Lecture 11

Physics Program of the experiments at Large Hadron Collider

SM Higgs boson: properties Supersymmetry

Recorded luminosity in 2012

Status: 2 Dec 2012

ATLAS integrated luminosity in 2012

- Peak L = 7.7×10³³ s⁻¹cm⁻² (Aug)
- Max L/fill: 237 pb⁻¹ (June)
- Weekly record: 1350 pb⁻¹ (June)
- Longest stable beams: 22.8 h (July)
- Fastest turn-around between stable beams: 2.1 h (April)
- Best weekly data-taking efficiency: 92 h (55%) (July)

Measured with forward detectors, calibrated with beam separation scans

SM Higgs production at the LHC

December 13-th update (CERN)

 $H \rightarrow \gamma \gamma$ Update Since "Discovery Paper" PLB 716

ATLAS-CONF-2012-168

γγ channel basic facts sheet :

Signal (SM _{126 GeV})	Signal purity s/b	Main backgrounds	Production	7 & 8 TeV $\int L dt$
~330	2% - 20%	<mark>γγ</mark> ,γj and jj	Hgg, VBF, VH	4.9 & 13 fb ⁻¹ 2

Higgs boson decay

- Experimentally accessible.
 - ьь, ττ, WW, ZZ, γγ, Zγ, (μμ)
- $\Gamma_{\rm H}$ 4MeV NOT direct measure at LHC

M _H =125 (GeV		
Process	Branching ratio	Uncer	tainty
$H \rightarrow bb$	5.77 x 10-1	+3.2%	-3.3%
H → π	6.32 x 10-2	+5.7%	-5.7%
H → μμ	2.20 x 10-4	+6.0%	- <mark>5.9%</mark>
$H \rightarrow cc$	2.91 x 10-2	+12.2%	-12.2%
$H \rightarrow gg$	8.57 x 10-2	+10.2%	-10.0%
$H \rightarrow \gamma \gamma$	2.28 x 10-3	+5.0%	-4.9%
$H \rightarrow Z\gamma$	1.54 x 10-3	+9.0%	-8.8%
$H \rightarrow WW$	2.15 x 10-1	+4.3%	-4.2%
$H \rightarrow ZZ$	2.64 x 10-2	+4.3%	-4.2%
Г _Н [GeV]	4.07 x 10-3	+4.0%	-3.9%

Mass dependency:

	δBR(ьь)/0.5	GeV	\rightarrow	1%
--	------	---------	-----	---------------	----

- $\delta BR(\gamma\gamma)/0.5 \text{ GeV} \rightarrow <1\%$
- δBR(WW)/0.5 G_eV → 4%
- δBR(ZZ)/0.5 G_☉V → 4%

<u>H->γγ update</u>

Simple topology: two high- p_T isolated photons E_T (g_1 , g_2) > 40, 30 GeV To increase sensitivity, overall and to specific production processes 12 exclusive categories:

- γ rapidity, converted/unconverted γ , $p_{Tt}(p_T\gamma\gamma$ perpendicular to $\gamma\gamma$ "thrust" axis)
- presence of 2 high-mass (m_{ji} 400 GeV) forward jets target VBF process
- 1 lepton → target W/Z/ttH
- Low-mass di-jet (60 <m_{jj}<100 GeV) jets \rightarrow target W/ZH

NEW since PLB716

H->γγ update: single channel discovery!

Observed local significance:

6.1*σ*

Expected local significance:

 3.3σ

2011 126.0 GeV 3.5σ (exp. 1.6σ) 2012 127.0 GeV 5.1σ (exp. 2.9σ)

H->γγ update: mass measurement

 $m_H = 126.6 \pm 0.3 \text{ (stat)} \pm 0.7 \text{ (syst) GeV}$

H->yy update: signal strength

December 13-th update (CERN)

4l channel basic facts sheet :

Signal	Signal Purity s/b	Main backgrounds	Production	7 & 8 TeV $\int L dt$
~10	~1	ZZ, Z+jets, top	All inclusive	4.9 & 13 fb ⁻¹ 27

E. Richter-Was

H->4l update: signal confirmation

Simple selection :

- 4 leptons: p_T^{1,2,3,4} > 20,15,10,7-6 (e-μ) GeV
- 50 < m₁₂ < 106 GeV
- m₃₄ > 17.5 GeV

In the signal region 125 \pm 5 GeV

Observed	18 events
Expected from bkg only	8.3 ± 0.3
Expected from SM Higgs	9.9 ± 1.3

E. Richter-Was

19 December 2012

H->4l update: signal strength

Measurement of signal strength

 $\hat{\mu} = 1.3 \pm 0.4$

Measurement of narrow resonance mass

 $m_H = 123.5 \pm 0.9 \text{ (stat)}^{+0.4}_{-0.2} \text{ (syst) GeV}$

H->γγ and **H->4l** combination

Taking all mass scale systematic uncertainties and their correlations into account the compatibility of the two measurements is estimated to be at the 2.7σ level

All channels combination

Updated with 13 fb⁻¹ of 2012 8 TeV data

Summary of the signal strength in all SM Higgs search channels

⁻irst analysis of spin in H->γγ channel

- Expected sensitivity: exclusion of the spin 2⁺ hypothesis at the 97% CL
- Observed exclusion of spin 2⁺ hypothesis at the 91% CL

Observation compatible with spin 0 (within 0.5σ)

Analysis of spin in H->4l channel

Using the distributions of 5 production and decay angles combined in BDT or Matrix Element (MELA) discriminants

- 0⁺ vs 2⁺: (Low) Expected Exclusion of 2⁺ at the 80% CL
- Observed exclusion of spin 2⁺ at the 85% CL

Observation fully compatible with spin 0^+ (within 0.18 σ)

Analysis of parity in H->4l channel

Using the distributions of 5 production and

decay angles combined in BDT or Matrix

Element (MELA) discriminants

- 0⁺ vs 0⁻ : Expected Exclusion of 0⁻ at the 96% CL
- Observed exclusion of 0⁻ at the 99% CL

Observation fully compatible with spin 0 (within 0.5 σ)

