Lecture 2

Physics Program of the experiments at Large Hadron Collider

soft QCD

News of last week

LHC Schedule

	Oct				Nov				6411	Dec			
Wk	40	41	42	43	44	45	46	47	48	49	50	51	52
Мо	1		15	22	29	5	12	Scrubbing	25 ns physics	3	10	¥ 17	24
Tu			$\overrightarrow{\mathbf{x}}$	Floating MD				25 ns set-up					Xmas
We		MD 3		[24 h] 500+ m									
Th] _ [[24 h]								STAN	IDRY
Fr] [MD 4				JIAN	
Sa							Scrubbing run						
Su							(date tbc)						

. .

QCD

- Scattering processes at high energy hadron colliders can be classified as either HARD or SOFT
- Quantum Chromodynamics (QCD) is the underlying theory for all such processes, but the approach is very different for the two cases
- For HARD processes, e.g. W production, the rates and event properties can be predicted using perturbation theory
- For SOFT processes, eg. Total cross-section rates and properties predicted by non-perturative models

Typical pp collision

Why interest in soft QCD

• At almost every event triggered in ATLAS there will be soft (low p_T) QCD process underlying hard p_T physics

- Cannot be modelled from first principles (lagrangian),
- Has to be measured and then Monte Carlo will be tuned

Why "soft QCD" is interesting?

- It is non-perturbative physics and has an interesting phenomenology
 - Beam remnants
 - Multiple Parton Interactions
 - Color recombination
 - => All adding up to the colorless objects

- It is an essential ingredient for precision high pT physics
 - Causes an experimental bias: energy scale, isolation, efficiencies, fakes

Dominant pp interactions

 Multi-parton interactions (Underlying Event)

Inelastic cross-section

- Use only few runs: 7 TeV data (190 μb⁻¹) + 900 GeV data (7μb⁻¹) and 2.36TeV data (0.1μb⁻¹)
 - We want to study all inelastic pp interactions
 - Instantaneous luminosity very low for these runs: on average ~0.007 interactions per bunch crossing → 99.3% of crossings are empty.
 - Need to "trigger" on inelastic interactions: Minimum Bias Scintillator Trigger (MBTS)
 - \rightarrow sensitive to any charged particle 2.09< $|\eta|$ < 3.84
 - 16 counters on each side of ATLAS
- Correct for detector inefficiencies and resolution, eg. present spectrum of charge particles not tracks
- No extrapolation to regions not seen by ATLAS

MBTS trigger

How well understood detector?

Excellent agreement between data and MC: Pixel and Silicon hits per track

Unfolding to particle level

- Bayesian iterative unfolding used to correct tracks and clusters back to particle level.
 - Use mapping of truth particles on reconstructed objects (use Monte Carlo)

particle level

detector level

Total inelastic pp cross-section

- ATLAS made measurement with new and simple method (publ. in Nature Commun.)
 - Count inelastic collisions: N^{evts} N^{bck}
 - Correct for efficiencies: ε
 - Normalise with luminosity

Total inelastic pp cross-section

Total cross-section

Characteristic in pseudorapidity

Gap cross-section

- Diffractive events tend to have large "rapidity gaps"
- Measure σ vs $\Delta\eta$ (large $\Delta\eta$ dominated by diffraction)

- Detector split into h rings (0.2 wide)
- Ring (detector) is empty if:

 - □ No Inner Detector tracks |η|<2.5 with p_T>200 MeV
- Ring (Monte Carlo) is empty
 - No particles with p_{τ} >200 MeV

Unfolding matrix

Gap cross-section

- Dominant systematic uncertainties
 - MC model dependence of corrections
 - Calorimeter energy-scale

Minimum bias

- Minimum bias events: minimum possible requirements that ensure an inelastic collision occurred
 - Require 1 MBTS counter to fire on either side
 - Require reconstructed primary vertex
 - At least N good quality tracks

Minimum bias at LHC

ALICE publication

European Physical Journal C: Volume 65, Issue 1 (2010), Page 111

Details: no magnetic field, charged particles from counting number of tracklets, efficiencies from MC, confirms consistency with ppbar results (predicted diff 0.1-0.2%). Only statistical errors shown, systematic of 7.1 %(NSD), 7.2% (INEL), dominated by fraction and kinematics of diffractive processes

Three analysis techniques

 Event selection is aimed at selecting NonSingleDiffractive events with high efficiency (rejecting large fraction of SingleDiffractive)

Efficiency: NSD ~86%, SD ~19%.

