C 6 2.27 83 188 48 381 3.95
Al 13 2.70 43 89 44 390 4.36
Fe 26 7.87 22 17.6 16.9 168 11.4
Cu 29 8.96 20 14.3 15.2 151 12.6
Sn 50 7.31 12 12.1 21.6 223 9.24
\\ 74 19.3 8.0 3.5 9.3 96 22.1
Pb 82 11.3 7.4 5.6 16.0 170 12.7
28y 92 18.95 6.8 3.2 10.0 105 20.5
Concrete - 2.5 55 107 41 400 4.28
Glass - 2.23 51 127 53 438 3.78
Marble - 2.93 56 96 36 362 4.77
Si 14 2.33 41 93.6 48 455 3.88
Ge 32 5.32 17 23 29 264 7.29
Ar (liquid) 18 1.40 37 140 80 837 2.13
Kr (liquid) 36 2.41 18 47 55 607 3.23
Polystyrene - 1.032 94 424 96 795 2.00
Plexiglas - 1.18 86 344 85 708 2.28
Quartz - 2.32 51 117 49 428 3.94
Lead-glass - 4.06 15 25.1 35 330 545
Air 20°, 1 atm - 0.0012 87 304 m 74 m 747 m 0.0022

Water - 1.00 83 361 92 849 1.99
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Towards Electromagnetic Calorimeters

Detectable signal is proportional to the number of potentially detectable

particles in the shower Nt < Eo/Ec
Total track length To = Ntot . Xo ~ Eo/Ec. Xo

G(E)

1 1
E <\/T70<\/E7

Detectable track length T; = fs . To where fs is the fraction of Niwt which
can be detected by the involved detection process (Cerenkov light,

scintillation light, ionization) Ekin > Etn

Converting back to materials (Xo<A/Z?, Ec<1/Z) and fixing E

Maximize detection fs
Minimize Z/A

G(E) 1

1
E B Jk
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Exemple

Take a Lead Glass crystal
Ec = 15 MeV
produces Cerenkov light
Cerenkov radiation is produced par e* with § > 1/n, i.e E > 0.7MeV

Take a 1 GeV electron
At maximum 1000 MeV/0.7 MeV e* will produce light
Fluctuation 1/v/1400 = 3%

One then has to take into account the photon detection efficiency which
is typically 1000 photo-electrons/GeV: 1/v/1000 ~ 3%

Final resolution o/E ~ 5%/VE
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Homogeneous calorimeters

All the energy is deposited in the

1| active medium

Excellent energy resolution
No longitudinal segmentation

—— | All e* with Exin>Ew produce a signal

Scintillating crystals
Eth = B.Egap ~ eV
— 102+10% y/MeV
0/E ~ (1+3)%/VE (GeV)

Cerenkov radiatros
B>1/n — Exn = 0.7 MeV
— 1030 y/MeV
o/E ~ (5+10)%/VE (GeV)
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Sampling calorimeters

Shower is sampled by layers of an
active medium and dense radiator

Limited energy resolution
2228 8 Longitudinal segmentation
AEEE -8 NN B R W Only e* with Exn>Ew of the active
" N & E d NS B layer produce a signal

Absorber (high Z): typically Lead, Uranium
Active medium (low 2): typically Scintillators, Liquid Argon, Wire chamber

Energy resolution of sampling calorimeter dominated by fluctuations in
energy deposited in the active layers

o(E)/E ~ (10+20)%/VE (GeV)
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Sampling quctuatlons

llIIIHII

Most of detectable partlcles are produced in the absorber layers
Need to enter the active material to be counted/measured
Using the model of the track length
T, = fsTo ~ fs . E/EPS | Xg2bs
fs: sampling fraction
Number of detectable particles in active layer
= T/d = fs . E/JE2PS . Xo20s/d
Resolution scales like
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Resolution for sampling calorimeters

ZEUS (Pb) O

Mfsamp | resolution

ld !l re_solution

—

JETSET

SPAKEBAB Py Fibers
4 O Sci Plates |1
A LAr
0 | | ] |
0 2 4 6 8 10

V(0 fgme) (MM172)
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Energy Resolution

O a b
S - @@
E JE E .

a the stochastic term accounts for Poisson-like fluctuations

naturally small for homogeneous calorimeters

takes into account sampling fluctuations for sampling calorimeters
b the noise term (hits at low energy)

mainly the energy equivalent of the electronics noise

at LHC in particular: includes fluctuation from non primary interaction
(pile-up noise)
c the constant term (hits at high energy)

Essentially detector non homogeneities like intrinsic geometry,
calibration but also energy leakage
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Noise term at LHC: example for ATLAS EM

Electronics noise vs pile-up noise

Electronics integration time was optimized
taking into account both contributions for e
LHC nominal luminosity if 10%*cms! 200 |

Contribution from the noise to an electron is
typically ~ 300-400 MeV at such
luminosity

49



The constant term

The constant term describes the level of uniformity of response of the
calorimeter as a function of position, time, temperature and which are
not corrected for.