Couplings (presented at HCP)

SM Higgs ($G_F \rightarrow v = 246 \text{ GeV}$) all Γ predicted once M_H measured: proportional to (measured) fermion/boson masses

•
$$\Gamma_{\rm ff} \sim (m_{\rm f}/v)^2$$

• $\Gamma_{\rm WW} \sim (2 \, M_{\rm W}^{2}/v)^2$
• $\Gamma_{ZZ} \sim (M_Z^2/v)^2$
• $\Gamma_{\rm HH} \sim (M_{\rm H}^{2}/v)^2$
• $\Gamma_{\gamma\gamma} \sim (1.6 \, \Gamma_{\rm WW} + 0.07 \, \Gamma_{\rm tt} - 0.7 \, \Gamma_{\rm Wt}) \rightarrow Wt \, \text{interference}$
• $\Gamma_{gg} \sim (1.1 \, \Gamma_{\rm tt} + 0.01 \, \Gamma_{\rm bb} - 0.12 \, \Gamma_{\rm bt}) \rightarrow \text{bt interference}$
• $\Gamma_{Z\gamma} \sim (1.12 \, \Gamma_{\rm WW} + 0.003 \, \Gamma_{\rm tt} - 0.12 \, \Gamma_{\rm Wt}) \rightarrow Wt \, \text{interference}$
 $\Gamma_{\rm tot} (126 \, {\rm GeV}) = 4.2 \, {\rm MeV} \, (\text{dominated by bb} \sim 57\%, for m. >70\%)$

Couplings

Assume SM Lagrangian $CP=0^+ + NW$ approximation to parameterize coupling dependency of measured Yield \rightarrow Test agreement between SM and observed yields

E. Richter-Was

19 December 2012

Global k fit

Several Fits performed with $2011(\sim 4.8 \text{ fb-1}) + 2012(\sim 5.9 \text{ fb-1})$ results. Common scale factor

Fit global scale factor κ :

Based on July results

Comn	Common scale factor				
Free par	rameter: $\kappa(=$	$\kappa_{\rm t} = \kappa_{\rm b} = \kappa_\tau =$	$\kappa_{\rm W}=\kappa_{\rm Z}).$		
	$H\to \gamma\gamma$	$\mathrm{H} \to \mathrm{ZZ}^{(*)}$	$\mathrm{H} \rightarrow \mathrm{WW}^{(*)}$	$H \to b \overline{b}$	$H\to\tau^-\tau^+$
ggH			•		
$t\overline{t}H$					
VBF			κ^2		
WH					
ZH					

 $\kappa = 1.19 \pm 0.11 \text{ (stat)} \pm 0.03 \text{ (syst)} \pm 0.06 \text{ (theory)}$

As expected just ~square root of $\mu = 1.4 \pm 0.3$

Theory error not dominant yet ... but already sizable

k_F vs k_v fit

• Couplings to Fermion and Vector boson sectors: $\kappa F v s \kappa V$

Boson and fermion scaling assuming no invisible or undetectable widths						
Free par	rameters: $\kappa_V (= \kappa_W = \kappa_Z)$, $\kappa_f (= \kappa_t = \kappa_t$	$\kappa_{\tau} = \kappa_{\tau}).$				
	$\mathrm{H} \to \gamma \gamma \qquad \qquad \mathrm{H} \to \mathrm{ZZ}^{(*)} \mathrm{H} \to \mathrm{WW}^{(*)} \mathrm{H} \to \mathrm{b} \overline{\mathrm{b}} \mathrm{H} \to \tau^{-} \tau^{+}$					
ggHttH	$\frac{\kappa_{\rm f}^2 \cdot \kappa_{\gamma}^2(\kappa_{\rm f}, \kappa_{\rm f}, \kappa_{\rm f}, \kappa_{\rm V})}{\kappa_{\rm H}^2(\kappa_i)}$	κ _f κ _f	$\frac{2}{4} \frac{\kappa_V^2}{\kappa_V}$	$\frac{\kappa_{\rm H}^2}{\kappa_{\rm H}^2}$	$rac{1}{4}rac{1}{2}{rac{1}{}{}{2}r{{}{}{{}{}{{}{}{2}{}{{}{2}{{}{}{{}{}{}{}$	
VBF WH ZH	$\frac{\mathbf{k}_{\mathrm{V}}^{2}\!\cdot\!\mathbf{k}_{\gamma}^{2}(\mathbf{k}_{\mathrm{f}},\!\mathbf{k}_{\mathrm{f}},\!\mathbf{k}_{\mathrm{f}},\!\mathbf{k}_{\mathrm{V}})}{\mathbf{k}_{\mathrm{H}}^{2}(\mathbf{k}_{i})}$	$\frac{\kappa_V^2}{\kappa_F^2}$	$\frac{2}{V} \cdot \kappa_{\mathrm{V}}^2$	$\kappa_{\rm T}^2$	$\frac{2}{V} \cdot \kappa_{\rm f}^2}{{ m I}(\kappa_i)}$	

Assumption only SM particles in $\Gamma_{\rm H} \sim \kappa_{\rm H}^{-2}(\kappa_{\rm F}, \kappa_{\rm V})$

• All Fermion couplings scale with the same factor κ_{F}

• All Boson couplings scale with the same factor κ_v

- Good compatibility with SM
- $\kappa_{F} = 0$ (Fermiophobic Higgs) Excluded at >2 σ
 - Thanks to channels that distinguish ggH from VBF production

C<u>ustodial Symmetry λ_{wz} = k_w/k_z</u>

Testing Custodial Symmetry W vs Z couplings

Move to fit of RATIO's (can relax assumption on total width)

• $\lambda_{wz} = \kappa_w / \kappa_z$

Two additional parameters $\lambda_{FZ} \approx_{ZZ} \kappa_{ZZ}$ in the fit but with small correlation with λ_{WZ} dominated by relative WW and ZZ yields and by BR $\gamma\gamma$ that scales mainly as κ_W^2