Energy dependence

Atlas analysis strategy

 Use charged particle multiplicity distributions to probe soft QCD:

 $\frac{1}{N_{\rm ev}} \cdot \frac{\mathrm{d}N_{\rm ch}}{\mathrm{d}\eta}, \quad \frac{1}{N_{\rm ev}} \cdot \frac{1}{2\pi p_{\rm T}} \cdot \frac{\mathrm{d}^2 N_{\rm ch}}{\mathrm{d}\eta \mathrm{d}p_{\rm T}}, \quad \frac{1}{N_{\rm ev}} \cdot \frac{\mathrm{d}N_{\rm ev}}{\mathrm{d}n_{\rm ch}} \quad \text{and} \quad \langle p_{\rm T} \rangle \text{ vs. } n_{\rm ch}$

Analysis components:

- Trigger and event selection
- Track reconstruction efficiency
- Unfolding from track to hadron level (using MC)
- Compare to Monte Carlo phenomenological models

Efficiency correction from Monte Carlo

- Trigger and vertex efficiencies derived from data
 - Trigger > 99.5% efficient (obtained from a control trigger)
- Tracking efficiency from Monte Carlo
 - various data ↔ Monte Carlo to set systematics
 - dominant systematics comes from knowledge of the material
- Unfold to the hadron level
 - complicated procedure

Track-to-particle correction

Correction for $dN_{ch}/d\eta$, dN_{ch}/dp_T distributions

Apply efficiencies and other corrections as weights during analysis

Event-weight

Trigger- and vertex efficiency

Track-weight

- Track efficiency
- Secondaries
- Out-of-phasespace

$$w_{\rm trk}(p_{\rm T},\eta) = \frac{1}{\epsilon_{\rm bin}(p_{\rm T},\eta)} \cdot (1 - f_{\rm sec}(p_{\rm T})) \cdot (1 - f_{\rm okr}(p_{\rm T},\eta))$$

 $w_{\rm ev}(N_{\rm Sel}^{\rm BS}) = \frac{1}{\epsilon_{\rm trig}(N_{\rm Sel}^{\rm BS})} \cdot \frac{1}{\epsilon_{\rm vtx}(N_{\rm Sel}^{\rm BS})}$

η spectra and particle multiplicity

$1/N_{ev}\;dN_{ch}/d\eta$: 900 GeV and 7 TeV

All disagree with data for high charged particle multiplicity

<P_t> vs n_{ch}: 900 GeV and 7TeV

Significant disagreement for $p_T > 2$ GeV, the hard part for soft model

p_T spectrum $1/N_{ev} (1/2\pi p_T) d^2 N_{ch} / d\eta dp_T$

Example of comparison

Underlying event

- UE = "everything" "hard scatter" = beam-beam remnants, MPI, ISR
- Study: charged particle density, transverse momentum, average p_T. Transverse region considered most sensitive to UE

"Underlying event"

- Define the direction of "hard scatter" as the highest p_{τ} particle
- Study the activity (#of particles) in the region "transverse" to the hard scatter.

Transverse region particle density

- All tunes underestimate particle density by 10%-15% in the plateau region
- There is factor of ~2 increase in activities between 900 GeV and 7 TeV
- In the plateau region the measured density corrsponds to \sim 2.5 per unit η at 900 GeV and 5 particle at 7 TeV

Transverse region $<\Sigma p_T >$ density

- Similar conclusions:
 - there is factor of ~2 increase in activities between 900 GeV and 7 TeV
 - all tunes underestimate the scalar sum p_T in the transverse region

Particle Density Angular Correlation

- Define the event orientation by the azimuthal angle on the track with the highest p_T.
- MC tunes only reproduce the general features, disagreement in rates both in the transverse region (UE) and in the away region (MPI/Hard Core)

Two-particle correlations

$$R(\Delta\eta, \Delta\phi) = \frac{\langle (N_{ch} - 1) F(N_{ch}, \Delta\eta, \Delta\phi) \rangle_{ch}}{B(\Delta\eta, \Delta\phi)} - \langle N_{ch} - 1 \rangle_{ch}$$

 Multiplicity-independent 2-particle correlations over the multiplicity averaged background.