Geometry non uniformity
Non uniformity in electronics response
Signal reconstruction

Energy Ie a kage Corre'late'd Impact on uniformity ATLAS LAr EMB testbeam
contributions
Dominant term at high energy Calibration 0.23%
Readout electronics 0.10%
Signal reconstruction 0.25%
Monte Carlo 0.08
Energy scheme 0.09%
Overall (data) 0.38% (0.34%)
Uncorrelated P13 P15
contribution
Lead thickness 0.09% 0.14%
Gap dispersion 0.18% 0.12%
Energy modulation 0.14% 0.10%
Time stability 0.09% 0.15%
Overall (data) 0.26% (0.26%) 0.25% (0.23%)
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Interlude:

mMmuons




Muons interacting with matter

Muons are like electrons but behave differently when interacting with
matter (at a given energy).

Bremsstralhung process is ~ 1/m?

— 2
m=0.513 Mev/c } mw/m, ~ 200 > (mu/ me )2 ~ 40000

m,=105,66 MeV/c?

Contrary to electrons, muons (E<100GeV) loose energy mainly via
ionization with

E(w)=(m, /m,)* x E(€)
E. (u)=200 GeV in lead
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Muons in matter
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Energy deposit of muons in matter
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Muons for calorimeters

Muons deposit very little energy in calorimeter: dE/dx . x
Except for catastrophic energy loss (y emission)

They are nice tools to assess calorimeter response uniformity
at low energy

They are nice clean probes to analyze the calorimeter geometry
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End of interlude



Hadronic Showers




Hadron showers

Hadronic cascades develop in an analogous way to e.m. showers
Strong interaction controls overall development

High energy hadron interacts with material, leading to multi-particle
production of more hadrons

These in turn interact with further nuclei

Nuclear breakup and spallation neutrons

Multiplication continues down to the pion production threshold
E~2m_= 0.28 GeV/c?

Neutral pions result in an electromagnetic component (immediate
decay: n%—yy) (also: n—yy)

Energy deposited by:
Electromagnetic component (i.e. as for e.m. showers)
Charged pions or protons
Low energy neutrons
Energy lost in breaking nuclei (nuclear binding energy)



Hadronic Showers: Where does the energy go?

lLead Iron
[onization by pions 19% 21%
[onization by protons 37% 53%
1otal ionization 56% T4%
Nuclear binding energy loss 2% 16%
Target recoil 2% 5%
1otal invisible energy 34% 21%
Kinetic energy evaporation neutrons 10% 5%
Number of charged pions 0.77 .4
Number of protons Pl S
Number of cascade neutrons 54 3
Number of evaporation neutrons S5 5
Total number of neutrons 36.9 10
Neutrons/protons 10.5/1 1.3/1
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Hadronic shower development

Simple model of interaction on a disk of radius R: o, = ntR? o« A%/3
oy = 35 mb
Nuclear interaction length: mean free path before inelastic interaction

Oinel ~ OOA

A, = 4 ~354'"gxem™
NAO nt

(gcm®) | (Mev) | (cm) (cm)
Air 30 420 ~70 000
Water 36 84
PbWO, 8.28 0.89 22.4
© 6 2.3 103 18.8 38.1
Al 13 2.7 47 8.9 39.4
L Ar 18 1.4 14.0 84.0
Fe 26 7.9 24 1.76 16.8
Cu 29 9.0 20 1.43 15.1
w 74 19.3 8.1 0.35 9.6
Pb 82 11.3 6.9 0.56 17.1
u 92 19.0 6.2 0.32 10.5 60




Hadronic cascade

: ABSORBER

E E.M.

; COMPONENT
......

i HADRONIC

E > 3 n Heavy fragment COMPONENT

5 A | A

A |

; N215.¢

As compared to electromagnetic showers, hadron showers are:
e Larger/more penetrating
e Subject to larger fluctuations — more erratic and varied
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Hadron showers
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red - e.m. component
blue - charged hadrons

Individual hadron showers are quite dissimilar
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Hadronic shower and non compensation

R,=¢E, + ¢gE,

Response to
hadrons

EM energy HAD enerrgy

shower shower

fract. of detected
EM energy

fract. of detected
HAD energy

> |

~ 1 : compensating calorimeter

/
£, T~

> 1 : non compensating calorimter
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Hadronic showers: non compensation
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Hadron shower longitudinal profiles

Longitudinal profile
Initial peak from =% produced in the first interaction

Gradual falloff characterized by the nuclear interaction length,
)“int

WAT78 : 5.42. of 10mm U/ 5mm Scint + 8A of 25mm Fe / 5Smm Scint
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Hadron shower transverse profiles

Mean transverse momentum from
interactions, <p;> ~ 300 MeYV, is about the
same magnitude as the energy lost
traversing 1A for many materials

So radial extent of the cascade is well

characterized by A

The =® component of the cascade results i

an electromagnetic core
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Summary

Why use calorimeters ?
EM processes involved in interactions of e*/y with matter
EM showers general characteristics
EM calorimeters: homogenous vs sampling
Stochastic term
Energy resolution
Hadronic showers
More erratic development

Next lecture
Tevatron & LHC calorimeters
Performance
Calorimeters for ILC
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Signal detection (light, electric charge)
Homogenous or sampling calorimeters

Electronics

(conversion, amplification,

signal transmission)

Interaction with matter

Calorimeters
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