Probi	Probing custodial symmetry without assumptions on the total width				
Free par	rameters: $\kappa_{\rm ZZ} (= \kappa_{\rm Z} \cdot \kappa_{\rm Z} / \kappa_{\rm H}), \lambda_{\rm WZ} (= \kappa_{\rm W} / \kappa_{\rm Z}), \lambda_{FZ} (= \kappa_{\rm W} / \kappa_{\rm Z})$	$\kappa_{\rm f}/\kappa_{\rm Z}$).			
	$\mathrm{H} \to \gamma \gamma \qquad \qquad \mathrm{H} \to \mathrm{ZZ}^{(*)} \qquad \qquad \mathrm{H} \to \mathrm{WW}^{(*)} \qquad \qquad \mathrm{H} \to \mathrm{b} \overline{\mathrm{b}} \qquad \mathrm{H} \to \tau^- \tau^+$				
ggH ttH	$\kappa_{ZZ}^2\lambda_{FZ}^2\cdot\kappa_{\gamma}^2(\lambda_{FZ},\lambda_{FZ},\lambda_{FZ},\lambda_{WZ})$	$\kappa_{\mathrm{ZZ}}^2\lambda_{FZ}^2$	$\kappa_{\rm ZZ}^2\lambda_{FZ}^2\cdot\lambda_{\rm WZ}^2$	$\kappa_{\mathrm{ZZ}}^2\lambda_{FZ}^2\cdot\lambda_{FZ}^2$	
VBF	$\kappa_{\mathrm{ZZ}}^2\kappa_{\mathrm{VBF}}^2(1,\lambda_{\mathrm{WZ}}^2)\cdot\kappa_{\gamma}^2(\lambda_{FZ},\lambda_{FZ},\lambda_{FZ},\lambda_{\mathrm{WZ}})$	$\kappa^2_{\rm ZZ}\kappa^2_{\rm VBF}(1,\lambda^2_{\rm WZ})$	$\kappa^2_{\mathrm{ZZ}}\kappa^2_{\mathrm{VBF}}(1,\lambda^2_{\mathrm{WZ}})\cdot\lambda^2_{\mathrm{WZ}}$	$\kappa_{\mathrm{ZZ}}^2 \kappa_{\mathrm{VBF}}^2 (1, \lambda_{\mathrm{WZ}}^2) \cdot \lambda_{FZ}^2$	
WH	$\kappa_{ m ZZ}^2\lambda_{ m WZ}^2\cdot\kappa_{\gamma}^2(\lambda_{FZ},\lambda_{FZ},\lambda_{FZ},\lambda_{ m WZ})$	$\kappa^2_{ m ZZ} \cdot \lambda^2_{ m WZ}$	$\kappa^2_{ m ZZ}\lambda^2_{ m WZ}\cdot\lambda^2_{ m WZ}$	$\kappa^2_{ m ZZ} \lambda^2_{ m WZ} \cdot \lambda^2_{FZ}$	
ZH	$\kappa^2_{\mathrm{ZZ}} \cdot \kappa^2_{\gamma}(\lambda_{FZ},\lambda_{FZ},\lambda_{FZ},\lambda_{\mathrm{WZ}})$	$\kappa_{\rm ZZ}^2$	$\kappa^2_{ m ZZ}\cdot\lambda^2_{ m WZ}$	$\kappa^2_{ m ZZ} \cdot \lambda^2_{FZ}$	

Custodial Symmetry λ_{wz} = k_w/k_z

Testing Custodial Symmetry W vs Z couplings

Move to fit of RATIO's (can relax assumption on total width)

• $\lambda_{wz} = \kappa_w / \kappa_z$

Two additional parameters $\lambda_{FZ} \approx_{ZZ} \kappa_{ZZ}$ in the fit but with small correlation with λ_{WZ} dominated by relative WW and ZZ yields and by BR $\gamma\gamma$ that scales mainly as κ_W^2

E. Richter-Was

Loop contributions \mathbf{k}_{q} vs \mathbf{k}_{γ}

Assumptions:

- Direct Coupling to known SM particles assumed to be as in SM:
- $\kappa_{b} = \kappa_{W} = \kappa_{Z} = \kappa_{\tau} = \dots = 1$
- $\kappa_{_{H}} \sim 0.9 + 0.1 \kappa_{_{g}}$
- No extra contributions to total width (only known SM and gg)
- Fitted parameters κ_{g} vs κ_{γ}

Probi	Probing loop structure assuming no invisible or undetectable widths				
Free par	rameters: κ_g , κ_γ .				
	$\mathrm{H} \to \gamma \gamma \qquad \qquad \mathrm{H} \to \mathrm{ZZ}^{(*)} \mathrm{H} \to \mathrm{WW}^{(*)} \mathrm{H} \to \mathrm{b} \overline{\mathrm{b}} \mathrm{H} \to \tau^- \tau^+$				
ggH	$\frac{\frac{\kappa_{\rm g}^2\cdot\kappa_{\rm \gamma}^2}{\kappa_{\rm H}^2(\kappa_i)}}$	$rac{\kappa_{ m g}^2}{\kappa_{ m H}^2(\kappa_i)}$			
ttH VBF WH ZH	$rac{\kappa_{\gamma}^2}{\kappa_{ m H}^2(\kappa_i)}$	$\frac{1}{\kappa_{\rm H}^2(\kappa_i)}$			

E. Richter-Was

Loop contributions $k_q vs k_{\gamma}$

- Couplings to gg and $\gamma\gamma$ expected to proceed via loop: very sensitive to BSM physics
- Hierarchy problem related to top loop that are the same that contributes to gg Higgs coupling
- Treat gg and $\gamma\gamma$ loops as free parameters (no relationship with SM content assumed)

Loop contributions $k_a vs k_y$

Still dominated by statistical uncertainty Without theorerical error ~20% smaller error

Supersymmetry common in many SM extensions Strong motivation for TeV-scale SUSY:

SUSY

- Heavier superpartners with spin-½ compared to the SM
- MSSM: 105 parameters to be determined!
- Introducing R-parity (aka matter parity)
 - SM particles (+1), SUSY particles (-1)
 - Phenomenology centered around the Lightest Supersymmetric Particle (LSP)
 - Can be violated