Two-particle correlations

JHEP 05 (2012) 157

- Data demonstrate existence of 2-particle angular correlations of different types.
- MC reproduces general features but not the strength

UE results with calorimeter

 Count calorimeter clusters instead of tracks, sensitive also to neutral particles

Strange particle production

- A lot more strange mesons at large p_T than predicted by models
- K/π ratio fairly independent of the centre-of-mass energy

Strange particle production

High multiplicity events

- Tails of the distributions where several MC generators underestimate the data (except Pythia)
- Trying to find unexpected (non in MC) effects in this regime)
- Highest multiplicities in pp begins to approach those in ion collisions; can learn about similarities or differences

CMS observation

 Observed longrange near-side correlations in high multiplicity events
CMS Collab., arXiv:1009:4122, accepted by JHEP

268 reconstructed particles in the tracker in a single pp collision: the highest multiplicity event in \sim 70 billion inelastic events sampled (1/pb)

High multiplicity events

Elzbieta Richter-Was

Correlations for PYTHIA

MC tunes

- There are more soft particles than expected
- We need better understanding and modeling of diffraction
 - Diffraction enhanced minbias sample (not yet detector corrected) favours 30% (PYTHIA) relative diffractive crosssections and hard (PHOJET) particle spectra
- Seems to be more "min-bias" high multiplicity soft events than expected
- The models do not produce enough strange particles

MC tunes: hadronic event

Tuning phenomenological models

- Number of relatively free parameters which must be tweaked if generator is to describe experimental data;
- Profilation of parameters, between O(10-30) of importance for collider physics simulations. Few examples: kinematic distribution of transverse momentum (p_T) in hadron fragmentation, barion/meson ratios, strangeness and {η,η'} suppression, distribution of orbital angular momentum, etc. etc.
- Nowdays tunings became an "industry":
 - Rivet system for comparing generastor tuning with experimental data
 - Professor system for parametrising generators behaviour in bins of parameter vectors

Example of MC tunning

Regularisation of divergence in low $p_T QCD 2 \rightarrow 2$ scattering via $\alpha_S^2(p_T^2)/p_T^4 \rightarrow \alpha_S^2(p_T^2 + p_{T0}^2)/(p_T^2 + p_{T0}^2)^2$

Screening : Wavelength of exchanged particle becomes too large to resolve colour

 $p_{T0} = PARP(82) (E_{COM} / 1.8 \text{ TeV})^{PARP(90)}$

(smaller $p_{T0} \rightarrow$ more low p_T activity)

Matter distribution of protons described by double Gaussian

PARP(83) = fraction in core Gaussian PARP(84) = a_2 / a_1

(denser matter distribution \rightarrow more multiple interactions \rightarrow more activity)

PARP(X) = tunable parameters

Diffraction: how important for MC tunings

- The low p_T low N_{ch} region is problematic
 - Diffractive component important
- Case PYTHIA 6:
 - Diffractive component soft and low multiplicity
- Case PYTHIA 8:
 - At low N_{ch}, <p_T> similar for SD,DD & ND

Parameters tunnings

ATLAS new tune:

Parameter	related model	MC09c value	scanning range	AMBT1 value
PARP(62)	ISR cut-off	1.0	fixed	1.025
PARP(93)	primordial kt	5.0	fixed	10.0
PARP(77)	CR suppression	0.0	0.25 1.15	1.016
PARP(78)	CR strength	0.224	0.2 0.6	0.538
PARP(83)	MPI (matter fraction in core)	0.8	fixed	0.356
PARP(84)	MPI (core of matter overlap)	0.7	0.0 1.0	0.651
PARP(82)	MPI (p_T^{min})	2.31	2.1 2.5	2.292
PARP(90)	MPI (energy extrapolation)	0.2487	0.18 0.28	0.250

Next topics

- > 24.10 hard QCD
- 7.11 W, Z bosons: inclus. cross-sections, W/Z+jets
- > 14.11 W, Z bosons:precise measurements
- > 21.11 Top: xsection, mass
- \geq 28.11 Dibosons and anomalous couplings
- ≻ 5.12, 12.12 **Higgs**
- > 19.12 **SUSY**
- 9.1 other searches for New Physics
- > 16.1 B-physics programme
- > 23.1 heavy ion programme