High-scale boundary condition: $m_0, M_{1/2}, A, B, \mu$

Radiative EWSB

Inclusive searches

E. Richter-Was

Inclusive searches

Most generic searches: strongly produced squarks/gluons High production cross-section

- Select on jets+∉_T signature
- Can reduce backgrounds by requiring additional leptons/photons/(b)-jets) from intermediate sparticles in cascade decay

Inclusive searches

ATLAS example: jets+₽_⊤

- 5 signal regions (2-6 jets) each with 1-3 m_{eff} selections to probe multiple SUSY masses
- 4 control regions per SR to estimate backgrounds

SUSY

SUSY is not just one model Many possible variations

- SUSY breaking mechanism gravity-, gauge-, anomaly-mediated, ...
- Beyond MSSM
- R-parity = (-1)^{2S}(-1)^{3B+L} conserved? If not, lifetime of lightest sparticle

No signs of SUSY yet

Allowed phase space is getting squeezed

- Flavor physics remains in good agreement with SM
- Light Higgs-like boson discovered, but at high end of (MSSM) preference
- Either large stop mixing
- Very heavy squarks
- Or beyond MSSM

Analysis setup

O lepton+ jets + E_T^{miss}

Inclusive search for sqark and gluino strong production:

0 lepton analysis: ATLAS-CONF-2012-109

- lepton veto + 2-6 jets
- $m_{eff} = \sum_i p_T^{jet,i} + E_T^{miss}$
- Simultaneous background fit in 4 control region for each signal region
- Main background Zvv + jets

0 lepton multi-jet analysis: ATLAS-CONF-2012-103

- Specific for long decay chains form gluino decay
- 6 Signal region with 6-9 jets
- E_T^{miss} significance: $E_T^{miss}/\sqrt{H_T}$, with $H_T = \sum_i p_T^{jet,i}$
- different BG composition: QCD, ttbar(hadronic)

E. Richter-Was

1 lepton+ jets + E_T^{miss}

Focused on final states with leptonic chargino decay or sleptons

- 1 signal region with exactly 1 isolated lepton (e, μ)
- $m_{eff} = p_T \ell + \sum_i p_T^{jet,i} + E_T^{miss}$

• $m_T = \sqrt{2} p_T \ell E_T^{miss} (1 - \cos(\Delta \Phi(\ell, p_T^{miss})))$

Supersymmetry: search results

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: HCP 2012)

Saucueas existingui GMSB GMSB GC GC	MSUGRA/CMSSM: Diep + j's + $E_{j'}$ miss MSUGRA/CMSSM: 1 lop + j's + $E_{j'}$ miss Pheno model: Diep + j's + $E_{j'}$ miss pheno model: 0 lep + j's + $E_{j'}$ miss o med $\sqrt{\chi}^2$ ($\overline{g} \rightarrow q \overline{q} \chi^2$): 1 lep + j's + $E_{j'}$ miss GGM (bino NLSP): 2 lep (OS) + j's + $E_{j'}$ miss GGM (bino NLSP): $\gamma + E_{j'}$ miss GGM (wino NLSP): $\gamma + E_{j'}$ miss GGM (higgsino-bino NLSP): $\gamma + b + E_{j'}$ miss GGM (higgsino NLSP): $2 + jets + E_{j'}$ miss GGM (higgsino NLSP): $2 + jets + E_{j'}$ miss Gravitino LSP: 'monojet' + $E_{j'}$ miss	L-5.8 (b ⁻¹ ,8 TeV [AT LAS-CONF-2012-109] L-5.8 (b ⁻¹ ,8 TeV [AT LAS-CONF-2012-104] L-5.8 (b ⁻¹ ,8 TeV [AT LAS-CONF-2012-109] L=5.8 (b ⁻¹ ,8 TeV [AT LAS-CONF-2012-109] L=4.7 (b ⁻¹ ,7 TeV [1208.4686] L=4.7 (b ⁻¹ ,7 TeV [1208.4686] L=4.7 (b ⁻¹ ,7 TeV [1209.4686] L=4.8 (b ⁻¹ ,7 TeV	1.80 1.24 Te 1.82 Te 1.82 Te 1.82 Te 1.20 TeV 1.20 TeV 1.	$\begin{array}{llllllllllllllllllllllllllllllllllll$	ATLAS Preliminary ⁶)+m(§)) ∫ <i>Ldt</i> = (2.1 - 13.0) fb ⁻¹ √s = 7, 8 TeV
ATLAS i probing n physics at th scale Panifour NdW WIMP inter	$\begin{array}{l} \begin{array}{l} \displaystyle $	L*538 Ib ⁻ , 8 TeV [ATLAS-CONF-2012-105] L=13,0 fo ⁻¹ , 8 TeV [ATLAS-CONF-2012-103] L=53,6 fo ⁻¹ , 8 TeV [ATLAS-CONF-2012-103] L=47 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-106] L=47 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-106] L=47 fb ⁻¹ , 7 TeV [1200-2102] L=47 fb ⁻¹ , 7 TeV [1200-2104] L=41 fb ⁻¹ , 7 TeV [1210-2152] L=47 fb ⁻¹ , 7 TeV [1210-2152] L=47 fb ⁻¹ , 7 TeV [1210-2152] L=44 fb ⁻¹ , 7 TeV [1210-7451] L=44 fb ⁻¹ , 7 TeV [1210-7451] L=45 fb	850 GeV ğr 860 GeV ğr 1.05 TeV 1.15 TeV 480 GeV b mass (m(Z) 98. Jos GeV t mass (m(Z) 298. Jos GeV t mass (m(Z) 370 GeV t mass (m(Z) 380 GeV t mass (m(Z) 300 GeV t mass (m(Z) 300 GeV t mass (s (s (a)) 410 GeV t mass (s (s (a)) 410 GeV	$\begin{array}{l} \text{nass} & (m(\chi_{1}^{2}) < 300 \ \text{GeV}) \\ \text{mass} & (m(\chi_{1}^{2}) < 300 \ \text{GeV}) \\ \widetilde{g} \text{ mass} & (m(\chi_{1}^{2}) < 300 \ \text{GeV}) \\ \widetilde{g} \text{ mass} & (m(\chi_{1}^{2}) < 200 \ \text{GeV}) \\ \widetilde{g} \text{ mass} & (m(\chi_{1}^{2}) < 200 \ \text{GeV}) \\ \widetilde{g} \text{ mass} & (m(\chi_{1}^{2}) < 200 \ \text{GeV}) \\ \widetilde{g} \text{ mass} & (m(\chi_{1}^{2}) < 200 \ \text{GeV}) \\ \widetilde{g} \text{ mass} & (m(\chi_{1}^{2}) < 200 \ \text{GeV}) \\ \widetilde{g} \text{ mass} & (m(\chi_{1}^{2}) = 0) \\ (m(\chi_{1}^{2}) = 0) \\ (m(\chi_{1}^{2}) = m(\chi_{1}^{2}), m(\chi_{1}^{2}) = 0, m((v) \text{ as ab}) \\ (m(\chi_{1}^{2}) = m(\chi_{1}^{2}), m(\chi_{1}^{2}) = 0, m((v) \text{ as ab}) \\ (m(\chi_{1}^{2}) = m(\chi_{1}^{2}), m(\chi_{1}^{2}) = 0, m((v) \text{ as ab}) \\ (m(\chi_{1}^{2}) = m(\chi_{1}^{2}), m(\chi_{1}^{2}) = 0, m((v) \text{ as ab}) \\ (m(\chi_{1}^{2}) = m(\chi_{1}^{2}), m(\chi_{1}^{2}) = 0, m((v) \text{ as ab}) \\ (m(\chi_{1}^{2}) = m(\chi_{1}^{2}), m(\chi_{1}^{2}) = 0, m((v) \text{ as ab}) \\ (m(\chi_{1}^{2}) = m(\chi_{1}^{2}), m(\chi_{1}^{2}) = 0, m((v) \text{ as ab}) \\ (\chi_{2}^{2}) m(\chi_{1}^{2}) = 0, \text{ sleptons cocoupled}) \\ \widetilde{g} \text{ mass} \\ \widetilde{g} \text{ ss} \\ 20) \\ \widetilde{g} \text{ mass} (m_{1} \text{ cs}) (m(\chi_{1}^{2}) = 0, 10, \lambda_{120} = 0, 10) \\ \widetilde{g} \text{ mass} (m_{1} \text{ cs}) (10, \lambda_{120} = 0, 10) \\ \widetilde{g} \text{ mass} (m_{1} \text{ cs}) (10, m(\chi_{1}^{2}) = 0, m(\chi_{1}) \text{ as ab}) \\ \widetilde{g} \text{ mass} (m_{1} \text{ cs}) (10, m(\chi_{1}^{2}) = 0, 10, \lambda_{120} = 0, 10) \\ \widetilde{g} \text{ mass} (m_{1} \text{ cs}) (10, m(\chi_{1}^{2}) = 0, 10, \lambda_{120} = 0, 10) \\ \widetilde{g} \text{ mass} (m_{1} \text{ cs}) (10, m(\chi_{1}^{2}) = 0, 10, \lambda_{120} = 0, 10) \\ \widetilde{g} \text{ min from 1110, 2690)} \\ \operatorname{alle} (m_{1} < 80 \ \text{ cerv}, \text{ mint of } < 887 \ \text{ cerv} f \text{ so} \right) \\ \end{array}$	8 TeV results 7 TeV results ve) <1 m,gdecoupled) (5) >0)
		10 ⁻¹	1		10
*Only a sele	ction of the available mass limits on new sta	tes or phenomena shown.			Mass scale [TeV]

All limits quoted are observed minus 1 a theoretical signal cross section uncertainty.

E. Richter-Was

-

MET + jets + Tau

- This analysis assumes NLSP is a stau
 - Decays to gravitino + tau
- Look for events with a tau + leptons
- 4 signal regions
 - 1 tau

Events / 10 GeV

Data/MC

10'

106

10⁵

10

10

10

10

10 10 · 2 taus

ATLAS

dt

= 4.7 fb

7 TeV

- tau+muon
- tau + electron
- Use MET, HT, and mT to discriminate between signal and background
 - Tune cuts for each signal region separately

E. Richter-Was

50

1200

H_T [GeV]

1200

Top

H_T [GeV]

Natural SUSY

Inclusive searches constrain $1^{st}/2^{nd}$ generation squarks and gluinos to be \gtrsim TeV, unless χ^0_1 is heavy

SUSY

Multiple dedicated searches Target different stop mass & decay

High stop mass, t
₁→t
⁰
₁
 m(t
₁)~m(t)

• Light stop,
$$\tilde{t}_1 \rightarrow b \chi^{\pm}$$

RPV supersymmetry

- Many SUSY models assume R-Parity conservation, i.e. Lightest Supersymmetric Particle (LSP) is stable.
 - Typical missing transverse energy SUSY signature
 - Could be a candidate for Dark Matter
- BUT no reason to assume this a priori ..
 - If we introduce R-Parity Violating terms into superpotential, LSP can decay to SM particles.

$$W_{RPV} = \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \kappa_i L_i H_2 + \lambda''_{ijk} \overline{D}_i \overline{D}_j \overline{D}_k$$

Lepton Violating

Baryon Violating

- Stability of photon forbids simultaneous lepton and baryon number violation
 - We look at both multi-leptonic and multijet final states

Long life-time particle

RPV:

$$W_{RPV} = \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \kappa_i L_i H_2 + \lambda''_{ijk} \overline{D}_i \overline{D}_j \overline{D}_k$$

If $\lambda, \lambda', \lambda''$ are small, LSP can have a long lifetime.

(lifetime proportional to $\lambda^{-2}, \lambda'^{-2}, \lambda''^{-2}$)

RPC:

- $\Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)$ ~ 100 MeV, e.g. AMSB: disappearing track
- Long-lived gluino due to squarks mediating its decay : Rhadrons
- Weak coupling NLSP-gravitino in GMSB : slepton

RPV SUSY in events with ≥ 4 leptons

- RPV models which allow lepton number violating can have multiple leptons
- Low SM BG (mainly WZ and ZZ)

- Event Selection:
 - 4 or more leptons
 - Z-candidate veto
 - E_T^{miss}> 50 GeV, or m_{eff}> 300
 GeV

$$m_{eff} = E_T^{miss} + \sum_{\mu} p_T^{\mu} + \sum_{e} p_T^{e} + \sum_{jet} p_T^{jet}$$

RPV SUSY in events with ≥ 4 leptons

- Irreducible = 4 leptons
- Reducible BG has one or more fake lepton

Selection	E _T ^{miss} > 50 GeV,	_ m _{eff} > 300	0 GeV
Irreducible Bkg.	$0.22^{+0.27}_{-0.21}$	$1.1^{+0.5}_{-0.4}$	
Reducible Bkg.	$0.028\substack{+0.107\\-0.028}$	$0.10\substack{+0.14 \\ -0.10}$	Σ
Total Bkg.	$0.25\substack{+0.29 \\ -0.25}$	$1.2^{+0.5}_{-0.4}$	Ğ
Data	1	2	באין באין

95% CL limits on	the NLSP mass
Wino	: 710 GeV
left handed slept	ton : 450 GeV
sneutrino	: 410 GeV
gluino	: 1300 GeV

- No excess over SM background is observed.
- The results are interpreted in simplified SUSY models which include ≥ 1 NLSP.
 - LSP: Bino-like neutralino
 - NLSP: Wino charginos, lem-sleptons, sneutrinos, gluino

RPV Wino simplified model: λ_{121} >0

Different flavour leptons resonances

E. Richter-Was

Events with displaced vertices

- If particle has lifetime $\mathcal{O}(\text{few ns})$, it can decay inside the tracking detector, producing a vertex at a distance away from the primary vertex.
- E.g. RPV susy with non-zero but small $\lambda_{211:}$
 - Neutralino decays to muon plus jets.
 - Muon is useful for triggering and background rejection.
 - High track multiplicity helps vertex reconstruction.
- Develop a dedicated tracking algorithm to increase signal efficiency.

- Standard ATLAS tracking is highly optimized for tracks coming from the primary interaction point (IP).
- To increase efficiency for secondary tracks, we re-run Silicon-seeded tracking algorithm, with looser cuts on transverse impact parameter, using "leftover" hits from Standard tracking.

E. Richter-Was

12

Events with displaced vertices

 (4 ± 60) *10⁻³. 0 events found in data

Background is :

- random combinations of tracks inside the beampipe (where vacuum is good, but track density is high).
- High-mass tail of distribution of real vertices from hadronic interactions with gas molecules.

Disapering tracks

- If the lowest gauginos are approximately mass-degenerate (predicted, eg, by AMSB),
- $ilde{\chi}_1^{\pm}$ has lifetime $\mathcal{O}(0.1 \, \mathrm{ns})$ and decays to $\ ilde{\chi}_1^{\mathrm{U}}$ and a (~100 MeV) π^{\pm}
- Look for production processes:

$$pp \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^0 + jet \quad pp \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^- + jet$$

(jet from ISR, needed to trigger on event).

Main BG:

- High p_T charged hadrons interacting in the TRT (80%)
- Low p_T tracks performing large bremsstrahlung

E. Richter-Was

Disapering tracks

Resulting final state will include:

High p_T jet

Large missing transverse momentum. A kinked track or a high p_T track due to poor reconstruction efficiency for soft pion.

For Δm ~ 160 (170) MeV (most probable in AMSB), m(chargino) up to 103 (85) GeV is excluded

Stable massive particles

- Several candidate particles, including:
 - Long-lived sleptons in GMSB models.
 - R-hadrons.
- Common feature: if they are massive, they will be produced with low velocities: $\beta < 1$. $m_{\beta} = \frac{p}{\nu\beta}$
- Search for heavy muon-like particles
 - low β using muon chambers and Calorimeters
 - high dE/dx measured from pixel detector (related to $\gamma\beta$)
- Main background for both slepton and Rhadron searches is high-p_T muons with mis-measured β.

Stable massive particles

- Use single muon trigger
- Select 2 muon candidates
- Background (for both slepton and rhadron) is estimated by :
 - Randomly sampling β or βγ values from control sample distributions and combining with measured p for each candidate

No excess over SM background is observed. Long-lived staus (GMSB) excluded upto 300 GeV for 5<tan β < 20 Directly produced sleptons excluded up to a mass of 278 GeV

E. Richter-Was

Supersymmetry: search results

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: HCP 2012)

	MSUGRA/CMSSM : 0 lep + i's + E.	L=5.8 fb ⁻¹ , 8 TeV (ATLAS-CONE-2012-109)	150 TeV a = a mass	
	MSUGRA/CMSSM : 1 lep + i's + E	(=5.8 fb" 8 TeV (ATLAS-CONE-2012-104)	1 24 TeV a = a mass	
	Pheno model : 0 lep + i's + E	1 =5.8 (b ⁻¹ , 8 TeV (AT) AS-CONE-2012-1091	1 18 TeV $\tilde{\mathbf{q}}$ mass $(m/\tilde{q}) < 2$ TeV light $\bar{\mathbf{x}}$	ATLAS
ES.	Pheno model : 0 lep + i's + E	(=5.8 fb ⁻¹ 8 Tay (ATI AS CONE 2012 108)	1 38 TeV 0 Mass (m(a) < 2 TeV link	Preliminary
5	Chuing mod \tilde{x}^{\pm} (\tilde{a}) $a \tilde{x}^{\pm}$) : 1 lop + i's + E	L=3.810 , 8 124 [ATLAS-CONF-2012-108]	1.36 TeV Q TT1235 (m(g) < 2 TeV, tigr	1 mm ham GW
E C	Gluino med. χ ($g \rightarrow qq\chi$). The $f = T_{T,miss}$	L=4.7 fb , 7 lev [1208.4668]	900 Gev g mass (m(x) < 200 Gev, m(x) =	$\frac{1}{2}(m(\chi_{1}^{+}m(g)))$
20	GMSB (I NLSP): 2 lep (US) + 1S + ET.miss	L=4.7 fb , 7 fev [1208.4688]	1.24 lev gmass (tanp < 15)	
N/A	CCM (bing NI SD) tag + E ^T miss	L=4.7 fb ⁻ , 7 TeV [1210.1314]	1.20 TeV g mass $(\tan\beta > 20)$	ſ
102	COM (wine NI CD) we have the	L=4.8 fb", 7 TeV [1209.0753]	1.07 TeV g mass $(m(\chi_1) > 50 \text{ GeV})$	$Ldt = (2.1 - 13.0) \text{ fb}^{-1}$
IIC	COM (WHO NLSP) . 7 + lep + E	L=4.8 fb", 7 TeV [ATLAS-CONF-2012-144]	619 GeV g mass	J
	GGM (niggsino-bino NLSP) : $\gamma + D + E_{T,miss}$	L=4.8 fb ⁻¹ , 7 TeV [1211.1167]	900 GeV g mass (m(x) > 220 GeV)	(s = 7, 8 TeV
	GGM (higgsino NLSP) : Z + jets + E _{T,miss}	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-152]	690 GeV g mass (m(H) > 200 GeV)	
	Gravitino LSP : 'monojet' + E _{T.miss}	L=10.5 fb", 8 TeV [ATLAS-CONF-2012-147]	645 GeV F ¹¹² SCale (m(G) > 10 ⁻⁴ eV)	
σt	$\tilde{g} \rightarrow b \bar{b} \chi$ (virtual b) : 0 lep + 3 b-j's + $E_{T miss}$	L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-145]	1.24 TeV \tilde{g} mass $(m(\chi)^{-0}) < 200 \text{ GeV})$	
me	$\tilde{q} \rightarrow t t \tilde{\chi}^{(i)}(virtual \tilde{t}): 2 lep (SS) + i's + E_{T min}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-105]	850 GeV \tilde{g} mass $(m(\chi)^{\circ}) < 300$ GeV)	
DO	$\vec{q} \rightarrow t \vec{t} \vec{z}$ (virtual \vec{t}) : 3 lep + i's + \vec{E}_{r}	L=13.0 fb", 8 TeV [ATLAS-CONF-2012-151]	860 GeV $\tilde{\mathbf{g}}$ mass $(m(\bar{\chi})^{\delta}) < 300 \text{ GeV})$	8 TeV results
Buin	$\vec{a} \rightarrow t \vec{t} \vec{z}$ (virtual \vec{t}): 0 lep + multi-i's + \vec{F}_{a}	L=5.8 fb ⁻¹ , 8 TeV (ATLAS-CONF-2012-103)	1.00 TeV $\tilde{\mathbf{q}}$ mass $(m(\bar{\mathbf{r}}^0) < 300 \text{ GeV})$	7 Tol/ regulte
16	$\tilde{q} \rightarrow t\bar{t}\bar{r}$ (virtual \tilde{t}): 0 len + 3 h-i's + E	L=12.8 fb ⁻¹ , 8 TeV IATLAS-CONF-2012-1451	1.15 TeV Q mass (m(7) < 200 GeV)	/ lev lesuits
	$bh h \rightarrow h\bar{x}$: 0 lep + 2-b-jets + E	L=4.7 fb ⁻¹ , 7 TeV IATLAS-CONF-2012-1061	480 GeV b mass $(m(\overline{r}^0) \le 150 \text{ GeV})$	
2 5	bb b $t_{T,miss}$	(=13.0.0) ⁻¹ 8 TeV (AT) AS-CONE-2012-1511	405 GeV b mass $(m/2^{\pm}) = 2m/2^{-0})$	
Ctic a	tt (very light) $t \rightarrow h\bar{z}^{\pm}$ · 2 len + E	/ =4.7 (b ⁻¹ , 7 TeV (1208 4305) 130 GeV	\tilde{t} mass $(m(\pi^{-1}) < 70 \text{ GeV})$	
E de	tt (light) t_{-} hx^{\pm} : 1/2 lop + b_iet + E		t mass (m()) = 10 (eV)	
2 2	$tt (mght), t \to 0\chi$ $tr = 0$ $tr = 0$	L=4.7 fb , 7 lev [1209.2102] 123-167	$\frac{1}{2}$ $\frac{1}$	
it d	II (medium), $I \rightarrow I\chi$. 2 lep + b-jet + $E_{T,miss}$	L=4.7 fb , 7 lev [1209.4186]	298-305 GeV (THASS $(m(\chi) = 0)$	
5.0	tt (neavy), $t \rightarrow t\chi_0$: 1 lep + b-jet + $E_{T,miss}$	L=4.7 fb ⁻ , 7 TeV [1208.2590]	230-440 GeV (mass $(m(\chi) = 0)$	
0 0	tt (neavy), $t \rightarrow t\chi$: 0 lep + b-jet + $E_{T,miss}$	L=4.7 fb , 7 lev [1208.1447]	$370-465 \text{ GeV}$ (mass $(m(\chi_1) = 0)$	
	tt (natural GMSD) $Z \rightarrow II$ + D-jet + $E_{T,miss}$	L=2.1 fb ⁻ , 7 TeV [1204.6736]	310 GeV t mass $(115 < m(\chi_1) < 230 \text{ GeV})$	
**	$\downarrow_{I_{L}}$ \downarrow_{I	L=4.7 fb ^{-*} , 7 TeV [1208.2684] 85-19	95 GeV mass $(m(\overline{\chi}) = 0)$	
N.	$\overline{\chi}_{\tau}, \overline{\chi}_{\tau}, \overline{\chi}_{\tau} \rightarrow v(\overline{w})_{\tau} \rightarrow v\overline{\chi}_{\tau} : 2 \text{ lep } + E_{T,\text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [1208.2884]	110-340 GeV χ_1^- mass $(m(\chi_1^-) < 10 \text{ GeV}, m(l, \bar{v}) = \frac{1}{2}(m(\chi_1^-) + m(\chi_1^-)))$	
9 11	$\chi_1 \chi_2 \rightarrow v_1, v_2[(v_1)] : 3 \text{ lep } + E_T \text{ miss}$	L=13.0 fb", 8 TeV [ATLAS-CONF-2012-154]	580 GeV χ_1^- mass $(m(\chi_1^-) = m(\chi_2^-), m(\chi_1^-) = 0, m(l, v)$	as above)
	$\chi_{\chi_2} \rightarrow W^* \chi_{\chi_2} Z^* \chi_{\chi_3} : 3 \text{ lep } + E_{T,\text{miss}}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-154]	140-295 GeV χ_1^- Mass $(m(\overline{\chi}_1^-) = m(\overline{\chi}_2), m(\overline{\chi}_1) = 0$, sleptons decoupled	1)
5	Direct $\tilde{\chi}_{\tau}$ pair prod. (AMSB) : long-lived $\tilde{\chi}_{\tau}$	L=4.7 fb ⁻¹ , 7 TeV [1210.2852]	220 GeV χ_1 mass $(1 < \tau(\chi_1) < 10 \text{ ns})$	
les	Stable g̃ R-hadrons : low β, βγ (full detector)	L=4.7 fb ⁻¹ , 7 TeV [1211.1597] 985 GeV g mass		
5:2	Stable t R-hadrons : low β , $\beta\gamma$ (full detector)	L=4.7 fb ⁻¹ , 7 TeV [1211.1597] 683 GeV t mass		
Dal	GMSB : stable 7	L=4.7 fb ⁻¹ , 7 TeV [1211.1597] 300 GeV τ Mass (5 < tanβ < 20)		
1 -	$\overline{\chi}^0 \rightarrow qqu (RPV) : \mu + heavy displaced vertex$	L=4.4 fb ⁻¹ , 7 TeV [1210.7451]	700 GeV q mass (0.3×10 ⁻⁵ < λ ₂₁₁ < 1.5×10 ⁻⁵ , 1 m	m < cτ < 1 m, g̃ decoupled)
	LFV : $pp \rightarrow \bar{v} + X, \bar{v} \rightarrow e + \mu$ resonance	L=4.6 fb ⁻¹ , 7 TeV [Preliminary] 1.61 TeV \widetilde{V}_{x} (λ_{xy} =0.10, λ_{xy} =0.05)		
	LEV: $pp \rightarrow \overline{v} + X, \overline{v} \rightarrow e(u) + \tau$ resonance	L=4.6 fb ⁻¹ , 7 TeV (Preliminary) 1.10 TeV V, mass ($\lambda_{1,1}=0.10, \lambda_{1,1}=0.05$)		
>	Bilinear RPV CMSSM : 1 lep + 7 i's + E	1.2 TeV ATLAS-CONF-2012-1401 1.2 TeV $\tilde{q} = \tilde{q} \text{ mass}(ct,, < 1 mm)$		
÷	$\vec{\tau} \cdot \vec{\tau} \cdot \vec{\tau} \to W \vec{\tau}^0 \cdot \vec{\tau}^0 \to eev euv \cdot 4 lep + E$	L=13.0 fb", 8 TeV IATLAS-CONE-2012-1531	700 GeV $\tilde{\chi}$ mass $(m(\tilde{\chi}) > 300 \text{ GeV} \lambda$, or λ	> 0)
_	LI I JIZ Z DOV OUV A lon + E	(a13.0 th ² 8 TeV (AT AS COME 2012 (33) 430 GeV [m3.0 th) $(m_{1}^{2}) = 100 GeV [m_{1}^{2}] = 0 (m_{1}^{2}) = 0$		
	$\chi_1, \chi_2, \chi_1, \chi_1, \chi_2, \chi_1, \chi_2, \chi_1, \chi_2, \chi_1, \chi_1, \chi_2, \chi_1, \chi_1, \chi_2, \chi_1, \chi_1, \chi_2, \chi_2, \chi_1, \chi_2, \chi_2, \chi_2, \chi_1, \chi_2, \chi_2, \chi_2, \chi_2, \chi_2, \chi_2, \chi_2, \chi_2$	/ =4.6 fb ⁻¹ 7 TeV [1210 4813]	666 GeV Q mass	122
	Scalar duon : 2-jet resonance pair	(=4.6 fb ⁻¹ 7 TeV [1210.4826]	100.287 GeV SOLUOD MASS (incl. limit from 1110.2693)	
WIM	P interaction (D5, Dirac γ): 'monojet' + E	(=10.5 (b) ¹ 8 TeV (AT) AS CONF. 2012 4471	704 GeV M* SCALE (m < 80 GeV limit of < 697 (Sel/ for DB)
	T,miss			
			αι μα τος τορούς του του το του το του το του ∎ανα	
		10"	1	10

10⁻¹

Mass scale[TeV]

Rare decays

First observation of $B_s^0 \rightarrow \mu^+ \mu^-$

• In
$$1 \text{ fb}^{-1}$$
 ($\sqrt{s} = 7 \text{ TeV}$) + 1.1 fb^{-1}
($\sqrt{s} = 8 \text{ TeV}$) of data, LHCb observes a
signal for $B_s^0 \rightarrow \mu^+ \mu^-$ that is
incompatible with the background
only hypothesis at 3.5σ . With:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = 3.2 \, {}^{+1.5}_{-1.2} imes 10^{-9}$$

c.f. a time integrated SM expectation of:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.54 \pm 0.30) \times 10^{-9}$$

[arXiv:1208.0934], [arXiv:1204.1735]

LHCb-PAPER-2012-043

In general a SM-like $\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$ rules out CMSSM points with large tan β .

Direct search results (CMS 5 fb⁻¹), Charged LSP, $B \rightarrow \tau \nu$, $B_s^0 \rightarrow \mu^+ \mu^-$, Allowed region.

At lower $tan\beta$ the relative importance of direct searches increases.

Parton luminosity

Parton luminosity

Next topics

- 9.1 other searches for New Physics
- 16.1 B-physics programme
- 23.1 heavy ion programme

Living in incredibly exciting time for fundamental partcile physics!